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Abstract 
 

The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power 
generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days 
after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high drive 
motor current draw. Increased structural vibrations near the joint were also observed. Subsequent 
inspections via Extravehicular Activity (EVA) discovered that the nitrided case-hardened steel bearing 
race on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A far-
reaching investigation of the anomaly was undertaken. The investigation included metallurgical 
inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and 
structural analyses. The results of the investigation showed that the anomaly had most probably been 
caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The 
profile of the roller bearings and the metallurgical properties of the race ring were also found to be 
significant contributing factors. To mitigate the impact of the damage, astronauts cleaned and lubricated 
the race ring surface with grease. This corrective action led to significantly improved performance of the 
mechanism both in terms of drive motor current and induced structural vibration. 

 

 
 

Figure 1. International Space Station as of August 2009   
 
 

Introduction 
 

International Space Station Overview 
The International Space Station (ISS) is a research facility currently being assembled in low Earth orbit. 
The ISS project is a multi-national effort led by the United States, with partners from Russia, Canada, the 
European Union, Japan, and others. Construction of the ISS began in 1998 and is scheduled to be 
complete by 2011 with operations continuing until 2015. The ISS is the largest artificial satellite in Earth 
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orbit, larger than any previous space station. It was designed as an orbital scientific platform and is 
intended to operate continuously while supporting a crew of six in pressurized modules. The ISS offers an 
advantage over spacecraft such as NASA's Space Shuttle because it is a long-term platform in the space 
environment, allowing scientific experimentation as well as long-duration studies on the human crews that 
operate them. Long-term expedition crews conduct science daily (approximately 160 man-hours per 
week), across a wide variety of fields, including human research, life sciences, physical sciences, and 
Earth observation, as well as education and technology demonstrations. The power required to support 
the scientific and life sustaining functions of the ISS is provided by arrays of solar panels. 
 
The ISS has a backbone or set of trusses that house several ISS systems. These trusses are joined to a 
set of pressurized modules that house the crewmembers living and working aboard the ISS. Figure 1 
shows the ISS after assembly mission 17A by the Space Shuttle. The pressurized modules are located 
along the center of the truss structure, extending forward and aft. The power generating solar arrays are 
located on the port and starboard sides of the truss structure outboard of the SARJs. The location of each 
Solar Alpha Rotary Joint (SARJ) is indicated in Figure 1.   
 
Solar Alpha Rotary Joint Overview 
The SARJ is a single-axis pointing mechanism that allows orbital-rate sun-tracking rotation of the 
outboard trusses and solar arrays of the ISS. The SARJ completes one full rotation per orbit of the ISS, 

approximately every 90 minutes. Figure 2 shows a drawing of 
the SARJ with the major components labeled. The SARJ is 
capable of transferring 60 kW of electrical power, spare low 
power (300 W), and data channels across the rotary joint. The 
total weight of the SARJ is 1161 kg (2561 lb). Two SARJ 
mechanisms are installed onboard the ISS - Port (activated 
December 2006) and Starboard (activated June 2007). The 
SARJ serves as the structural joint between the ISS inboard and 
outboard truss elements via twelve Trundle Bearing Assemblies 
(TBA). The trundle bearings straddle between an inboard and 
outboard triangular cross-section race rings. The race rings are 
approximately 3.2 meters (10.5 ft) in diameter. TBAs are 
nominally mounted to the stationary inboard ring while their 
rollers track against the three surfaces of the outboard race ring. 

These rollers are highly pre-loaded against the race ring to allow them to react ISS structural loads. The 
bearing race is made of a 15-5PH stainless steel forging with a nitride hardened case. TBAs are designed 
for individual on-orbit replacement to protect the mechanism against a roller bearing failure. The SARJ is 
driven by one of two redundant Drive Lock Assemblies (DLAs) that interface with an integral bull gear on 
the race ring via a motor-driven pinion. Each DLA is controlled by a Rotary Joint Motor Controller (RJMC) 
which, in conjunction with processors in the ISS computing infrastructure, performs closed loop control of 
the joint’s motion. SARJ system health and status data is relayed by the processors to the ground in the 
ISS telemetry stream.  
 
Trundle Bearing Assembly Overview 
The TBA contains three roller bearing assemblies: two identical upper rollers and a lower, slightly wider, 
roller. A picture of a TBA is shown in Figure 3. The roller assemblies consist of an internal double row 
tapered roller bearing whose cup is shrunk fit inside of an outer roller. The outer roller is the physical 
interface with the SARJ bearing race. The outer roller is made of 440C and is lubricated with 1250-2250 
angstroms of gold applied via an ion deposition process. The gold plating on the rollers serves as the sole 
lubrication scheme for the roller/race interface (the internal tapered roller bearings have a grease 
lubricant). At the time of the SARJ preliminary design it was believed that the mechanism would be 
exposed to the atomic oxygen present in the low Earth orbit environment. The final design included 
thermal shrouds around the entire circumference of the mechanism, but these were not part of the 
baselined design at the time the lubrication system was being selected. Due to the long life requirement 

Figure 2. SARJ Overview 
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(30 years) and the assumed exposure of the mechanism to atomic oxygen, lubricant selection criteria of 
the day [1] led designers to select a metallic film lubricant.  

 
Figure 3. Trundle Bearing Assembly 

 
The roller assembly is fitted into the trundle bearing via a camber pivot axis. This fitting is free to rotate 
approximately three degrees to allow for proper alignment of the outer roller with the bearing race under 
mechanical and/or thermal deflections. This rotational axis of the roller assembly leaves the roller 
susceptible to an overturning moment caused by thrust loads at the roller/race interface. This effect is 
discussed in detail below. The design intent was that the solid film lubricant on the rollers would mitigate 
these thrust loads.  

 
On Orbit Anomaly Investigation 

 
Approximately eleven weeks after the Starboard SARJ was activated on-orbit, the mechanism began 
exhibiting anomalous operational data. For the following two months, engineers on the ground reviewed 
on-orbit telemetry and worked with the ISS operators and ISS crew to determine the most likely cause of 
the anomalous signature through a series of on-orbit tests. Eventually, an inspection of the mechanism 
during an EVA found that the bearing race was damaged and covered in debris. 

 
Initial Anomaly Investigation 
The SARJ software provides continuous status on most of the system’s performance parameters. These 
parameters include, but are not limited to, position, speed, motor current draw, target tracking accuracy, 
and hardware temperatures. This telemetry is reviewed continuously to ensure the health and effective 
operation of the mechanism. The first indication of anomalous behavior came from unexpected changes 
in the Starboard SARJ telemetry. In early September 2007, the ISS operations team raised a concern that 
the difference between the commanded and actual velocity of the SARJ was increasing. The SARJ 
controller software uses the difference between commanded and actual velocity to determine how much 
current to provide to the mechanism’s drive motor. The change in velocity profile prompted a detailed 
review of the SARJ operational data. From this review, engineers determined that subtle changes in 
SARJ performance could be noted starting on September 1st. Figure 4 shows the onset of the anomalous 
data signature. There are two pieces of telemetry shown. The first is the joint position and the second is 
the commanded velocity of the mechanism. The three plots depict ten minutes periods of time from three 
consecutive orbits. Two observations can be made from these data: (1) the irregular data signature 
initially occurred at a specific angular position of the joint, and (2) the magnitude of the irregularity is 
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increasing with time. The frequency of the data spikes increased with time such that after a few days the 
commanded velocity at all SARJ angles was off nominal. 

 
Figure 4. Anomalous Data Signature from the SARJ Controller 

 
This anomalous signature appeared similar to a signature encountered previously on the Port SARJ. The 
Port SARJ data signature was caused by a problem with the SARJ controller software. With that in mind, 
the controller and manager software for the system were reset. The intent was to clear out memory 
buffers and re-initialize controller variables that could be accumulating and leading to the anomalous data 
signature. The software resets did not lead to any change in the anomalous signature. The SARJ 
controller did not appear to be the primary cause of the anomaly. 
 
Efforts to exonerate additional components of the system were attempted by switching logical command 
strings. The SARJ controller architecture utilizes two fully redundant command strings. Each string is 
composed of a multiplexer/de-multiplexer (MDM) where the SARJ controller software is housed, a RJMC 
where the velocity control loop and motor power source is located, and a DLA which interfaces with the 
driven gear of the SARJ and houses the drive motor. Changing commanded strings did not have an 
appreciable effect on the anomalous data signature. This action demonstrated that the hardware from 
each drive string was not solely responsible for the data signature. 
 
After clearing the software, MDMs, RJMCs, and DLAs, the primary focus of the investigation turned to the 
controller logic. While specific anomalies in the software had been ruled out, it was postulated that the 
controller might be over correcting for slight changes in mechanism performance. If this were the case, 
then controller parameters could be modified to optimize system performance. A thorough review of the 
controller logic did not produce any evidence that the anomalous signature could be a controller effect.  
 
Five weeks into the anomaly investigation engineers had eliminated a number of likely causes for the 
anomaly but still did not understand the root cause. Then a significant change in the drive motor current, 
approaching system limits, led engineers to the conclusion that the problem was most likely mechanical in 
nature. An increase in joint drag appeared to be the cause of the anomaly.  
 
Joint Drag Changes During the Anomaly Investigation 
The drive motor current is directly related to the torque required to overcome internal drag and applied 
load in order to rotate the joint. Assuming a benign loading environment, the SARJ torque is a direct 
measure of the fiction in the joint. The relationship between torque and drive motor current is shown in 
Equation 1 (torque constant and SARJ gear ratios can be assumed to be constants).  
          SARJ Torque = Drive Motor Current ● (Torque Constant ● SARJ Gear Ratio) (Eq. 1) 
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Prior to the anomaly peak motor currents of 0.25 ampere were nominal. This corresponds to joint drag of 
approximately 790 N·m (590 ft·lbf). During the initial investigation, the peak currents increased to levels 
as high as 0.60 ampere, or 1910 N·m (1410 ft·lbf) of joint drag. The system capacity is 1.4 amperes. 
While the increase in drag was over 100% of the nominal value, it was still well within system capacity 
with a torque margin of 1.33. The drive current readings remained steady for two weeks at the increased 
level. The system experienced another drastic increase in drive motor current in the first week of October. 
The multiple changes in drive motor current throughout the course of the investigation are shown in 
Figure 5. After the 3rd step change drive motor currents were over 1.2 amperes, or 3810 N·m (2810 ft·lbf) 
of joint drag. In a one week period, the torque margin for the mechanism had decreased from 1.33 to 
0.17. There was a risk that with another step change in required current there would be an unrecoverable 
stall of the mechanism. 

 

 
 

Figure 5. Starboard SARJ Drive Motor Current Changes 
during the Course of the Anomaly Investigation 

 
In order to fully characterize the joint drag, an on-orbit test was executed. The objectives of the test were 
to take the controller software out of the loop and directly measure joint drag for all angular positions of 
the joint. The test objectives were accomplished by operating the mechanism in a mode of operations 
called “Torque as Stepper” (TAS), which does not utilize the controller loop. In TAS mode, the operator 
keys in a level of commanded current. The procedure for the test had the operators iteratively step up the 
amount of current requested until the mechanism began rotating. This was done in 30 degree increments 
so as to cover all angular positions of the joint. The TAS test confirmed conclusively that the controller 
was not contributing to the current spikes and that the high drag condition existed across the entire 
circumference of the joint, although some areas were worse than others. During the test, drag levels 
ranged between 2380 N·m (1760 ft·lbf) and 2860 N·m (2110 ft·lbf). 
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The anomaly investigation team was confident that increased joint drag was the source of the data 
anomalies, however, the source of the drag was unknown. An EVA task was planned on the upcoming 
Space Shuttle mission to investigate the nature and source of the suspected mechanical drag. 
 
Extra Vehicular Activity and Mechanism Inspection 
The goal of the EVA inspection was to look for a “smoking gun” that could have led to the off-nominal 
data trends. Specifically, the crew was asked to inspect the thermal covers shrouding the joint (Multi 
Layer Insulation, or MLI, covers) and the bolts that serve as the structural attachment between the MLI 
covers and the SARJ. This inspection would have revealed any evidence of a micro-meteoroid strike or of 
some interference between the MLI covers and the rotating half of the SARJ mechanism. Additionally, the 
crew was asked to inspect the launch restraint fittings to determine if there was any interference with the 
MLI covers. If time permitted, the crew was also asked to remove a MLI cover to inspect the bearing 
races and TBAs. 
  
Nothing off nominal was noted during the external survey. The crew had sufficient time to remove a MLI 
cover for additional inspection. Upon removing the cover the astronaut immediately noticed that there 
were fine metal shavings across the outboard bearing race surface. Additionally the astronaut noted that 
the TBA roller housing was acting as a magnet and collecting metal shavings. Samples of the debris 
collecting around the TBA housing were gathered and returned to ground for analysis (results discussed 
below). A characteristic picture of the condition of the mechanism can be seen in Figure 6. The outboard 
race ring, and specifically the outer canted surface, appeared discolored and mottled and there was 
debris on much of the surrounding hardware.   
 

 
 

Figure 6. Astronaut Inspecting the Starboard SARJ During an Extra Vehicular Activity  
 

The root cause of the damaged bearing race was not immediately known. It was clear, however, that the 
mechanism was mechanically damaged and operating in a significantly degraded condition. There was 
concern that continued operation could exacerbate the problem. Also, the vibrations caused by rotating 
the joint had become severe enough that accelerated hardware fatigue was a concern. The anomaly 
investigation team recommended that operation of the Starboard SARJ be halted immediately until the 
root cause of the anomaly was known. 
 
After seeing the damage on the Starboard SARJ, engineers requested an inspection of the Port SARJ. It 
appeared to be operating as expected based on telemetry review. The inspection would provide a point of 
comparison to the Starboard SARJ as well as a baseline image of the mechanism. The Port SARJ 
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inspection was executed on the following EVA. The astronaut determined that the Port SARJ race rings 
looked pristine. The inspection confirmed that the damage was confined to the Starboard SARJ. Figure 7 
shows a picture of the mechanism taken during the inspection. There is no apparent damage or debris 
accumulating around the bearing race surfaces or the TBA. 
 

 
Figure 7. Astronaut Inspection of the Port SARJ During an Extra Vehicular Activity 

 
Lessons Learned 
The source of the anomalous data signature was determined less than eight weeks after its genesis. 
During this period of time the mechanism continued to operate and damage to the bearing race 
propagated around the entire circumference of the ring. It is possible that if the source of the anomaly had 
not been discovered, the damage would have progressed further (affecting one of the undamaged 
bearing surfaces). In hindsight, the anomaly investigation deserves further scrutiny to assess which 
diagnostic approaches were most effective, and whether any improvements could have been be made to 
the anomaly investigation process or the health monitoring system. 
 
The best data came from a hands-on visual inspection of the suspect mechanism. For many spaceflight 
mechanisms, this is not feasible, or comes at an extremely high cost. On-orbit testing also provided an 
effective means of exonerating specific components as well as characterizing the mechanism 
performance. A systemic review of all possible contributing factors and appropriate test strategies should 
be developed immediately after an anomaly is identified. 
 
Additional instrumentation on the mechanism would have aided in diagnosing the anomaly. Strain gauges 
and accelerometers mounted directly to the TBAs would have been extremely useful. There are strain 
gauges on the SARJ system but none that measure local deflections at the bearing housings. The SARJ 
system is susceptible to high tractive forces (addressed in detail in the proceeding sections) which would 
have been picked up on locally mounted strain gauges. There are accelerometers on the ISS truss but 
these are not part of the SARJ monitoring and diagnostic system. Ground development testing indicated 
that the SARJ system was susceptible to debris generation. Accelerometers would provide an indication 
that debris in excess of expectations was present. A failure modes analysis should lead to the most 
effective instrumentation and monitoring criteria for a mechanism. Given the susceptibility to debris 
generation and sensitivity to tractive forces additional instrumentation would have been appropriate for 
the SARJ. 
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More consideration early on should have been given to halting operation of the mechanism until the 
anomalous data signature was better understood. Cessation of nominal operations was not seriously 
considered until just prior to the EVA inspection because the changes in operating conditions did not 
represent an immediate threat to successful operation. The system was still effectively tracking the sun 
with ample torque margin. Instead of focusing on overall system capabilities, it would have been more 
useful to focus on relative changes in the operational performance. For example, a change in drive motor 
current from 0.25 to 0.50 ampere represents a change of only 17% in terms of overall torque margin. 
However, it also reflects a 100% increase in joint drag. This jump in required current should have caused 
significant enough concern to stop operating the mechanism. Changes relative to previous operational 
data, or data from the rest of the hardware fleet, are more indicative of hardware issues than changes 
relative to overall system capability.  

 
Anomaly Root Cause Investigation 

 
A team was formed immediately after the EVA inspection of the Starboard SARJ revealed significant 
damage to the bearing surface. The team was made up of individuals from NASA Johnson Space Center 
(JSC), Kennedy Space Center (KSC), Marshall Space Flight Center (MSFC), Glenn Research Center 
(GRC), Goddard Space Flight Center (GSFC), NASA Engineering and Safety Center (NESC), The Boeing 
Company, Lockheed Martin Space Systems Company (LMSSC), ATK, and Purdue University. The teams 
charge was to determine the root cause of the anomaly, determine a corrective action for the damaged 
mechanism, and determine appropriate recurrence controls for the undamaged (Port) SARJ. 
 
The debris samples taken during the EVA inspections were analyzed in detail by Boeing Houston and 
NASA JSC and KSC materials and process teams [2]. The analysis yielded several key findings. First, the 
debris was primarily composed of the case material. Second, the debris thickness showed that the 
damage did not extend into the core material. And third, the morphology of the debris indicated that the 
damage was initiated via subsurface spalling. It was not immediately clear to the anomaly investigation 
team what conditions would generate sufficient stresses to cause the premature case spalling observed. 
 
The anomaly team created a fault tree to aid in the search for the root cause of the damage and to focus 
in the areas that were critical for investigation. The focus areas were software, hardware, and operations. 
The fault tree yielded over 350 events that were studied individually. The fault tree events were closed by 
providing analysis, testing, simulation, or a combination of these. The closure process for the fault tree 
required that events be combined in a worst-case fashion. A review of fault tree events led to the 
identification of a set of critical variables for this anomaly. The critical variables were determined to be 
roller misalignment, lubrication selection and roller/race ring friction, bearing material properties, and 
applied loading. The team evaluated the interdependencies between the critical variables to determine 
the most probable root cause of the anomaly.  
 
TBA Roller Misalignment 
The TBA roller design causes a pushing action on the roller as the SARJ rotates. This design does not 
auto correct for roller misalignments as a castoring, or pulling, design would [3]. Misalignment is inherent 
to any design and manufacturing process. The trundle bearings used match drilled assembly procedures 
to minimize tolerance build-up and associated roller misalignment. Actual misalignment was not 
measured on individual units as part of hardware acceptance. After the anomaly had occurred, roller 
misalignments were measured at MSFC using a coordinate measuring machine as part of the root cause 
investigation [4]. The measurements showed that the trundle bearing misalignments were all within 
tolerances (±1 degree). Nevertheless, coupled with high friction, the misalignments were large enough to 
generate detrimental thrust loads on the roller bearings.  
 
Lubrication Selection and Roller/Race Ring Friction 
Gold lubrication was the design choice to mitigate the frictional loads caused by these misalignments in 
both the TBA and DLA rollers. Test data obtained as part of the SARJ Anomaly (discussed in further 
detail below) show that a gold film on the trundle bearing rollers could maintain a coefficient of friction of 
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approximately 0.2 between the TBA rollers and race ring [5]. Nominally, a coefficient of friction of 0.2 
ensures that the SARJ system maintains dynamic stability, which allows the race ring to react loads 
distributed along the full contact patch of the trundle bearing rollers. However, an instability arises when 
the ratio of thrust load to normal load rises above a critical value of 0.4. At this level of friction, an 
overturning moment caused by small misalignments in the roller, and subsequent thrust forces, cause the 
trundle bearing roller to tilt about its camber axis. The roller tilt causes a decrease in the roller race 
contact and an associated increase in stress at the contact. Test data determined that friction levels in 
excess of 0.4 are expected if no lubricant exists in the bearing contact, provided that sufficient roller 
misalignments are present [5]. 
 
Bearing Material Properties and Susceptibility to Spallation
The anomaly team postulated that increased friction between the roller/race interface could cause a 
stress field with the maximum shear stresses at the nitride case/15-5PH core interface. The team also 
determined that the solid film gold lubricant was not properly adhered to the rollers [6]. Without the gold 

lubricant in place, the system becomes susceptible to 
increased shear and normal stresses. The high shear 
stresses at the case/core interface could lead to 
subsurface initiated spalling of the case material. 
Multiple tests were performed over several months in 
an attempt to reproduce this failure mechanism. Tests 
performed at the LMSSC facilities in Sunnyvale on a 
Trundle Roller Rig were successful in recreating the 
spalling effect observed on-orbit [7]. The test rig 
loaded a 440C roller against a nitrided 15-5PH 
coupon. The roller was then rolled in a reciprocating 

motion along the coupon’s surface. Figure 8 above shows a test coupon from the rig. The inset in the 
figure shows an example of a “fingernail” type spall. Spalls of this type were also noted in on-orbit 
inspection photos.  
 
Applied Loading
The Trundle Test Rig confirmed that subsurface spalling could be induced in the SARJ bearing materials 
given sufficiently high stress conditions. Additional work was required to validate that the TBA roller 
kinematics were capable of generating the high stresses required given the expected loading conditions.  
 
A dynamic simulation was developed to perform analysis of the SARJ trundle bearings. The purpose of 
this simulation was to quantify the loads between each of the trundle bearing rollers and the race ring. 
The simulation included the race ring deformation caused by the thermal environment, the stiffness of the 
trundle bearing itself, and the stiffness of the inboard and outboard trusses of the ISS. It also included the 
structural flexibility of the ISS trusses. The simulations were used to perform parametric studies in support 
of the closure of the SARJ Fault Tree events. The simulation used traction data obtained from NASA 
GRC testing for the contact between the race ring and the TBA rollers both with and without gold coating. 
The simulation was used to estimate the loads at the roller to race ring interface and to illustrate the 
kinematic behavior of the TBA rollers. The development and results of this simulation are discussed 
below  
 
Analysis of Roller Edge Loading 
The effect of small angular misalignments on rolling traction forces has been studied by a number of 
investigators, as summarized by K.L. Johnson in [8]. Solutions to the governing equations of rolling have 
been developed in closed form for a few geometries, and powerful numerical methods have been 
developed to address the problem for more general application. These methods are important for the 
present investigation because the angular misalignment of the trundle bearing rollers can lead to dramatic 
changes in the loads and stresses on the race ring surfaces. 

Figure 8. Trundle Test Rig Coupon 
Showing Fingernail Type Spalling [7] 
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The mistrack or “toe” angle of a TBA roller is the misalignment of the roller due to rotation about an axis 
normal to the race ring surface. The existence of some small mistracking angle is inherent in the 
hardware build process. The metrology laboratory at MSFC performed detailed measurements of the 
mistrack angle of the Starboard SARJ TBA rollers after they had been returned from orbit. Mistracking 
between the roller and race creates a friction force on the roller in the thrust direction, denoted Q in Figure 
9. This yields a moment about the camber axis, which is reacted by the normal load between the roller 
and race. As the magnitude of the thrust friction increases, the load distribution on the roller becomes 
unevenly distributed to react the induced moment. The distance d in Figure 9 denotes the lateral distance 
from the camber axis to the center of normal pressure of the contact. In stable tilting, the distance d 
increases with increasing camber tilt, offsetting the camber moment generated by an increasing thrust 
friction Q. However, after a certain camber angle threshold is reached, d begins to decrease with 
increasing camber angle, causing the roller to enter into unstable tilting. The analysis and inspection of 
the Starboard SARJ TBAs shows that the outer canted rollers remained in the regime of stable tilting 
during the time when the race ring was being damaged. 

 
 

Figure 9. Trundle Bearing Roller Stability 
 
In order to investigate the effect of roller mistracking on the contact forces, a numerical boundary element 
analysis tool was developed by researchers at Purdue University and Boeing. This tool was rigorously 
validated against closed form solutions and also shows excellent agreement with the traction results 
obtained through testing at Glenn Research Center (GRC) [5]. GRC was able to quantify the friction-
mistracking relationship in a Vacuum Roller Rig (VRR). The VRR replicates the flight-like rolling interface 
and materials in a vacuum environment. A comparison between traction curves developed by test at GRC 
and via analysis is shown in Figure 10. One will note that the analytical results closely match the test 
data. It is also worth nothing that the VRR rollers do not have identical degrees of freedom to the TBA 
rollers and therefore the TBA rollers must be addressed by a modified thrust curve (discussed below, see 
Figure 13). 
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Figure 10. Comparison of Thrust Curves from Analytical Results and VRR Test Data [5] 
 
Figure 11 shows the transverse shear traction distribution on the GRC test rollers for a representative 
misalignment case. The plot on the left shows that the contact area is divided into regions of stick and 
slip. The stick region, shown in green, is located at the leading edge of the contact. As the unstressed 
material of the test rollers enters into the contact patch, the shear deflections and tractions between the 
two rollers build until the shear tractions reach the limiting value of friction defined by the coefficient of 
sliding friction, µ, times the normal pressure. As material moves through the trailing end of the contact, 
slipping occurs between contacting points on the rollers, and the shear tractions remain at the limiting 
value of friction. 

 
Figure 11. Shear Traction Distribution for GRC Test Rollers, Q/P = 0.4 

 
For increasing mistrack angles, the stick region gradually decreases in size until the total thrust load 
equals µ times the normal load, at which point the entire contact region is in slip. For small mistrack 
angles such as those observed on the Starboard SARJ TBAs, the rollers remain in partial sliding, and the 
total frictional force is less than the limiting value of sliding friction. 
 
The tractive phenomena in the flight TBA rollers are analogous to those in the GRC test rollers, with the 
exception that the TBA rollers have an additional camber degree of freedom. The flight TBA rollers also 
have a flat profile that transitions to a 1.5-mm (0.060-in) blend radius at the edges of the contact. As a 
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result, the size and shape of the contact patch for a TBA roller vary dramatically depending on the thrust 
loading and camber angle of the roller. The contact patch dimensions are plotted in the left portion of 
Figure 12 for increasing values of thrust load. This plot shows that as the TBA roller tilts on edge due to 
the thrust loads, the area in contact with the race ring is reduced. The right portion of Figure 12 shows 
that the average normal contact pressure increases dramatically as a result of the reduced contact area. 
 

 
Figure 12. Contact Patch Dimensions and Average Contact Pressure for TBA Roller 

 
 
In the study of rolling contact mechanics, the relationship between the transverse rolling creep (related to 
the mistrack angle) and the traction ratio Q/P is known as the traction curve. The analysis of the SARJ 
TBA rollers found that the shape of the contact patch caused by cambering has an influence on the 
traction curve for the roller. This effect is such that as a TBA roller begins to tip about its camber axis, the 
frictional loads are less severe than they would otherwise be, thereby mitigating the tipping phenomenon. 
The blue dotted line in Figure 13 shows the traction curve for the flight TBA roller if the camber axis were 
fixed at 0°. The red dotted line shows the traction curve if the camber axis were fixed at 2°. In the actual 
TBA, where the camber axis is free to rotate, the traction curve follows the 0° fixed camber curve for small 
mistrack angles. However, for larger mistrack angles the changing geometry of the contact patch causes 
the thrust friction loads to be less severe than in the fixed camber case, as shown by the solid black line 
in the figure. Despite this phenomenon, thrust loads as high as 0.4 times the normal load can be 
generated with mistrack angles less than 0.5°.  
 
Detailed measurements and tolerance analysis of the Starboard SARJ TBAs identified an approximate 
worst case mistrack angle of 0.36°. The normal and shear pressure distributions at the contact are shown 
in Figure 14 for that mistrack case. As a result of camber tilting, only about one quarter of the width of the 
roller is in contact with the race ring surface. The resulting stresses at the interface between the race ring 
case material and the parent material were found to exceed the yield strength of the parent material.  
 

NASA/CP-2010-216272



199 

 
 

Figure 13. Traction Curves for Outer Canted TBA Roller 
 

 
 

Figure 14. Distribution of Normal and Shear Pressure for 0.36°  
Mistracking, TBA Outer Canted Roller 

 
In addition to concentrating the contact pressures at the roller edges, frictional thrust loads due to 
mistracking also have the effect of increasing or decreasing the normal loads on adjacent rollers. 
Depending on the specific combination of roller mistrack angles and the direction of SARJ rotation, it is 
possible for the race ring’s triangular cross-section to be wedged in between two of the TBA rollers. This 
wedging action is analogous to a positive feedback loop. Frictional loads on the Datum A and outer 
canted rollers lead to increased normal loads on those rollers, which in turn allow the contacts to generate 
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higher frictional loads. Photographs of the damaged race ring surface taken by the on-orbit crew support 
the hypothesis that the initiation of damage occurred under these wedging conditions. 
 
Contact Stress for Flat and Crowned TBA Rollers 
The root cause team further found that the bearing edge stresses were exacerbated by the flat, un-
crowned profile of the TBA rollers. The roller geometry made the system sensitive to non-Hertzian effects, 
which gave rise to high pressure points at the edges of the rollers during the initial run-in period of the 
mechanism. These high pressure points are visible in the contact stress profile of the TBA rollers shown 
in the left side of Figure 15. Part of the recurrence control plan for the SARJ is to modify the rollers on any 
spare TBAs to include logarithmically crowned rollers. The logarithmic roller profile is a shape that has 
been mathematically optimized to eliminate the high pressure points that ordinarily occur at the edges of 
cylindrical roller bearings. 
 

 
Figure 15. Normal Contact Stress Distribution for TBA Roller, P = 4.36 kN (980 lb) 

 
Root Cause Investigation Conclusions 
On-orbit video photographic, visual evidence, and debris samples analyses indicate that the SARJ race 
ring nitrided layer spalled from the base 15-5 PH steel. The spalling occurred over a period of two and 
one half months after the Starboard SARJ on-orbit activation. The first signs that the spalling was taking 
place were manifested through telemetry data that indicated the average operating current of the SARJ 
was rising from nominal values of 0.15 amp to as high as 0.8 amp. 
 
During this time, the Structural Dynamic Measurement Data System of the ISS was indicating vibrations 
that were anomalous. These vibrations were later confirmed to be linked to the degrading condition of the 
SARJ race ring surface. As the race ring surface became progressively rougher over time as a result of 
the spalling, the vibrations the ISS was sustaining while the Starboard SARJ was rotating were a concern 
to the structural life of the Space Station. These vibrations were inducing load cycles on ISS hardware 
that were high enough to be counted in the nominal ISS loads spectrum for structural fatigue.  
 
Testing and analysis indicate that the SARJ race ring surface damage was caused by tractive forces 
(normal and shear) applied to the race ring surface by the TBA and DLA rollers. Severe loading cases are 
observed with mistracking angles smaller than the as-measured TBA mistracking angles. Mistracking 
loads are sensitive to roller edge loading, multiple roller mistracking, direction of mistracking and race ring 
rotation direction. Analysis indicates that worst loads occur on the gear side of outer canted surface and 
Datum A surface.  
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Testing shows that gold, as a solid lubricant, is capable of maintaining a low coefficient of friction (0.2) for 
mistracking angles higher than the maximum conservatively predicted angle for the TBAs [4,5]. Testing 
reproduced several visible features of the on-orbit damage [7]. Testing also shows loss of gold adhesion 
[6]. Using the same roller material as the SARJ TBA, the ion-sputtering process used for the starboard 
SARJ rollers was re-created and the gold finish was tested. The tests exonerated the gold plating 
process. However, aging humidity tests indicated that, in time, the gold film would delaminate from the 
parent material due to corrosive growth on the substrate. 
 
Metallographic analysis was performed to compare the imperfections between the race rings used for the 
starboard SARJ and the port SARJ. The data indicate that the defect concentrations in the starboard ring 
nitrided case are approximately six times that of the port nitrided case. The difference in the nitride case 
defect concentrations makes the starboard SARJ race ring more susceptible to damage initiation and 
damage propagation caused by high loading. It also may explain the survivability performance of the port 
SARJ race rings [10].  
 
Anomaly Most Probably Root Cause 
The kinematics of the TBA and DLA mechanisms require that the roller thrust loads (related to friction 
coefficient and mistracking angle) be controlled to ensure stable roller line contact with the race ring 
surfaces. Inadequate lubrication of the roller/race ring interface combined with roller mistracking angles 
within specification resulted in thrust loads high enough to cause at least some of the TBA or DLA rollers 
to edge load as the SARJ rotated. When a roller is edge loaded, the preload on that roller is concentrated 
on a reduced contact area resulting in high contact stresses and shear stresses in the race ring case and 
core. These stresses exceed the allowable bearing strength capability of the race ring case and core 
leading to brittle fracture and spalling of the nitrided layer from the starboard SARJ race ring. 
 
Lessons Learned 
As part of the root cause investigation, the build paper was reviewed. Unlike the Port SARJ which was 
tested in vacuum, the Starboard SARJ was not due to cost considerations. A complex mechanism such 
as the SARJ cannot be analyzed for break-in performance. Instrumented vacuum testing, particularly for 
the break-in period, might have yielded indications that the as-built mechanism was not operating 
nominally. Since the degradation of the Starboard SARJ took place over a short period, during 
accelerated testing the current increase would have been evident in a very short period of time. 
 
The build-paper investigation also indicates that the testing decisions made for the Starboard SARJ did 
not accurately account for the friction differences between an ambient and vacuum test environment. The 
root cause investigation highlighted the sensitivity of the SARJ to small changes in friction. The SARJ 
Structural Test Article was tested at ambient to verify drive pinion life. The test was not intended to verify 
system life. However, since the entire system was utilized during the test, successful completion of the 
test gave a false sense of security regarding system-level life. Recent testing indicates that the vacuum 
coefficient of friction between 15-5 PH nitrided steel and 440C steel roller is approximately 0.6 [5]. It is 
now understood that operating the SARJ with coefficients of friction greater than 0.3 increases the risk of 
roller tilting and resulting damage to the race ring surface. 
 
The root cause investigation also highlighted the importance of correlating testing with analysis and 
dynamic simulations. Cost-effective and cost-saving simulations can aid the mechanism designer in the 
understanding of the mechanism performance prior to its fielding. Moreover, mechanism testing should 
have as a stated objective the correlation of the critical variables of the mechanisms performance. This 
process can increase the chances of finding phenomena that may be time consuming to test without prior 
knowledge. The lesson learned here is two-fold and inextricable. A complex mechanism should not be 
flown into space without testing, nor should it be flown only having been tested. Analysis must be integral 
to the testing but should not be used in lieu of testing. There are many conditions for mechanism failure 
that could be understood in a reasonable and cost-effective basis only by analysis. 
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The damage sustained by the starboard SARJ highlights the importance of sound design and verification 
practices in the development of complex rotating space machinery. The non-Hertzian contact mechanics 
of the roller bearing to race ring interface proved to be a crucial detail of the system. Special attention 
should be given to such effects in the design of bearing systems. The SARJ exhibited high vulnerability to 
damage during the initial run-in phase of the mechanism’s life. The risks incurred during this period can 
be mitigated through the use of adequate lubrication, crowned rollers, detailed screening of the nitriding 
process, the implementation of a pre-flight run-in period, and a through understanding of the differences 
between ambient and vacuum performance. The addition of these elements to the design, verification and 
operational plans for the SARJ forms the basis for the continued successful use of the mechanism in 
flight. 

 
On-Orbit Implementation of a Corrective Action  

 
Operations of the Starboard SARJ were severely restricted as soon as the damage was observed. The 
reduction in operation protected the ISS structure against the vibrations caused by SARJ rotations and 
against a stall of the mechanism. If the SARJ were to experience an unrecoverable stall, the operational 
impacts to the ISS would be significant enough to affect future missions and utilization of the station. 
These potential operational impacts to the ISS warranted corrective action.  
 
The SARJ recovery team concluded that it was a reasonable action to remove debris, to the extent 
possible, from the damaged race ring and to add grease lubricant to all three bearing surfaces of the race 
ring. Debris removal was intended to decrease drive motor currents and improve torque margin. The 
intent of the lubricant was to improve the lubricity between the roller/race interface in order to maintain a 
coefficient of friction below the critical roller tipping value; the improved lubricity, in turn, would protect the 
remaining undamage surface from experiencing degradation. Braycote 602EF© was chosen because the 
base oil has the lowest vapor pressure of all available space greases. It also has molybdenum disulfide 
which is an excellent lubricant for sliding and capable of handling high loads.  
 
Procedure Development 
A preliminary cleaning and lubrication method was developed with inputs from the EVA tools and crew 
training teams. This method was successfully executed on a small section of race ring during an on-orbit 
test on the ISS 1J mission. Armed with the lessons learned from the cleaning trials, the team decided to 
clean and lubricate the entire damaged race ring during the STS-126/ULF2 mission. The team also 
decided to remove and replace all of the TBAs during ULF2. A significant amount of debris had 
accumulated on the TBAs, so their replacement would result in additional removal of debris from the joint. 
This also allowed for the return the original TBAs for inspection to assist in the root cause investigation.  
 
The cleaning and lubrication trials showed that the best method to clean the SARJ was to wet the surface 
with an EVA wipe pre-lubricated with Braycote 602EF© and then scrape the surface with a scraper tool. 
Lubricating the surface prior to scraping proved to be the best method to contain the loose debris 
particles and prevent them from being liberated and dispersed throughout the rest of the mechanism 
while scraping. The final application of lubricant to the surfaces after cleaning was done using a grease 
gun. The inner race ring surface is not visible to the crew so a unique lubrication tool, called the J-Hook 
nozzle, was developed by the JSC EVA tool team to allow the crew to lubricate that surface. Photos of 
the tools used are shown in Figure 16. 
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Figure 16. Tools used in SARJ Clean and Lube Operations 

 
While the cleaning methods were developed based upon the on orbit trials, the method to lubricate the 
cleaned race ring was developed on the ground. A 60-degree section of race ring was used to determine 
the pattern and quantity of grease to be applied. Based on testing and crew input, it was decided that the 
best way to apply lubrication to the race ring was to place a single bead of grease down the middle of the 
roller track. The outer 45 and datum –A- surfaces were lubricated in this manner. The inner 45 race 
surface was lubricated using the J-Hook nozzle. The J-Hook was designed so the grease would be 
smeared along the width of the race ring surface and would encompass the roller track of the TBA and 
DLA rollers. The final grease configuration required residual grease dams on either side of the roller track 
after the TBA roller had passed over and spread the grease. These repositories of grease on the sides of 
the track serve as a source of oil that will constantly re-wet the roller track and provide lubrication during 
subsequent SARJ operations.  
 
Lab tests were also run where grease was added to a race ring surface contaminated with metallic 
particles similar to the debris retrieved from the SARJ on orbit. These tests showed that the 
hydrodynamic force generated by the roller passing over the grease was enough to push a majority of the 
debris out of the roller track. As a result, the addition of lubricant to the damaged race ring serves a dual 
purpose as a cleaning fluid for any debris left on the SARJ after the cleaning operation. The clean and 
lubrication operations were successfully completed during ULF2. Figure 17 shows the final application 
method and grease configuration.  
 

 
Figure 17. Final Grease Application Methods 

 

Grease Application Trials 

Single Bead of Grease in the Center of the Roller Track 

Residual Reservoir of Grease 
on Both Sides of the Roller 
Track after Spread by the TBA  

Scraper Tool Grease Gun w/ J-Hook 
Nozzle 

EVA Wipe Grease Gun w/ Straight Nozzle 
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Results of Corrective Action 
Following the successful cleaning and lubrication of the starboard SARJ, the joint was rotated and the 
motor drive current was monitored. The motor current decreased immediately from a pre-cleaning and 
lubrication average of 0.242 ampere to 0.174 ampere. The more critical benefit was the significant 
reduction in the maximum current levels. The large swing in motor drive current observed prior to the 
clean and lube operations was mitigated significantly, resulting in a reduction in the maximum current 
from 0.870 ampere to 0.384 ampere. These results demonstrate that the clean and lube operations were 
successful in increasing the stall margin in the SARJ which, in turn, maintains operational flexibility of the 
ISS. These post lube data also compare well with the performance of the starboard SARJ telemetry prior 
to the anomaly when the SARJ had an average motor current of 0.153 ampere and a maximum of 0.221 
ampere. Data plots showing the motor current prior to the clean and lube operations (data taken during 
the 10A mission), during ULF2 just after the clean and lube operations, and data taken during ULF2 stage 
operations are shown in Figure 18. 
 

 
Figure 18. Starboard SARJ Motor Drive Current Comparison Pre and Post Clean & Lubrication 

 
The port SARJ was also lubricated with Braycote 602EF© during Flight ULF2 using the same procedures 
and tools as were developed for the starboard SARJ. The lubricant was intended to protect the 
mechanism against damage by the same mechanism as was experienced by the starboard SARJ. Pre 
and post lubrication data for the port SARJ shows a 20% decrease in average drive motor current, shown 
in Figure 19. This drop is significant as it indicates that the mechanism pre lubrication was operating in a 
regime of higher roller/race friction than post lubrication and was therefore more susceptible to damage 
initiation prior to the application of the grease lubricant. 

 
 
Figure 19.  Port SARJ Average Motor Drive Current Comparison Pre and Post Clean & Lubrication 
 
As noted earlier, anomalous structural vibrations were one of the first hints of a problem with the SARJ. 
The surface of the race ring had degraded significantly and it was not anticipated that the clean and 
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lubrication tasks would have a significant impact on the vibrations observed on ISS. The accelerometer 
data after ULF2 showed that the peak accelerations had been reduced significantly. Data plots showing 
pre and post ULF2 accelerometer data are displayed in Figure 20 and show the dramatic decrease in 
vibrations to the ISS due to SARJ rotation. 
 

 
 
 
 

Figure 20. ISS Acceleration Data Pre and Post ULF2 [9] 
 
Lessons Learned 
The dramatically improved performance of the SARJ mechanism due to the cleaning and addition of 
grease to a damaged and contaminated race ring is an important finding for space systems mechanism 
design. Most directly, these observations can be applied to the design of mechanisms that will, by nature 
of their intended use, be exposed to high levels of contamination (e.g., mechanisms on lunar or Martian 
based systems). It is recommended that designers consider adding the capability of re-lubrication and/or 
cleaning of bearing systems, especially those which be exposed to high debris filled environments. 
 

Conclusions 
 
Anomalous performance of the Starboard SARJ was noted shortly after the mechanism was activated on-
orbit. An inspection found that there was debris covering the bearing race of the rotating mechanism. An 
anomaly team was immediately formed to investigate the issue. Through a series of tests, analysis, and 
simulations the team determined that the most likely cause of the damage was high friction at the 
bearing/race ring contact coupled with a susceptibility of the bearing mechanism to an overturning 
moment on the bearing rollers. Dynamic analysis simulating the contact conditions of the SARJ 
mechanism, both lubricated and un-lubricated, confirmed that in the un-lubricated condition sufficient 
stresses occur to damage the race ring. Grease lubricant was applied to the mechanism in order to 
mitigate the existing damage as well as prevent further damage. Additionally, astronauts removed the 
debris noted during previous inspections. These actions proved effective as overall joint drag significantly 
decreased as did structural vibrations caused by operating the mechanism. 
 
The SARJ anomaly investigation and recovery provides several lessons learned both in the arena of 
diagnosing on-orbit anomalies and in complex aerospace mechanism design and verification. Mechanism 
design should incorporate proven and verifiable features whenever possible. Features that do not lend 

Anomaly Post Cleaning and Lubricating Pre-Anomaly 
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themselves readily to analysis cannot easily undergo the rigorous verification process that aerospace 
mechanisms demand; for example the TBA roller profile gives rise to non-Hertzian contact effects, which 
requires advanced analytical methodology in order to recover the stresses. The acceptance program for 
complex mechanisms should include a run-in period during which the mechanism is operated in the flight 
environment. This run-in period should be used to correlate analytical models of the mechanism as well 
as provide a baseline of expected performance for the mechanism while on-orbit. Test correlated and 
verified models can be used to determine system level sensitivities and potential design problems. 
Additionally, understanding the sensitivities of the system will allow for the most effective use of 
instrumentation and monitoring techniques of the mechanism while on orbit. A baseline performance 
characterization provides ground operators an effective means for gauging the severity of changes in 
performance after activation. Finally, mechanisms that operate in an environment susceptible to debris 
contamination should consider inclusion of re-lubrication and cleaning capabilities. These lessons should 
be utilized by architects of future aerospace mechanisms to yield more robust systems.  
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