Design for Safety - The Ares Launch Vehicles Paradigm Change

Fayssal M. Safie, Ph. D.,
NASA R&M Tech Fellow/ NASA Safety Center

Gaspare Maggio
Information Systems Laboratories

4rd IAASS Conference
Huntsville, Alabama
May 19-21, 2010
Although the Constellation Program has been redirected, the concepts and practices for the Ares 1 and Ares V vehicles are still valid for application to future crew launch vehicle and heavy launch vehicle designs.
Agenda

• The Paradigm change
• The Safety and Mission Assurance (S&MA) Functional Roles Change
• The S&MA Operating Environment Change
• The S&MA Early Involvement in the Ares I Design Process
• The Ares V/Earth Departure Stage (EDS) Conceptual Phase Loss of Mission (LOM) Assessment
• Post conceptual Phase - Reliability Discussions
• Concluding Remarks
• In the past, space vehicle designers focused on performance.

• Lessons learned from the Space Shuttle and other launch vehicles showed the need to optimize launch vehicles for other system parameters (reliability, safety, cost, availability, etc.) besides performance.

• These lessons learned have forced a paradigm change on how to design and build new launch vehicles.

• This paradigm change created a risk informed design environment which led to an early involvement of S&MA in the design process.
The S&MA Functional Roles Change

- In the past, S&MA was tasked mainly to do the assurance function: Making certain that specified activities performed by others are performed in accordance with specified requirements. (Upper stage Engine and First Stage). Examples of the activities include:
 - Assess Hazard Analyses, FTAs, FMEA/CIL, PRA, etc.
 - Approving Material Review Board (MRB) dispositions.
 - Performing government inspections, audits, and surveillance.
 - Independent assessments.
 - Evaluating engineering and manufacturing changes, or proposed variances (adaptations, deviations, and waivers), for impacts to safety, reliability, and/or quality
 - Evaluating the disposition of problems, including corrective actions (e.g., PRACA problem reports)

- Currently, in addition to its assurance function, S&MA is tasked to do an in-line function: Under the in-line function, S&MA activities are performed in direct support of the program/project to ensure that the program/project will achieve its objectives (Upper Stage and Vehicle Integration). Examples of the activities include:
 - Establish and implement S&MA programmatic and technical requirements.
 - Perform Probabilistic Risk Assessments, Reliability Analysis, Integrated System Failure Analysis, Hazard Analyses, Fault Tree Analyses, FMEA/CIL, etc.
 - Develop S&MA plans and methodologies.
 - Establish and implement Industrial Safety.
The S&MA Operating Environment Change

S&MA leading the Integrated Reliability and Safety Analysis (Example)

The Ares I Integrated FMEA/CIL serves as input data to multiple related analyses.

- Ascent Risk Analysis (LOM)
- SARA (LOC)
- Functional Fault Analysis, Abort Conditions Report
- Safety Hazards Analysis
- Ares I Integrated FMEA/CIL
- Inspection criteria (CIL)
- Test requirements (CIL)
- Manufacturing and Assembly
- Ground Ops
- FS FMEA/CIL
- USE FMEA/CIL
- US FMEA/CIL
The S&MA Early involvement in the Ares I design process

• Example of S&MA involvement in the Ares I Design
 – Influenced the choice of the solution to the Thrust Oscillation issue. Jointly working with engineering and Ares I project, S&MA assessed the reliability, quality and safety impacts of the various design solutions to the thrust oscillation issue.
 – Influenced the design solution to the First Stage-Upper Stage separation issue. Jointly working with engineering and Ares I project, S&MA assessed the reliability and safety impacts of the various design solutions to the First Stage-Upper Stage separation issue.
 – Influenced the change of Linear Shape Charge (LSC) initiation timers from percussion to Flexible Confined Detonation Cord initiated timers (Flight Termination System)
 – Recommended pressurization line be moved out of cable tray to reduce risk to LSC and avionics (upper Stage)
 – Optimized valve design for reliability and safety for LH2 and LO2 pressurization.
 – Identified issue with use of KC fittings in safety-critical applications and approach to qualifying fittings as providing two seals (upper Stage)
The Ares V/EDS Conceptual Phase LOM Assessment
The S&MA lessons learned from Ares I were used to effectively support the Ares V conceptual design phase and help in planning for post conceptual phases.

The following set of charts contains a summary of the Ares V/EDS LOM risk assessment.

Note: The following information are intended to share the LOM methodology and approach used during the conceptual design phase of Ares V and not meant to present the up-to-date absolute LOM numbers.
Traceability to the NASA’s Exploration System Architecture Study (ESAS)

Original ESAS Capability
8.4 m OML
46.0 MT Lander
20.0 MT CEV
No Loiter in LEO
TLI total Δv = 10,235 ft/sec
7.4 MT TLI perf. reserve
73.4 MT CaLV gross payload at TLI capability

Change to RS68 Core Engines
10 m dia. Core
490K Fvac to 750k Fvac
452.1 Ispv to 414.7 Ispv
FSB Propellant change from HTPB to PBAN (Ares I 53-06 thrust trace)

IDAC 3 Trade Space
SRM Propellant
Stage Materials
Extra Strapons
Engine Type
10+ m dia. Core
Number of Stages
Shroud Material
Shroud Size

Diameter Change
10 m dia. Core, EDS, and Shroud

LCCR BASELINE
57.00.XX
10 m OML
Booster Options

2005
2006
2007
2008
The Ares V System Baseline Overview

GLOW
- Payload Envelope L x D: 25.3 ft x 30.0 ft
- Shroud Jettison Mass: 19,953 lbm

EDS Stage
- 4 day LEO loiter
- Propellants: LOX/LH2
- Usable Propellant: 557,878 lbm
- Propellant Offload: 0.0%
- Stage liftoff pmf: 0.8828
- Launch Dry Mass: 52,912 lbm
- TLI Burnout Mass: 58,194 lbm
- Suborbital Burn Propellant: 330,000 lbm
- Pre-TLI Jettison Mass: 7,344 lbm
- LEO FPR: 8,553 lbm
- # Engines / Type: 1 / J-2X
- Engine Thrust (100%): 294,000 lbf / 238,000 lbf @ Vac
- Engine Isp (100%): 448.0 sec / 449.0 sec @ Vac
- Mission Power Level: 100.0% / 81.0%
- Suborbital Burn Time: 502.9 sec
- TLI Burn Time: 429.9 sec

Core Stage
- Propellants: LOX/LH2
- Usable Propellant: 3,499,458 lbm
- Propellant Offload: 0.0%
- Stage pmf: 0.9014
- Dry Mass: 346,978 lbm
- Burnout Mass: 382,958 lbm
- # Engines / Type: 6 / RS-68
- Engine Thrust (108%): 702,055 lbf @ SL
- Engine Isp (108%): 364.9 sec @ SL
- Mission Power Level: 108.0%
- Core Burn Time: 303.1 sec

Booster (each)
- Propellants: PBAN
- Overboard Propellant: 1,510,421 lbm
- Stage pmf: 0.8656
- Burnout Mass: 234,514 lbm
- # Boosters / Type: 2 / 5.5 Segment SRM
- Booster Thrust (@ 1.0 secs): 3,744,000 lbf @ Vac
- Booster Isp (@ 1.0 secs): 275.7 sec @ Vac
- Burn Time: 116.4 sec
Methodology

• Building on ESAS Analysis: with similar analysis methodology but Ares focused.
• Models use:
 • Physics-informed parametric algorithms.
 • Vehicle and system heritage data.
 • Expert solicitation and engineering judgment.
 • Models are designed to interface with performance analysis output.
Methodology
Functional/System Breakdown

Preliminary Vehicle Performance and Sizing Inputs
Mission Parameter Data

Propulsion Data
- # of Segments
- Propellant type
- # of Boosters

CORE
- # of Engines
- Power level
- Burn Time

EDS
- # of Engines
- Power level
- Burn Time

Reliability Database
- Propellant Management
- Auxiliary Power
- Thermal Control
- Reaction Control
- Stage Separation
- Payload Shroud Separation
- Loiter Skirt Jettison
- MMOD Shield Jettison
- Solar Array Deployment
- Automated Rendezvous and Docking

Parametric Response Algorithms
- Core Engine Reliability
- SRB Strap-On Reliability
- Core TVC Reliability
- EDS Engine Reliability
- EDS TVC Reliability

Core Reliability Estimate
EDS-to-Orbit Reliability Estimate
Orbit to TLI Reliability Estimate
Ares V/EDS Operational Timelines

Ares/EDS Ascent Phase

- **T+0:** Launch
 - T+58.4 secs: Max Q - Alt 11,950 m (39,206) - Mach 1.59
 - T+107.7 secs: SRB Staging - Alt 36,523 m (119,825) - Mach 3.95
 - T+293.8 secs: Shroud Jettison - Alt 122,683 m (402,503) - Mach 9.79
 - T+329 secs: Core Staging/EDS Ignition - Alt 145,586 m (477,645) - Mach 8.48
 - T+8 minutes: EDS Insertion Burn
 - T+13.48 minutes: EDS MECO: 245,033 m (803,914)

EDS On Orbit Phase

- T+13.5 mins

EDS TLI/Disposal Phase

- T+4 days, 8.25 hrs
The Ares V/EDS Operational Timelines

- **EDS Ascent Phase**
 - T+0

- **EDS On Orbit Phase**
 - T+13.5mins
 - Re-orient to Loiter Attitude
 - LEO Loiter Operations: Alt 241km - 239km (130-129 Nmi) - 1 day
 - Re-orient For Docking With Orion
 - RPOD with Orion: 4 hours
 - Re-orient to Loiter Attitude
 - LEO Loiter Operations: Alt 239km - 231.5km (129-125 Nmi) - 3 days

- **EDS TLI/Disposal Phase**
 - T+4days, 8.25hrs
 - Re-orient For TLI
 - Preparation for TLI: 2 hours
LOM Results Across the Mission Profile

LOM across the time line is Approx. 1/67

EDS LOM is approx. 1/240

Launch Site

Liftoff

SRB Separation

SRB Splashdown

Shroud Separation

Core Stage Separation & EDS J-2X Ignition

EDS Engine Cutoff

Core Stage Impact

CEV Rendezvous & Dock w/ EDS

Orbit Insertion thru EDS Separation

51.00.48 LOM = 1 in 430

Core Stage Sep thru Orbit Insertion

51.00.48 LOM = 1 in 550

Liftoff thru Core Stage Separation

Requirement = 1 in 125
51.00.48 LOM = 1 in 93

EDS TLI Burn

LSAM/CEV Separation

EDS Disposal
LOM Results

Mission LOM Risk
- Ascent Boost thru Staging: 76%
- TLI: 9%
- Orbit Insertion: 9%
- On-Orbit Loiter: 6%

Element LOM Risk
- Core Stage Engine: 48%
- System Interfaces: 24%
- First Stage Booster: 5%
- Core Stage: 2%
- EDS Engine: 12%
- EDS: 4%
- Avionics & Software: 4%
- Shroud: 1%
A Major Design Change

- One of the main changes made to the original LCCR EDS design is the replacement of the Solar Arrays with Fuel Cells which are jettisoned along with the Loiter skirt prior to the TLI burn.
- With an expected improvement in reliability
Achievability Assessment

♦ The Ares V LOM Requirement: Ares V shall limit their contribution to the risk of Loss of Mission (LOM) for Lunar missions to no greater than 1 in 125. Applicability: Ares V as stated in the requirement has been assumed to mean the basic launch vehicle (Core Stage, First Stage Booster, RS-68 Engines, necessary guidance and control, etc.) performing ascent to EDS separation.
 • Achievability:
 – The LOM assessment showed that achievability may be a challenge, particularly with a configuration of 6 RS-68 engines having no engine-out capability.

♦ The EDS LOM Requirement: Ares V EDS shall limit their contribution to the risk of Loss of Mission (LOM) for Lunar missions to no greater than 1 in 250.
 • Achievability:
 – The LOM assessment showed that the EDS shows promise of being able to meet the requirement.
Post conceptual Phase - Reliability Discussions
During conceptual design phase:
- Probabilistic risk Assessment (PRA) is intended to support the system configuration selection, functional analysis is used, and basic events are at the box level (e.g. loss of propulsion due to SRB, SRM, J2-X, etc.)

In Post conceptual design phases:
- PRA is intended to support component and system design
- The standard PRA methodology is applied.
- Issues are identified and more in-depth analysis are performed.
- Extensive reliability effort is planned to support the Ares V subsystem and component design.
Design Reliability

- Design Process
 - Loads
 - Environments
 - Usage
 - Sizing
 - Materials
 - Geometry

- Operating Stress

- Materials Production
 - Acceptance Testing
 - Qualification Testing

- Baseline Material Strength

Operating Stress

Material Strength

Probability of Failure

Design Process

Materials

Production

Acceptance

Testing

Qualification

Testing

Baseline Material Strength

Operating Stress

Probability of Failure
Process Reliability

Element Design
- Critical Design Parameters (CDP)
 - Materials Properties & Geometry

Processing
- Map the CDP To Processing
- Identify Critical Process Variables (CPV)

Process Characterization
- Explore Relationship between CDP and CPV
 \[CDP = f(CPV) \]

Process Control
- Select Control Strategy
- Assess Process Capability
Concluding Remarks

- The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design.
- These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases.
- The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration.
- Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.