The Integrated Medical Model

Eric Kerstman M.D., MPH
Advanced Projects
Wyle Integrated Science and Engineering Group

The Aerospace Medical Association
81st Annual Scientific Meeting
Phoenix, Arizona
May 12, 2010
The Integrated Medical Model
A Risk Assessment and Decision Support Tool for
Space Flight Medical Systems

Eric Kerstman, MD, MPH1, Charles Minard, PhD2, Lynn Saile, RN, MS2, Mary Freiere de Carvalho, PhD2, Jerry Myers, PhD3, Marlei Walton, PhD2, Douglas Butler, MBA2, Sriram Iyengar, PhD4, Kathy Johnson-Throop, PhD5, David Baumann5

1University of Texas Medical Branch, Galveston, TX; 2Wyle, Houston, TX; 3NASA Glenn Research Center, Cleveland, OH, 4University of Texas Health Science Center, Houston, TX, 5NASA Johnson Space Center, Houston, TX
IMM Project Goals

• To develop an integrated, quantified, evidence-based decision support tool useful to crew health and mission planners.

• To help align science, technology, and operational activities intended to optimize crew health, safety, and mission success.
Scope and Approach

IMM addresses in-flight risk using ISS data as a stepping stone

- **Scope**
 - Forecast medical outcomes for in-flight operations only
 - Forecast medical impacts to mission
 - Does not assess long-term or chronic post-mission medical consequences

- **Approach**
 - Use ISS data as stepping stone to Exploration Program
 - Employ best-evidence clinical research methods
 - Employ Probability Risk Assessment (PRA) techniques
 - Collaborate with other NASA Centers and Organizations
What is IMM?

- A software-based decision support tool
 - Forecasts the impact of medical events on space flight missions
 - Optimizes the medical system within the constraints of the space flight environment during simulations
Who can benefit from IMM capabilities?

- Flight Surgeons
 - What in-flight medical threats are greatest for reference mission A?

- Risk Managers
 - What is the risk of evacuation - due to a medical event - for a 6-person, 180-day mission assuming the current in-flight medical capability?

- Vehicle Designers
 - What is the optimum medical mass allocation for given level of risk?

- Health Care System Designers
 - What medical items do we fly for a given mass/volume allocation?

- Trainers
 - How do I prioritize limited crew training hours?

- Requirement Managers
 - What is the rationale for this crew health requirement?
“What if...?” Questions

IMM is designed to help answer specific in-flight questions

Questions

• Is the current ISS medical kit adequate for a crew of 6 on a 6-month mission?
• Does a 33-day lunar sortie mission require a different Level of Care than a 24-day lunar sortie mission?
• Are we carrying enough Ibuprofen for a crew of six on a 12-month mission?
• How does risk change if the ventilator fails at the start of a 3-year mission?

Questions

• What is the probability of a bone fracture occurring 10-years after a 6-month mission?
• What is the probability of renal stone formation after a 12-month mission?
Use History

- ISS medical system redesign rationale
- Storage Capacity Requirements of Vomitus and Diarrhea for Constellation
- ExMC List of Prioritized Medical Conditions
- ExMC Technology Watch
- Orion medical kit design support
- ISS Probabilistic Risk Assessment Updates
“Risk” is what is left over after you have accounted for likelihood, outcome, and the mitigation associated with the threat.
IMM Conceptual Model

INPUTS

- Medical Conditions & Incidence Data
- Crew Profile
- Mission Profile & Constraints
- Potential Crew Impairments
- Potential Mission End states
- In-flight Medical Resources

OUTPUTS

- Medical Condition Occurrences
- Crew Impairments
- Clinical End States
- Mission End States
- Resource Utilization
- Optimized Medical System

Integrated Medical Model
Comparison – 5x5 Risk Matrix vs. IMM

5x5 Matrix
- Qualitative
- Categorical
- Subjective
- Single Risk
- No Uncertainty
- No Confidence Interval
- Limited context

IMM
- Quantitative
- Probabilistic, Stochastic
- Evidence-based
- Integrated Risks
- Uncertainty
- Confidence Interval
- In context

- Medical Conditions & Incidence Data
- Crew Profile
- Mission Profile & Constraints
- Crew Functional Impairments
 - In-flight Medical Resources
- Medical Condition Occurrences
- Crew Impairment
- Clinical/Mission End States
- Resource Utilization
- Optimization of Vehicle Constraints and Medical System Capabilities
IMM Logic - Event Sequence Diagram

Best-case resources available?

Yes

Treated case: Decrement medical resources

No

Untreated Best-Case

Calculate End States:
- Risk of Evacuation
- Risk of Loss of Crew Life
- Crew Functional Impairment
- Resource Utilization and Depletion
- Type and Quantify of Medical Events (organized by Medical, Injury, or Environmental categories)

Worst-case resources available?

No

Untreated Worst- Case

Yes

Treated case: Decrement medical resources

Best-case Scenario

Medical Event

Worst-case Scenario
For each comparative assessment, the identical questions are asked 10,000+ times to develop outcome distributions

- Did the medical condition happen?
- How many times?
- Best or worst-case scenario?
- Were resources available?
- What was the outcome?
Key Development Steps

Each step is critical in the development process

- Develop and Validate a Conceptual Model
- Create initial list of relevant medical conditions
- Characterize incidence data
- Quantify crew impairment and clinical end states
- Quantify resources needed to diagnose and treat
- Develop a quantified Crew Health Index
- Understand implications of assumptions
- Verify & Validate
- Refine & Maintain Data
IMM Clinical Inputs

- Medical Conditions
- Incidence Rates
- Functional Impairments
- Potential End States (EVAC, LOCL)
- Required Resources
Medical Condition List

Purpose
- To provide a list of medical conditions relevant to in-flight operations

Relevant Medical Conditions
- Have occurred in flight or has the potential to occur in flight
- Require mitigation and/or result in functional impairment

Current Status
- Consists of 83 medical conditions (47 have occurred in flight)
Longitudinal Study of Astronaut Health

In-flight Medical Condition Occurrences

- Includes Apollo, Skylab, Mir, Shuttle, and ISS
- STS-1 through STS-114 in 2005
- Expedition 1 through Expedition 13 in 2006
- 47 relevant medical conditions
IMM Evidence Base

- Longitudinal Study of Astronaut Health
- Review of crew medical debriefs
- Analog population data
- General terrestrial population data
- Flight Surgeon Delphi Study

Russian medical data not included
The Use of Incidence

- Incidence is a measure of the likelihood of developing a medical condition.
- IMM uses incidence to quantify the likelihood of occurrence of medical conditions in flight.
Incidence Definitions

The number of new medical events that occur within a specified time period

Incidence Proportion (Cumulative Incidence)
- The proportion of a population who develop a medical condition within a specified period of time (events/person)

Incidence Rate (Incidence Density)
- The number of new medical events that occur within a population divided by the total time the population was at risk (events/person-year)
- Accounts for the different times that each individual was at risk
IMM Classification of Medical Conditions

- Space Adaptation Syndrome (SAS)
- Non-Space Adaptation Syndrome
SAS Medical Conditions

1) Back Pain
2) Constipation
3) Headache
4) Insomnia
5) Nasal Congestion
6) Nosebleed
7) Space Motion Sickness
8) Urinary Incontinence
9) Urinary Retention
Space Adaptation Syndrome Medical Conditions

- Likelihood of occurrence **is not** related to mission duration
- Condition does not recur
- **Incidence proportions** (events/person) are determined from LSAH in flight occurrence data

Example: Nasal Congestion

405 events among 660 persons = 0.614 events/person
Non-SAS Medical Conditions

• The likelihood of occurrence is related to mission duration
• Condition may recur
• **Incidence rates** (events/person-year) are determined from LSAH in-flight occurrence data or other sources

Example: Skin Rash
90 events within 27.34 person-years = 3.29 events/person-year
Non-Space Adaptation Syndrome Medical Conditions

Incidence Rate Determinations

Conditions that have occurred in flight
• LSAH in-flight occurrence data

Conditions that have not occurred in flight
• External models (fractures)
• Environmental engineering data (altitude sickness)
• Terrestrial general/analog population data (appendicitis)
• Bayesian statistics for rare events (kidney stones)
For a specified mission scenario, the output from independent models can provide distributions of incidence data.
IMM uses the concept of functional impairments to quantify the severity of medical condition outcomes.

Impairment

- A loss or loss of use of a body part, organ system, or organ function
- Considers both anatomic and functional loss
- Can develop from an illness or injury
American Medical Association Guides to the Evaluation of Permanent Impairment

Impairments

- Percentages that reflect the severity of the medical condition
- No impairment = 0 percent
- Fully dependant/approaching death = 100 percent

Examples

Skin Infection = 10 to 24 percent impairment
Shoulder Dislocation = 36 to 74 percent impairment
Clinical Findings Form (CliFF)

Standardized Format for IMM Clinical Inputs

The likelihood of occurrence of the medical condition
• Incidence proportion or incidence rate

The clinical outcomes of the medical condition
• Considers ISS-based best-case, worst-case, and untreated case scenarios
• Specifies functional impairments and duration times
• Specifies potential end states (evacuation, loss of crew life)
• Specifies levels of evidence for input data
• References sources of data
The Resource Tables specify the required in-flight medical resources

- Specifies resources required for diagnosis and treatment
- Considers the best-case and worst-case scenarios
Best Case Scenario

<table>
<thead>
<tr>
<th>Consumable</th>
<th>Disorder: Musculoskeletal</th>
<th>Description</th>
<th>Quantity</th>
<th>Mass Kg</th>
<th>GM</th>
<th>Volume cc³</th>
<th>mm³</th>
<th>Cost Estimates</th>
<th>COTS</th>
<th>Flight Certify</th>
<th>Sustaining Eng</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sprain/Strain Extremities</td>
<td>Ace Bandage</td>
<td>1</td>
<td>0.03875</td>
<td>38.75</td>
<td>442.5</td>
<td>442500</td>
<td>$3.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAM splint</td>
<td>1</td>
<td>0.1134</td>
<td>113.4</td>
<td>1336.357</td>
<td>1336357.5</td>
<td>$12.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Acetaminophen</td>
<td>2</td>
<td>0.00036</td>
<td>0.36</td>
<td>0.0263</td>
<td>26.32</td>
<td>$0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Ibuprofen</td>
<td>1-9</td>
<td>0.00066</td>
<td>0.66</td>
<td>0.04202</td>
<td>42.02</td>
<td>$0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Worst Case Scenario

<table>
<thead>
<tr>
<th>Consumable</th>
<th>Disorder</th>
<th>Description</th>
<th>Quantity</th>
<th>Mass Kg</th>
<th>GM</th>
<th>Volume cc³</th>
<th>mm³</th>
<th>Cost Estimates</th>
<th>COTS</th>
<th>Flight Certify</th>
<th>Sustaining Eng</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprain/Strain Extremities</td>
<td>Ace Bandage</td>
<td>1</td>
<td>0.03875</td>
<td>38.75</td>
<td>442.5</td>
<td>442500</td>
<td>$3.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAM splint</td>
<td>1</td>
<td>0.1134</td>
<td>113.4</td>
<td>1336.357</td>
<td>1336357.5</td>
<td>$12.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Acetaminophen (2 tabs'4-6hr)</td>
<td>8</td>
<td>0.00036</td>
<td>0.36</td>
<td>0.0263</td>
<td>26.32</td>
<td>$0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ibuprofen (1-2 tabs'8hr)</td>
<td>10</td>
<td>0.00066</td>
<td>0.66</td>
<td>0.0420</td>
<td>42.02</td>
<td>$0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Vicodin (1-2 tabs '4-6 hr)</td>
<td>2</td>
<td>0.00064</td>
<td>0.64</td>
<td>0.0483</td>
<td>48.30</td>
<td>$0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Gauze Pads</td>
<td>4</td>
<td>0.00504</td>
<td>5.04</td>
<td>7.6000</td>
<td>7600.00</td>
<td>$0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Nonsterile Gloves pr</td>
<td>1</td>
<td>0.014</td>
<td>14</td>
<td>3.1000</td>
<td>3100</td>
<td>$0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sharps container</td>
<td>1</td>
<td>0.59553</td>
<td>595.53</td>
<td>2909.125</td>
<td>2909125.00</td>
<td>$817.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20 G catheter</td>
<td>2</td>
<td>0.00622</td>
<td>18.51</td>
<td>7.5000</td>
<td>7500</td>
<td>$0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10cc syringe</td>
<td>1</td>
<td>0.01123</td>
<td>11.23</td>
<td>4.1700</td>
<td>4170</td>
<td>$0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Y-type catheter</td>
<td>1</td>
<td>0.00868</td>
<td>8.68</td>
<td>0.1000</td>
<td>100.00</td>
<td>$0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Tegaderm Dressing</td>
<td>1</td>
<td>0.00252</td>
<td>2.52</td>
<td>108.2000</td>
<td>108200</td>
<td>$0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Saline, 500mL</td>
<td>1</td>
<td>0.48929</td>
<td>489.29</td>
<td>750.8390</td>
<td>750839.00</td>
<td>$10.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Iodine Pads</td>
<td>1</td>
<td>0.00108</td>
<td>1.08</td>
<td>0.1500</td>
<td>150.00</td>
<td>$0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Alcohol Pads</td>
<td>12</td>
<td>0.00108</td>
<td>1.08</td>
<td>0.1500</td>
<td>150.00</td>
<td>$0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Tourniquet</td>
<td>1</td>
<td>0.00603</td>
<td>6.03</td>
<td>5.0000</td>
<td>5000</td>
<td>$0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Tape</td>
<td>0.1</td>
<td>0.00906</td>
<td>9.06</td>
<td>6.4220</td>
<td>6422.00</td>
<td>$0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Morphine</td>
<td>1-10ml</td>
<td>0.00795</td>
<td>7.95</td>
<td>6.8855</td>
<td>6885.53</td>
<td>$21.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>carpuiject</td>
<td>1</td>
<td>0.01524</td>
<td>15.24</td>
<td>5.6267</td>
<td>5626.67</td>
<td>$5.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Resource Table Assumptions

• The Resource Tables reflect the current ISS medical equipment, supplies, drugs, etc.

• Conditions go “untreated” when an “essential” item is not available (due to depletion or omission from the health care system)

• Cost information only includes Commercial off-the-shelf (COTS)

• Spacecraft resources (e.g. oxygen, water, power, bandwidth) are not constrained
In-flight Mitigation

- Resource Tables identify the resources required to mitigate risk by providing the in-flight capability to diagnose and treat medical conditions.
- Medical resources can be optimized for specific mission and crew profiles.
Summary of IMM Inputs

• Relevant list of medical conditions established
• Incidence data established for each medical conditions
• Crew functional impairments and end states (evacuation and loss of crew life) used to characterize impact due to medical events
• Standardized tool (CliFF) established for clinical inputs of likelihood and outcomes for each medical condition
• Resource Tables specify essential and non-essential resources required to diagnose and treat each medical condition
“Essentially, all models are wrong, but some are useful.”

George Box (1987)
Professor Emeritus of Statistics at the University of Wisconsin
Statistical Methods

- IMM uses Monte Carlo simulation
 - SAS software
 - Distribution of outcomes

- Probability distributions
 - Beta, Beta-PERT, Poisson, Bernoulli, Binomial, Lognormal, Uniform, Discrete uniform

- Crew Health Index (CHI)
 - Quality-adjusted mission time
Quality-Adjusted Mission Time

- Modification of quality-adjusted life years (QALY)
 - Standard epidemiologic measure

- Single, weighted measure of the net change in quality time
Example of QALY

• Consider the following individual:
 • 35 years old
 • 75-year life expectancy

• Medical event results in 30% functional impairment
 • Below knee amputation

• What is the QALY?

\[
QALY = 40 - 40 \cdot 0.3 = 40 - 12 = 28 \text{ yrs}
\]

\[
PQALY = \frac{28}{40} \cdot 100\% = 70\%
\]

• With respect to IMM, “Life” is mission time

Crew Health Index (CHI)
Crew Health Index (CHI)

Measure of crew health based on functional impairment

• Ranges from 0 to 100%

• 0% - completely impaired due to medical conditions for duration of mission

• 100% - no impairment due to medical conditions
Key Model Assumptions

- 83 medical conditions
- ISS Health Maintenance System (HMS)
- Conservative estimate of Crew Health Index (CHI)
 - Medical events assumed to occur on the first day of the mission
Case Study - Orion Medical Kit Design

• **Goal**
 - Identify a medical kit that maximizes the CHI while meeting mass and volume constraints
 - Mass < 4.30 kg
 - Volume < 6421.68 cm3

• **Mission Scenario**
 - Crew of four
 - 3-day Orion transfer mission

• **Success Criterion**
 - The optimized medical kit approaches a risk profile of a medical kit with unlimited resources
Orion Medical Kit Design - Results

Summary Output from Integrated Medical Model Mission Simulation

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Constraint</th>
<th>Optimized Kit</th>
<th>“Bottomless” Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (kg)</td>
<td>4.30</td>
<td>4.24*</td>
<td>43.60</td>
</tr>
<tr>
<td>Volume (cm³)</td>
<td>6421.68</td>
<td>6421.68*</td>
<td>144684</td>
</tr>
<tr>
<td>CHI (95% C.I.)</td>
<td>---</td>
<td>84.34 (66-93)</td>
<td>84.55 (67-93)</td>
</tr>
<tr>
<td>Risk of EVAC</td>
<td>---</td>
<td>1.07%</td>
<td>0.07%</td>
</tr>
<tr>
<td>Risk of LOCL</td>
<td>---</td>
<td>0.02%</td>
<td>0.01%</td>
</tr>
</tbody>
</table>

*Includes 30% packing factor

Crew Health Index (CHI)

<table>
<thead>
<tr>
<th>Crew Health Index</th>
<th>Optimized Kit</th>
<th>“Bottomless” Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

On Thursday 10DEC2009, the summary output from the integrated medical model mission simulation was reviewed. The table highlights the comparison between the optimized kit and the “bottomless” kit for various attributes, including mass, volume, CHI (95% C.I.), risk of EVAC, and risk of LOCL. The results show that the optimized kit meets the constraint for mass and volume, while the “bottomless” kit slightly exceeds the constraints. The CHI (95% C.I.) for the optimized kit is 84.34 (66-93), whereas the “bottomless” kit has a CHI of 84.55 (67-93). The risk of EVAC for the optimized kit is 1.07%, compared to 0.07% for the “bottomless” kit. Similarly, the risk of LOCL for the optimized kit is 0.02%, compared to 0.01% for the “bottomless” kit. The discrepancy in results suggests a need for further optimization to meet all constraints efficiently.
Orion Medical Kit Design - Conclusions

• A shoebox-sized kit can be designed
 • Treats medical conditions with a high probability of occurrence during a 3-day mission
 • Does so without a reduction in CHI from the fully treated scenario.

• The Trade-off
 • Does not include resources to treat low probability, worst-case scenario conditions
 • Increases the probability of EAVC and LOCL respective to the fully treated scenario.
Validation – ISS EVAC Rates

IMM forecasted EVAC rates compare favorably with literature review EVAC rates (0.010 to 0.072)

<table>
<thead>
<tr>
<th>Source</th>
<th>Low (events/person-yr)</th>
<th>Max (events/person-yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMM</td>
<td>0.018</td>
<td>0.027*</td>
</tr>
<tr>
<td>Terrestrial General Population</td>
<td>0.060</td>
<td>-</td>
</tr>
<tr>
<td>Antarctic Population</td>
<td>0.036</td>
<td>-</td>
</tr>
<tr>
<td>U.S. Submarine Population</td>
<td>0.023</td>
<td>0.028</td>
</tr>
<tr>
<td>Russian Historical Space Flight Data</td>
<td>0.032</td>
<td>0.072</td>
</tr>
<tr>
<td>LSAH Data</td>
<td>0.010</td>
<td>0.020</td>
</tr>
<tr>
<td>Space Station Freedom Clinical Experts Seminar Proceedings (1990)</td>
<td>0.010</td>
<td>0.030</td>
</tr>
</tbody>
</table>

* Reference Mission 2: 6 crew, 6 month mission
Validation – ISS LOCL Rates

IMM forecasted LOCL rates compare favorably with literature review results for LOCL rates (0.0029 to 0.0081)

<table>
<thead>
<tr>
<th>Source</th>
<th>LOCL (events/person-yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMM (3 crew/6-month mission)</td>
<td>0.0042</td>
</tr>
<tr>
<td>IMM (6 crew/6-month mission)</td>
<td>0.0043</td>
</tr>
<tr>
<td>Terrestrial Mortality Rate</td>
<td>0.0081 (2006)</td>
</tr>
<tr>
<td>48-year old male</td>
<td>0.0048 (2005)</td>
</tr>
<tr>
<td>48-year old female</td>
<td>0.0029 (2005)</td>
</tr>
<tr>
<td>Antarctic</td>
<td>0.0054 (1904-1964)</td>
</tr>
<tr>
<td>LSAH Data</td>
<td>0.0054 (1959-1991)</td>
</tr>
</tbody>
</table>
Validation - Sensitivity Analysis

IMM Simulation Data
- **Medical (59%)**
 1. Kidney Stone
 2. Exposed Dental Pulp
 3. Skin Infection
 4. Urinary Tract Infection
 5. Sepsis
 6. Atrial fibrillation
- **Injury (21%)**
 1. Chest Injury
 2. Wrist Fracture
- **Environmental (20%)**
 1. Toxic Exposure
 2. Smoke Inhalation

Actual Russian Flight Data
- **Three EVACs**
 1. Urosepsis
 2. Cardiac Arrhythmia
 3. Toxic Exposure
- **Three Close Call EVACs**
 1. Kidney Stone
 2. Dental Abscess
 3. Toxic Exposure

NOTE: No Russian input data is in IMM
Validation – ISS Total Medical Events

<table>
<thead>
<tr>
<th>Mission #</th>
<th>ISS Medical Events (Observed)</th>
<th>IMM Medical Events (Expected)</th>
<th>IMM 95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>12</td>
<td>6 - 19</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>18</td>
<td>10 - 26</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>18</td>
<td>10 - 26</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>14</td>
<td>8 - 21</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>15</td>
<td>8 - 23</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>17</td>
<td>9 - 25</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
<td>19</td>
<td>11 - 28</td>
</tr>
</tbody>
</table>
Validation – ISS Total Medical Events

![Graph showing observed and expected medical events on the ISS. The graph is a radar chart with observed and expected lines. The observed line is blue, and the expected line is red. The chart is color-coded with legend indicating observed and expected.](image-url)
Capability Status

- IMM 2.1/3.0
 - Locked down and undergoing clinical validation
 - Available for risk assessments, trade studies
- 83 medical conditions represented (47 of 83 medical conditions have been recorded to occur in flight)
- In-flight medical resources identified per medical condition
- “Medical”, “injury”, or “environmental” classification of risk drivers
- Established database; build out continues
- Integrated citation management software
Next Steps through Sept 2010

- Validation of IMM 3.0 per plan (Jan-July)
- IMM Database 3.0 Development (Jan-July)
- Complete Ops Documentation (July)
- Operational Acceptance Review (Aug)
- Delivery of IMM 3.0 (Sept)
- Delivery of Database 3.0 (Sept)
- IMM 4.0 Development (Feb-Sept)
- Transition to Operations (1 October 2010)
Summary

• IMM provides an evidence-based analysis of likely medical events and outcomes during space flight missions

• IMM provides the capability to assess risk

• IMM provides the capability to optimize medical systems

• IMM is a tool to assist in the decision making process
 • It does not make decisions
IMM addresses the observations documented by the RTF Task Group

...experience and instinct are poor substitutes for careful analysis of uncertainty...

...This requires that analytical models be used appropriately to inform decisions...

Questions?