

First International Diagnosis Competition – DXC’09

Tolga Kurtoglu*, Sriram Narasimhan**, Scott Poll***, David Garcia****, Lukas Kuhn†,
Johan de Kleer†, Arjan van Gemund‡, Alexander Feldman†,‡

* Mission Critical Technologies @ NASA Ames Research Center
** University of California, Santa Cruz @ NASA Ames Research Center

*** NASA Ames Research Center
**** Stinger Ghaffarian Technologies @ NASA Ames Research Center

† Palo Alto Research Center
‡ Delft University of Technology

Abstract: A framework to compare and evaluate diagnosis algorithms (DAs) has been created jointly by
NASA Ames Research Center and PARC. In this paper, we present the first concrete implementation of
this framework as a competition called DXC’09. The goal of this competition was to evaluate and compare
DAs in a common platform and to determine a winner based on diagnosis results. 12 DAs (model-based
and otherwise) competed in this first year of the competition in 3 tracks that included industrial and
synthetic systems. Specifically, the participants provided algorithms that communicated with the run-time
architecture to receive scenario data and return diagnostic results. These algorithms were run on extended
scenario data sets (different from sample set) to compute a set of pre-defined metrics. A ranking scheme
based on weighted metrics was used to declare winners. This paper presents the systems used in DXC’09,
description of faults and data sets, a listing of participating DAs, the metrics and results computed from
running the DAs, and a superficial analysis of the results.

1. INTRODUCTION

The DX community meets every year at the International
Workshop on the Principles of Diagnosis1 to discuss the latest
developments in the field of model-based diagnosis. Various
diagnostic modeling approaches, associated reasoning
algorithms, and applications to real and toy systems are
presented. However, efforts to compare and evaluate
diagnosis algorithms (DAs) on a common platform have been
far and few in between. Other diagnosis communities have
also not been actively involved in creating such platforms.

There have been attempts to benchmark DAs by computing
performance metrics/indices (Orsagh et al., 2002, Bartys et
al., 2006, Simon, et al., 2008). However these approaches
were focused on specific domains and lack a general-purpose
representation. In an effort to bridge this gap a framework
called the DXC framework (Kurtoglu et al., 2009) was created
to provide a level playing field to evaluate and compare DAs.
This framework tried to establish a general purpose
representation for system description, scenario data format,
and diagnostic result format. A run-time architecture was
created to execute DAs under similar conditions and compute
performance metrics based on diagnostic output and ground-
truth data.

In this paper, we present the first concrete implementation of
the DXC framework called the DX Competition2 (DXC’09).
12 DAs (model-based and otherwise) competed in 3 tracks
that included industrial and synthetic systems. Initially the

1 http://www.isy.liu.se/dx09/
2 http://dx-competition.org/

participants were provided with system descriptions and a
sample data set that included nominal and fault scenarios. The
participants had to provide algorithms that communicated
with the run-time architecture to receive scenario data and
return diagnostic results. For the competition we ran all the
algorithms on extended scenario data sets (different from
sample set) to compute a set of pre-defined metrics. The
metrics (with associated weighting) were used to rank the
DAs.

The rest of this paper details the constituent pieces of this
competition. Section 2 describes the tracks and systems used
in the competition. Section 3 lists the classes of faults that
were injected, how they were injected, and the sensor data sets
that were generated as a result. Section 4 defines all the
metrics used in the competition. Section 5 describes the
conditions of the competition including information on how
the algorithms were started and executed. Section 6 lists and
briefly describes the participating DAs. Section 7 provides
results of the competition and an analysis of the performance
of the DAs. Section 8 introduces the assumptions that were
made in implementing this competition, issues that were
identified, and scope for possible extensions. Section 9
presents the conclusion and looks forward to the continuation
of this competition in future years.

2. TRACKS & SYSTEMS

One of the primary goals of DXC’09 is to facilitate the
development of domain independent diagnostic software.
Furthermore, diagnostic software should be stress tested with
difficult cases to determine its strengths and weaknesses and
to pose a challenge. A diagnostic problem may be interesting
due to its practical importance or it may be challenging due to

its size and complexity. To facilitate all this we included
multiple DXC tracks, and (optionally) multiple tiers in each
track. The DXC’09 tracks and tiers are summarized in Table
1.

Table 1. Tracks, systems, and tiers in DXC'09
Track Tier Systems Description

1 ADAPT-
Lite

Basic faults injected into a
simplified EPS (Electrical
Power System) testbed

Industrial
2 ADAPT More complex faults

injected into the full EPS
distribution system

Synthetic 1 ISCAS85 Multiple faults injected into
the circuits from the
ISCAS85 benchmarks

2.1 Industrial Track
The hardware system for the DXC’09 Industrial Track is the
Electrical Power System testbed in the ADAPT lab at NASA
Ames Research Center (Poll et al., 2007). The ADAPT EPS
testbed provides a means for evaluating diagnostic algorithms
through the controlled insertion of faults in repeatable failure
scenarios. The EPS testbed incorporates low-cost commercial
off-the-shelf (COTS) components connected in a system
topology that provides the functions typical of aerospace
vehicle electrical power systems: energy conversion
/generation (battery chargers), energy storage (three sets of
lead-acid batteries), power distribution (two inverters, several
relays, circuit breakers, and loads) and power management
(command, control, and data acquisition). The EPS delivers
AC (Alternating Current) and DC (Direct Current) power to
loads, which in an aerospace vehicle could include subsystems
such as the avionics, propulsion, life support, environmental
controls, and science payloads. A data acquisition and control
system commands the testbed into different configurations
and records data from sensors that measure system variables
such as voltages, currents, temperatures, and switch positions.

The scope of the ADAPT EPS testbed used for DXC
Industrial Track is shown in Fig. 1. Tier 1 has the reduced
scope as indicated. The nomenclature in the figure is
consistent with the system description provided to all
participants, which provides component, connection, and
mode information. The characteristics of Tier 1 and Tier 2 are
summarized in Table 2. The greatest simplification of Tier 1
relative to Tier 2 is not the reduced size of the domain but the
elimination of nominal mode transitions. The starting
configuration for Tier 1 data has all relays and circuit breakers
closed and no nominal mode changes are commanded during
the scenarios. Hence, any noticeable changes in sensor values
may be correctly attributed to faults injected into the
scenarios. By contrast, the initial configuration for Tier 2 data
has all relays open and nominal mode changes are
commanded during the scenarios. The commanded
configuration changes result in adjustments to sensor values
as well as transients which are nominal and not indicative of
injected faults.

Table 2. Industrial track tier characteristics

Aspect Tier 1 Tier 2
#Comps/Modes 37 / 93 173 / 430

Initial State Relays closed;
circuit breakers
closed

Relays open; circuit
breakers closed

Nominal mode
changes?

No Yes

2.2 Synthetic Track
For the synthetic track, we have used the well-known
benchmark models of ISCAS85 circuits (Brglez and
Fujiwara, 1985). These circuits are purely combinational, i.e.,
they contain no flip-flops or other memory elements. Note
that the high-level structure of the ISCAS85 circuits, which
can be beneficial to Model-Based Diagnosis (MBD) analysis,
has been flattened out. A reverse engineering effort had
resulted in high-level Verilog models (Hansen et al., 1999).
Table 3 summarizes the circuits used in the synthetic
DXC’09 track. Note that for many tasks of MBD (e.g.,
computing MFMC (Max-Fault Min-Cardinality) observations
(Feldman et al., 2008)), the number of components in the
ISCAS85 circuits can be reduced by performing cone
identification (Siddiqi and Huang, 2007, de Kleer, 2008). The
number of components in the reduced circuits is shown in the
rightmost column of Table 3. We have left the decision if to
identify cones to the competitors, i.e., we distribute the non-
reduced circuits. In this first year of the competition we
injected the complete fault at one instant. For example, if 3
components are faulted, the first observation provided to the
DA is the result of all three faults injected simultaneously.

Table 3. ISCAS85 models (V and C denote the
total number of variables and clauses,

respectively)
 original reduced

sys |IN| |OUT| |COMPS| V C |COMPS|
74182 9 5 19 47 75 6
74L85 11 3 33 77 118 15
74283 9 5 36 81 122 14
74181 14 8 65 144 228 15
c432 36 7 160 356 1028 59
c499 41 32 202 445 1428 58
c880 60 26 383 826 2224 77
c1355 41 32 546 1133 3220 58
c1908 33 25 880 1793 4756 160
c2670 233 140 1193 2695 6538 167
c3540 50 22 1669 3388 9216 353
c5315 178 123 2307 4792 13386 385
c2688 32 32 2416 4684 14432 1456
c7552 207 108 3512 7232 19312 545

3. FAULT INJECTION AND SCENARIOS

3.1 Industrial Track

ADAPT supports the repeatable injection of faults into the
system in one of three ways:

Hardware-Induced Faults: These faults are physically
injected at the testbed hardware. A simple example is tripping
a circuit breaker using the manual throw bars. Another is
using the power toggle switch to turn off the inverter. Faults
may also be introduced in the loads attached to the EPS. For
example, the valve can be closed slightly to vary the back
pressure on the pump and reduce the flow rate.

Software-Induced Faults: In addition to fault injection
through hardware, faults may be introduced via software.
Software fault injection includes one or more of the
following: 1) sending commands to the testbed that were not
intended for nominal operations; 2) blocking commands sent
to the testbed; and 3) altering the testbed sensor data.

Real Faults: In addition the aforementioned two methods,
real faults may be injected into the system by using actual
faulty components. A simple example includes a blown light
bulb. This method of fault injection was not used in the first
DX competition.

In addition, the software architecture described in (Kurtoglu
et al., 2009) allows the injection of multiple faults into the
system. Distinct faults types that are injected into the testbed
for the DX Competition are shown Table 4 and summarized
in Table 5.

Table 4. Fault types used for the industrial
tracks of DXC’09

Component Fault Description
Battery Degraded
Boolean Sensor Stuck at Value

Tripped
Failed Open

Circuit Breaker

Stuck Closed
Inverter Failed Off

Stuck Open Relay
Stuck Closed
Stuck at Value Sensor
Offset

Flow Blocked Pump (Load)
Failed Off
Over Speed
Under Speed

Fan (Load)

Failed Off
Light Bulb (Load) Failed Off

As shown in Table 5, nominal scenarios comprise roughly
half of the Tier 1 and one-third of the Tier 2 competition
scenarios. The Tier 1 fault scenarios are limited to single
faults. Half of the Tier 2 faults scenarios are single faults; the
others are double or triple faults. For both tiers once faults are
injected they persist until the end of the scenario. In the case
of multiple faults, they may be injected simultaneously or
sequentially. In the first year of the competition the fault
types are limited to additive parametric (abrupt changes in
parameter values) and discrete (unexpected changes in
system state).

Table 5. Number of sample and competition
scenarios for industrial track

 Sample Competition
#Scenarios Tier 1 Tier 2 Tier 1 Tier 2
Nominal 32 39 30 40
Single-fault 27 54 32 40
Double-fault 0 19 0 30
Triple-fault 0 1 0 10

3.2 Synthetic Track

To present the scenario generation algorithm with the
appropriate level of formality we need a number of
definitions.

Definition 1. (Diagnostic System). A diagnostic system DS 
is defined as the triple DS = <SD, COMPS, OBS>, where SD 
is a propositional theory over a set of variables V , COMPS 
⊂ V, OBS ⊂ V, COMPS is the set of assumables, and OBS is 
the set of observables. 

We  partition  the  set  of  observable  variables  OBS  into 
inputs IN and outputs OUT such that OBS = IN ∪ OUT and 
IN ∩ OUT = ∅. 

Definition 2.  (Diagnosis). Given  a diagnostic  system DS = 
<SD, COMPS, OBS>, an observation α over some variables 
in OBS, and a health assignment ω, ω is a diagnosis iff SD 
∧ α ∧ ω is consistent. 

Definition  3.  (Minimal  Diagnosis).  A  diagnosis  ω  is 
minimal  if  no  diagnosis  ω’  exists  such  that  NL(ω’)  ⊂ 
NL(ω), where NL(ψ) is the set of negative literals in ψ. 

Definition  4.  (Cardinality  of  a Diagnosis).  The  cardinality 
of a diagnosis, denoted as ¦ω¦,  is defined as  the number 
of negative literals in ω. 

A  minimal  cardinality  diagnosis  is  a  minimal  diagnosis, 
but  the  opposite  does  not  hold.  There  are  minimal 
diagnoses which are not minimal cardinality diagnoses. 

The purpose of Alg. 1 is to generate observations leading to
diagnoses of increasing minimal cardinality.

Algorithm 1: A greedy stochastic scenario generation
algorithm
 function MAKEALPHAS(DS, N) returns set of terms
 inputs:
 DS = <SD, COMPS, OBS>, diag. system
 OBS = IN ∪ OUT, IN ∩ OUT = ∅
 N, integer, observations per cardinality
 local variables:
 α, β, α n, fault, terms
 i, c, integers,
 R, set of terms, result, initially ∅
 1: for i = 1 ... N do
 2: α ← RANDOMINPUTS(IN)
 3: β ← COMPUTENOMINALOUTPUTS(DS, α)
 4: c ← 0

 5: forall v ∈ OUT do
 6: α n ← α ^ FLIP (β, v)
 7: fault = MCFAULT(α n)
 8: if |fault| > c then
 9: c ← |fault|
 10: R ← R ∪ <fault, α n>
 11: end if
 12: end for
 13: end for
 14: return R
 end function

Algorithm 1 uses a number of auxiliary functions.
RANDOMINPUTS in line 2 assigns uniformly distributed
random values to each input. Given the “all healthy”
assignment, and the diagnostic system,
COMPUTENOMINALOUTPUTS (line 3) propagates the inputs α
and computes values for each output variable in OUT. The
loop in lines 5 – 12 increases the cardinality by greedily
flipping the values of the output variables. For each new
candidate observation αn, Alg. 1 uses the diagnostic oracle
MCFAULT in line 7 to compute the minimal cardinality of the
diagnosis resulting from αn. If the cardinality of the diagnosis
increases, the observation and the diagnoses are added to the
result set (line 10).

By running Alg. 1 we get up to N observations leading to
faults of cardinality 1, 2, ..., n, where n is the cardinality of
the MFMC diagnosis for the respective circuit. Alg. 1 clearly
shows a bootstrapping problem. In order to create “difficult”
scenarios for a DA we need the DA (in line 7) to be able to
solve those “difficult” scenarios. To overcome this problem
we have used subset-minimal diagnoses instead of MC
diagnoses. Our approach is similar to (Feldman et al., 2008).

4. EVALUATION METRICS

A set of 9 metrics has been defined for assessing the
performance of the diagnostic algorithms. For DXC we make
a distinction between temporal, technical, and computational
performance metrics. The temporal metrics measure how
quickly an algorithm responds to faults in a physical system.
The technical metrics measure non-temporal features of a
diagnostic algorithm including accuracy and diagnostic
cost/utility. Finally, computational metrics are intended to
measure how efficiently an algorithm uses the available
computational resources.

In addition, we divide the metrics into 2 main categories:

Detection metrics which deal with temporal, technical, and
computational metrics associated with only detection of the
fault.

Isolation metrics which deal with temporal, technical, and
computational metrics associated with isolation of the fault.

The 9 metrics are listed in Table 6. The notation used for the
definition of the metrics is as follows:

Table 6. Metrics summary

Symbol Name Description Class/Category/
Tracks Used

“Per System Description” Metrics

MFPR False
Positives
Rate

Spurious
faults rate

Technical /
Detection/I

MFNR False
Negatives
Rate

Missed faults
rate

Technical /
Detection/I

MFDA Detection
Accuracy

Correctness
of the
detection

Technical /
Detection/I

“Per Scenario” Metrics

Mfd Fault
Detection
Time

Time for
detecting a
fault

Temporal /
Detection/I,S

Mfi Fault
Isolation
Time

Time for last
persistent
diagnosis

Temporal /
Isolation/I,S

Mia Classification
Errors

Number of
mode
classification
errors

Technical /
Isolation/I

Mutl Diagnostic
Utility

Cost related
to component
replacements
due to
incorrect
diagnosis

Technical /
Isolation/S

Mcpu CPU
Load

CPU time
spent

Computational /
Detection &
Isolation/I,S

Mmem Memory
Load

Memory
allocated

Computational /
Detection &
Isolation/I,S

S – The set of scenarios for a given system description

Sn – The set of nominal scenarios for a given system
description

Sf – The set of faulty scenarios for a given system description

tfd – The time when the fault detection signal has been
asserted for the first time

tfi – The time when the last persistent fault isolation signal has
been asserted

ωact – The true component mode vector (ground truth)

ωpre – The predicted component mode vector (represents the
set of candidate diagnoses by the DA)

Td – Total computation time

Md – Peak amount of allocated memory

C – All possibly faulted components

D – Faulted components in ωpre.

I – Faulted components in ωact.

Finally, using the aforementioned notation, the 9 metrics are
defined as:

Mfd – Fault Detection Time: The reaction time for a
diagnostic engine in detecting an anomaly (Kurtoglu et al.,
2008).

 (1)

Mfi – Fault Isolation Time: The time for isolating a fault
(Kurtoglu et al., 2008). In many applications this metric is less
important than the diagnostic accuracy, but it is important in
sequential diagnosis, probing, etc.

 (2)

MFPR – False Positive Rate: The metric that penalizes
diagnostic algorithms which announce spurious faults
(Kurtoglu et al., 2008). The false positive rate is defined as:

 (3)

where for each scenario s the “false positive" function mfp(s)
is defined as:

 (4)

MFNR – False Negative Rate: The metric that measures the
ratio of missed faults by a diagnostic algorithm (Kurtoglu et
al., 2008).

 (5)

where for each scenario s the “false negative" function mfn(s)
is defined as:

 (6)

MFDA – Detection Accuracy: The fault detection accuracy is
the ratio of number of correctly classified cases to the total
number of cases (Kurtoglu et al., 2008). It is defined as:

 (7)

Mia – Classification Errors: Isolation classification error
metric measures the accuracy of the fault isolation by a

diagnostic algorithm and is defined as the Hamming distance
between the true component mode vector ωact and the
predicted component mode vector ωpre.

3

In the calculation of the classification error metric, the data
values for the Hamming distance are the respective modes of
components comprising a system description. For example, if
the true component mode vector of the system is [1,0,0,1,0]
and the predicted component mode vector is [1,1,0,0,0], the
classification error is 2. If more than one predicted mode
vector is reported by a DA, (meaning that the diagnostic
output consists of a set of candidate diagnoses), then the
classification error is calculated for each predicted component
mode vector and weighted by candidate probabilities reported
by the DA.

Mutl – Diagnostic Utility: The intuition behind the metric is to
charge a DA for every incorrect component replacement it
required to restore the circuit to functioning. For example, the
correct diagnosis should always receive a perfect score. The
diagnosis all components bad has a cost of the number of
components. Consider a single fault and the DA reports all
components good. Finding the faulty component would
require on average replacing component by component until
the system was functioning correctly (on average half the
components). More generally:

Mutl=|I| / (|D| + c (|I – D|, |C – D|) (8)

Where c(n,m) is defined as the expected number of trials
needed to isolate n out of m. If n is much smaller than m, then
it is approximately:

 c(n, m) = nm | (n + 1) (9)

For example, to find 1 fault in m has cost m/2. To find 2 faults
in m is 2m/3. Similarly to the classification metric, if more
than one predicted mode vector is reported by a DA, then
error is calculated for each predicted component mode vector
and weighted by candidate probabilities reported by the DA.

Mcpu – CPU Load: This is the average CPU load during the
experiment

 (10)

where ts is the startup time of the diagnostic engine and Td is
a vector with the actual CPU time spent by the diagnostic
algorithm at every time step in the diagnostic session.

Mmem – Memory Load: This is the maximum memory size at
every step in the diagnostic session. CPU load during the
experiment

 (11)

where Md is a vector with the maximum memory size at every
step in the diagnostic session.

3 The Hamming distance between two strings of data values
(of equal length) is the number of positions for which the
corresponding data values are different.

5. COMPETITION SETUP AND SCORING

Version 1.1 of the DXC Framework, implemented as
specified in (Kurtoglu et al., 2009), was used to run the
competition. Two computers with identical hardware4 were
set up, one running Windows™ and the other Linux. The
choice of target operating system was left to DA developers.

System profiling was performed on the machines over a
period of days to ensure stable experiment conditions.

DAs were run on competition datasets over a period of two
weeks. The Evaluator was then run on the full results set,
assigning relative rankings for each metric. Since there were
multiple systems in the Synthetic Track, the metrics
computed for each system were aggregated before assigning
relative rankings. The per scenario metrics were averaged
over all scenarios and aggregated over all systems. For each
of the Industrial track tiers there was only one system, so no
aggregation was necessary.

A DA that ranked first place in a given metric was awarded
10 points, second place was awarded 8, third 7, etc. This
score was then multiplied by a metric weight, shown in
Tables 8, 9, and 10, and added to the DA’s total.

Metric weights for the Industrial Track were determined by
considering a number of use cases in which the importance of
each metric was subjectively assessed. For example, in an
abort use case high importance was given to the mean time to
detect a fault whereas in a maintenance use case more weight
was given to the ability to isolate a fault. Similar
considerations were given to use cases such as real-time
recovery and control, ground support operations, and
resource limited applications. Since a use case was not
specified as part of the competition scenarios, we simply
averaged over all of the use cases to arrive at the final metric
weights.

6. DIAGNOSTIC ALGORITHMS

The teams that participated in the First International Diagnosis
Competition are listed in Table 7.

Table 7. DXC participating DAs

Team Name Track(s) Algorithm Type
FACT I1 Model-based
Fault Buster I1, I2 Statistical
HyDE-A I1, I2 Model-based
HyDE-S I1 Model-based
Lydia S Model-based
NGDE S Model-based
ProADAPT I1, I2 Probabilistic
RacerX I1 Change detection
RODON I1, I2, S Model-based
RulesRule I1 Rule-based
StanfordDA I2 Optimization

4 Intel® XEON™ 2x2.20Ghz, 3.60 GB RAM

Wizards of Oz I1, I2 Model-based
A total of twelve DAs participated, nine in Tier 1 of the
Industrial Track, six in Tier 2, and three in the Synthetic
Track. Brief descriptions of each of these algorithms are
provided below:

1. FACT – a model-based diagnosis system that uses hybrid
bond graphs, and models derived from them, at all levels
of diagnosis, including fault detection, isolation, and
identification. Faults are detected using an observer-based
approach with statistical techniques for robust detection.
Faults are isolated by matching qualitative deviations
caused by fault transients to those predicted by the model.
For systems with few operating configurations, fault
isolation is implemented in a compiled form to improve
performance (Roychoudhury et al., 2009).

2. Fault Buster – is based on a combination of multivariate
statistical methods, for the generation of residuals. Once
the detection has been done a neural
network performs classification for doing isolation.

3. HyDE-A – HyDE (Hybrid Diagnosis Engine) is a model-
based diagnosis engine that uses consistency between
model predictions and observations to generate conflicts
which in turn drive the search for new fault candidates.
HyDE-A uses discrete models of the system and a
discretization of the sensor observations for diagnosis
(Narasimhan and Brownston, 2007).

4. HyDE-S – uses the HyDE system but runs it on interval
values hybrid models and the raw sensor data
(Narasimhan and Brownston, 2007).

5. Lydia – is a declarative modeling language specifically
developed for Model-Based Diagnosis (MBD). The
language core is propositional logic, enhanced with a
number of syntactic extensions for ease of modeling. The
accompanying toolset currently comprises a number of
diagnostic engines and a simulator tool (Feldman et al.,
2006).

6. NGDE – Allegro Common Lisp implementation of the
classic GDE. Uses a minimum-cardinality candidate
generator to construct diagnoses for the competition.

7. ProADAPT – processes all incoming environment data
(observations from a system being diagnosed), and acts as
a gateway to a probabilistic inference engine. It uses the
Arithmetic Circuit (AC) Evaluator which is compiled
from Bayesian network models. The primary advantage
to using ACs is speed, which is key in resource bounded
environments (Mengshoel 2007).

8. RacerX – is a detection-only algorithm which detects a
percentage change in individual filtered sensor values to
raise a fault detection flag.

9. RODON – is based on the principles of the General
Diagnostic Engine (GDE) as described by de Kleer and
Williams and the G+DE by Heller and Struss. RODON
uses contradictions (conflicts) between the simulated and
the observed behavior to generate hypotheses about
possible causes for the observed behavior. If the model

contains failure modes besides the nominal behavior,
these can be used to verify the hypotheses, which speed
up the diagnostic process and improve the results (Karin
et al., 2006).

10. RulesRule – is a rule-based isolation-only algorithm. The
rule base was developed by analyzing the sample data and
determining characteristic features of fault. There is no
explicit fault detection though isolation implicitly means
that a fault has been detected.

11. StanfordDA – is an optimization-based approach to
estimating fault states in a DC power system. The model
includes faults changing the circuit topology along with
sensor faults. The approach can be considered as a
relaxation of the mixed estimation problem. We develop a
linear model of the circuit and pose a convex problem for
estimating the faults and other hidden states. A sparse
fault vector solution is computed by using l1
regularization (Zymnis et al., 2009).

12. Wizards of Oz – is a consistency-based algorithm. The
model of the system completely defines the stable (static)
output of the system in case of normal and faulty
behavior. Given a new command or new observations, the
algorithm waits for a stable state and computes the
minimum diagnoses consistent with the observations and
the previous diagnoses.

7. RESULTS AND DISCUSSION

7.1 Industrial Track

The results for the Industrial Track are shown in Table 8 and
Table 9 for Tier 1 and Tier 2, respectively. The overall winner
for both tracks was ProADAPT. RODON placed second in
Tier 1 and third in Tier 2. The StanfordDA, which did not

participate in Tier 1, placed second in Tier 2. However,
ProADAPT and StanfordDA benefitted from previous funded
experience with ADAPT so RODON was the official winner
of both tiers. The distribution of first or second ranks within
each metric was spread out among the DAs, no DA ranked
first or second for all of the metrics. Note that the final scores
and ranks depend on the weights applied to each metric.
Different weights, corresponding to different use cases, would
affect the results. The sensitivity of the results to the metrics
and weights is left for future study.

Figures 2-9 are graphical depictions of the data in Tables 8
and 9. A few observation follow. False positives were counted
in the following two situations: for nominal scenarios where
the DA declared a fault; and for faulty scenarios where the
DA declared a fault before any fault was injected. An error in
the rule base of RulesRule led to more false positive
indications for the faulty scenarios than for the nominal
scenarios and also resulted in a large number of classification
errors. For other DAs, false positives also resulted from
nominal commanded mode changes in Tier 2 in which the
relay feedback did not change status as of the next data
sample after the command. Here is an extract from one of the
input scenario files that illustrates this situation:
command @120950 EY275_CL = false;
sensors @121001 {… ESH275 = true, …}
sensors @121501 {… ESH275 = false, …}

A command is given at 120.95 seconds to open relay EY275.
The associated relay position sensor does not indicate open as
of the next sensor data update 51 milliseconds later. This is
nominal behavior for the system and examples were provided
in the sample data. A DA that does not account for this delay
will likely indicate a false positive in this case.
In several instances DAs reported diagnosis mode IDs which

Table 8. Industrial track tier 1 results

 Weight RODON
Wizards

Of Oz
Fault

Buster ProADAPT
HyDE-

A
HyDE-

S RulesRule FACT RacerX
FP Rate 1.3 0.0645 0.0000 0.1333 0.0333 0.0000 0.2000 0.8246 0.2813 0.0645

 Ranking 4 1 6 3 1 7 9 8 4
Points 6 9 4 7 9 3 1 2 6

FN Rate 1.3 0.0968 0.5000 0.3438 0.0313 0.4688 0.0741 0.0000 0.0667 0.1613
Ranking 5 9 7 2 8 4 1 3 6

Points 5 1 3 8 2 6 10 7 4
Det Acc 0.3 0.9194 0.7419 0.7581 0.9677 0.7581 0.8548 0.2419 0.8226 0.8871

 Ranking 2 8 6 1 6 4 9 5 3
Points 8 2 3.5 10 3.5 6 1 5 7

Class Errors 2.2 10.000 24.000 32.000 2.000 26.649 26.000 76.000 25.000 32.000
 Ranking 2 3 7 1 6 5 9 4 7

Points 8 7 2.5 10 4 5 1 6 2.5
T_det (ms) 2.2 218 11530 1893 1392 13223 130 1000 373 126

 Ranking 3 8 7 6 9 2 5 4 1
Points 7 2 3 4 1 8 5 6 10

T_iso (ms) 1.5 7205 11626 9259 4084 13840 653 282 9796 999999
 Ranking 4 7 5 3 8 2 1 6 9

Points 6 3 5 7 2 8 10 4 1
CPU (ms) 0.6 11766 1039 2039 1601 24795 513 117 1767 139

 Ranking 8 4 7 5 9 3 1 6 2
Points 2 6 3 5 1 7 10 4 8

Mem (kb) 0.6 26679 1781 2539 1680 5447 5795 3788 4340 3572
 Ranking 9 2 3 1 7 8 5 6 4

Points 1 8 7 10 3 2 5 4 6
FINAL

SCORES: 59.850 46.300 35.750 72.800 31.750 59.500 51.800 50.400 51.850
FINAL
RANK: 2 7 8 1 9 3 5 6 4

did not match the names specified in the system catalog. For
these cases the diagnosis was treated as an empty candidate.
This could either negatively or positively impact the
classification error metric depending on whether the DA had a
correct or incorrect isolation. Participants were encouraged to
run their DA output through the evaluator code that was
distributed with the sample data sets to check for and correct
these syntax errors.

There are a few remarks in regards to the timing metrics listed
in Table 6 and shown graphically in Fig. 4. First, RacerX did
not have an isolation time as it was a detection-only DA.
Second, note the somewhat confusing result that the mean
isolation time for RulesRule was less than the mean detection
time. This has to do with the way the metrics are calculated.
The detection time is undefined for scenarios with a false
positive; however, the isolation time is not necessarily
undefined and is calculated as discussed in section 4. The
intent is to account for the situation where a DA retracts a
spurious detection signal and subsequently isolates to the
correct component. In this case the scenario is declared a false
positive but the accuracy and timing of the isolation is
calculated with respect to the last persistent diagnosis.
Consequently, for DAs with many false positives the detection
time may be calculated for fewer scenarios than the isolation
time with the result that the mean isolation time for all
scenarios could be less than the mean detection time.
However, in any scenario where both times are defined, the
DA isolation time is always greater than or equal to the
detection time, as would be expected.

Tier 1 had the interesting circumstance that the same DA was
implemented by two different modelers. HyDE-A was
modeled primarily with Tier 2 in mind and had a policy of

waiting for transients to settle before requesting a diagnosis.
The same policy was simply applied to Tier 1 as well, even
though transients in Tier 1 corresponded strictly to fault
events. On the other hand, HyDE-S was modeled only for Tier
1 and did not include a lengthy time-out period for transients
to settle. HyDE-S had dramatically smaller mean detection
and isolation times (see Fig. 4) with roughly the same number
of classification errors (Fig. 3) as HyDE-A. This illustrates the
kind of impact that modeling and implementation decisions
have on DA performance.

7.2 Synthetic Track

As can be seen in Table 7 all synthetic track DAs are model-
based. Lydia uses a stochastic approach to identify diagnoses
while RODON and NGDE use the familiar GDE-like
approaches. Their overall utility scores are not dramatically
different.

The results for the Synthetic Track are presented in Table 10.
Based on the overall metric NGDE was first, Lydia second,
and RODON third. Lydia was used to generate the scenario
sets and therefore is disqualified. Furthermore the designers
of Lydia and NGDE both participated in the design of DXC,
and are thus disqualified. So RODON is the official winner.
RODON scored reasonably well on the smaller circuits but
failed to return any diagnoses for the 4 larger circuits.

Use of computational resources varied dramatically over the
systems. Lydia used an order of magnitude fewer resources
than either RODON or NGDE and thus ranked first along the
memory and CPU metrics. RODON and NGDE are very
similar in resource usage, with RODON edging out NGDE.

Fig. 10 shows the DA utility for each of the circuits. Note
that the utility score decreases significantly with circuit size.

Table 9. Industrial track tier 2 results

 Weight RODON
Wizards

Of Oz
Fault

Buster ProADAPT HyDE Stanford
FP Rate 1.3 0.5417 0.5106 0.8143 0.0732 0.0000 0.3256

 Ranking 5 4 6 2 1 3
Points 5 6 4 8 10 7

FN Rate 1.3 0.0972 0.0959 0.2400 0.1392 0.3000 0.0519
Ranking 3 2 5 4 6 1

Points 7 8 5 6 4 10
Det Acc 0.3 0.7250 0.7417 0.4250 0.8833 0.8000 0.8500

 Ranking 5 4 6 1 3 2
Points 5 6 4 10 7 8

Class Errors 2.2 84.067 159.248 130.000 76.000 121.569 110.547
 Ranking 2 6 5 1 4 3

Points 8 4 5 10 6 7
T_det (ms) 2.2 3490 30742 14099 5981 17610 3946

 Ranking 1 6 4 3 5 2
Points 10 4 6 7 5 8

T_iso (ms) 1.5 36331 47625 37808 12486 21982 14103
 Ranking 4 6 5 1 3 2

Points 6 4 5 10 7 8
CPU (ms) 0.6 80261 23387 5798 3416 29612 963

 Ranking 6 4 3 2 5 1
Points 4 6 7 8 5 10

Mem (kb) 0.6 29878 7498 10261 6539 20515 5912
 Ranking 6 3 4 2 5 1

Points 4 7 6 8 5 10
FINAL

SCORES: 70.500 51.400 52.400 83.200 61.000 81.500
FINAL
RANK: 3 6 5 1 4 2

This decrease is not a result of poor performance or algorithm
design. Rather, an oracle could not do much better as a large
number of faults can exhibit the same input-output behavior
and no DA could isolate the injected fault out of the large
ambiguity groups. The challenge presented by large
ambiguity groups is discussed further in the following section
and the NGDE and Lydia papers included in this collection.

8. ASSUMPTIONS, ISSUES, AND EXTENSIONS

The primary goal of this competition was to demonstrate an
end-to-end implementation of the DXC framework and create
a foundation for future DX competitions. As a result we made
several simplifying assumptions. We also ran into several
issues during the course of this implementation that could not
be addressed. In this section, we try to present those
assumptions and issues, which we hope can be addressed in
future competitions.

Although the competition was a success, it only addresses a
small set of the types of diagnostic tasks, which occur in
practice. It would be unfortunate for the DX community to
focus only on the tasks of this competition. Our goal is to
continually expand the coverage of diagnostic challenges
experienced in the field. Our hope is that every successive
year will expand the set of tasks in the competition and in
doing so produce an ever growing repository DX researchers
have available to evaluate their own algorithms.

8.1 Competition Scope

In the first year of the diagnostic competition, the fault

signatures were limited to abrupt parametric and discrete
types. Faults were inserted assuming uniform probabilities
and included component and sensor faults. In future years, we
will provide the failure rates of components and use these to
evaluate the precision of diagnoses. For the Industrial Track,
other fault types are presently possible to inject in the testbed
– including incipient, intermittent, and noise – and could be
included in future work. Additional ideas for future research
include giving DAs reduced sensor sets, introducing multi-
rate sensor data, injecting transient faults, allowing for
autonomous transitions, adding variable loads, and extending
the scope and complexity of the physical system. For the
synthetic track, all the systems were known a priori. This
means researchers could optimize for these circuits. We don’t
believe this happened this year, but to avoid this in future
years we will include entirely novel circuits along with the
familiar ones. This year we sampled only one observation
time. We will provide multiple observations. This will
evaluate a DAs ability to merge information from multiple
times. An important component of troubleshooting is
introducing probe points. In future years, we can evaluate the
number of probes needed to isolate the fault. This year the
input vector was supplied. The diagnostician could construct
the input vector, which was most informative. This year the
Synthetic Track focused on combinatorial circuits. In
subsequent years we hope to introduce troubleshooting of
sequential circuits. Finally, digital circuits are convenient to
model and conveniently illustrate many aspects of diagnostic
algorithms. In future years, we will extend the types of

Table 10. Synthetic track results

 Lydia NGDE RODON
circuit #comp cpu mem utl cpu mem utl cpu mem utl

74182 19 51 154 0.4137 6335 11540 0.4793 3043 19773 0.4448
74L85 33 68 223 0.2433 6365 11784 0.3098 3888 20979 0.1952
74283 36 60 229 0.1580 6385 12231 0.1553 5351 20637 0.1147
74181 65 64 401 0.1504 6619 14625 0.1931 12527 25432 0.1417
c432 160 115 878 0.0871 7520 17868 0.2096 22621 36811 0.0906
c499 202 130 1094 0.0622 20347 32649 0.0699 23504 39872 0.0089
c880 383 203 1945 0.0483 13718 28622 0.0401 20347 43687 0.0182
c1355 546 296 2759 0.0295 22550 37930 0.0246 23253 33530 0.0012
c1908 880 538 4134 0.0179 26171 39843 0.0150 27718 38557 0.0180
c2670 1193 937 5867 0.0647 20537 61722 0.1076 35680 43063 0.0442
c3540 1669 1674 7900 0.0319 27022 82045 0.0407 0 0 0.0000
c5315 2307 3091 11316 0.0165 30926 93116 0.0275 0 0 0.0000
c6288 2416 3530 12037 0.0008 17483 102420 0.0563 0 0 0.0000
c7552 3512 11817 16679 0.0317 37989 125910 0.0283 0 0 0.0000

Averaged 1613 4687 0.0969 17855 48022 0.1255 12709 23024 0.0770
Per Metric Rank 1 1 2 3 3 1 2 2 3

Points 10 10 8 7 7 10 8 8 7
Metric Weight 1.5 1.5 7 1.5 1.5 7 1.5 1.5 7

Final Scores 86 91 73
Final Rank 2 1 3

systems to include. Two comparatively easy types of systems
to add are reprographic engines as we have a tool available to
generate such models, and analog circuits.

8.2 Metrics

Selecting the set of metrics to be used for evaluation was a
challenging job. We based our decision on the system and
kinds of faults we were dealing with. In reality we also need
to design metrics more closely associated with the context of
use. One common metric is to minimize total cost of repair
where cost includes down time to the customer,
diagnostician’s time, parts, etc. In addition since we were
dealing with abrupt, persistent, and discrete faults, metrics
associated with incipient, intermittent, and/or continuous
faults were not considered. The metrics listed in this paper do
not capture the amount of effort necessary to build models of
sufficient fidelity for the diagnosis task at hand. Furthermore,
we did not attempt to investigate the ease or difficulty of
updating models with new or changed system information.
The art of building models is an important practical
consideration which is not addressed in the current work.

The isolation accuracy metric used for the industrial track was
not suitable for the synthetic track. A DA which reported
nothing wrong on every scenario would come close to
winning the competition based on this metric. The main
problem with this metric is that the number of faulty
components is always small with respect to the size of the
system. As a result we cannot differentiate adequately
between a few faults and no faults.

Isolation classification error was also not suitable for the
synthetic track. This metric still suffers from the problem that
all good is scored too high: The Hamming distance between a
single fault and every component good is very small!

Ideally we would like to use a SAT solver to evaluate the
accuracy of a DA’s diagnosis. However, we did not have time
to implement it so as an alternate we selected utility as the
isolation accuracy metric for the synthetic track. One of the
major flaws of this metric is that average expected utility
scores decrease with system size, thereby implicitly de-
weighting diagnoses of larger circuits. We also considered and
rejected a classification error metric which would assign a
high score to any fault from an ambiguity group which we
considered a bigger flaw than the flaw for the utility metric.

Finally, the current isolation metrics evaluate diagnostic
performance based on a discrete isolation assumption in
which faults are isolated to one of the discrete modes of a
component. As more continuous type faults are introduced,
additional or generalized metrics are required in order to
calculate the accuracy of isolation estimates on a continuous
scale.

8.3 Competition Setup

Some practical issues arose in the execution of competition
experiments. Much effort was put into ensuring stable,
uniform conditions on the host machines; however, due to
time constraints and the unpredictable element introduced by
running external DA submissions, it was necessary to take
measures that may have caused slight variability. One

example was the manual examination of ongoing experiment
results for quality assurance. Future releases of the DXC
Framework can address this by being more robust to
unexpected DA behavior, and sending email notifications in
the event of such.

Additionally, for Java DAs, significant differences were
evident in the peak memory usage metric when run on Linux
versus Windows™. The cause for this was not explored due to
time constraints, as the method used on Windows™ for
calculating peak memory usage involved a Windows™ API
system call, the analysis of which was deemed too expensive.

The problem was bypassed by running all Java DAs on Linux.
This worked for all save one, RODON. When it was
determined that any change in RODON’s peak memory usage
score would not affect the final rankings in any way, the issue
was waived.

9. CONCLUSIONS

We presented the successful implementation of the DXC
framework called DXC’09. We learned some valuable lessons
trying to run this competition. One major takeaway is that
there is still a lot of work and discussion needed to determine
common comparison and evaluation framework for the
diagnosis community.

We hope to continue the work next year by running DXC’10.
We have identified several ways to extend the systems used in
the current competition some of which can be achieved in a
year’s time. We also hope to add other systems to the fold,
which may pose different diagnostic challenges.

ACKNOWLEDGMENTS

We extend our gratitude to David Nishikawa (NASA), David
Jensen (Oregon State University), Brian Ricks (University of
Texas at Dallas), Ole Mengshoel (Carnegie Mellon
University), Adam Sweet (NASA), David Hall (Stinger
Ghaffarian Technologies), all DXC’09 competitors, the
DX’09 organizers and many others for valuable discussions,
criticism and help.

REFERENCES

Bartys, M., R. Patton, M. Syfert, S. de las Heras, and J.
Quevedo (2006). Introduction to the DAMADICS
Actuator FDI Benchmark Study, Control
Engineering Practice, vol 14, pp. 577-596.

Brglez, F., and H. Fujiwara (1985). A neutral netlist of 10
combinational benchmark circuits and a target translator
in Fortran. In: Proc. ISCAS’85, pages 695–698.

de Kleer, J (2008). An improved approach for generating
Max-Fault Min-Cardinality diagnoses. In: Proc.
DX’08, pp. 247–252.

Feldman A., J. Pietersma, and A. van Gemund (2006). All
roads lead to fault diagnosis: Model-based reasoning
with LYDIA. In: Proc. BNAIC’06.

Feldman, A., G. Provan, and A. van Gemund (2008).
Computing observation vectors for Max-Fault Min-
Cardinality diagnoses. In: Proc. AAAI’08, pp. 919–
924.

Hansen, M., H. Yalcin, and J. Hayes (1999). Unveiling the
ISCAS-85 benchmarks: A case study in reverse
engineering. IEEE Design & Test, 16(3):72–80.

Karin L., R. Lunde, and B. Münker. (2006). Model-Based
Failure Analysis with RODON, In: Proc. ECAI’06.

Kurtoglu, T., S. Narasimhan, S. Poll, D. Garcia, L. Kuhn, J.
de Kleer, A. van Gemund, and A. Feldman (2009).
Towards a Framework for Evaluating and Comparing
Diagnosis Algorithms. In: Proc. DX’09.

Mengshoel O.J. (2007). Designing resource-bounded
reasoners using Bayesian networks: System health
monitoring and diagnosis, In: Proc. DX’07, pp. 330-
337.

Narasimhan, S., and L. Brownston (2007). HyDE – A
General Framework for Stochastic and Hybrid Model-
based Diagnosis. In: Proc. DX’07, pp. 162-169.

Orsagh R.F., M.J. Roemer, C.J. Savage, and M. Lebold,
(2002). Development of Performance and Effectiveness
Metrics for Gas Turbine Diagnostic Techniques.
Aerospace 2002 IEEE Conference
Proceedings, Vol6, pp. 2825-2834.

Poll, S., A. Patterson-Hine, J. Camisa, D. Garcia, D. Hall, C.
Lee, O. J. Mengshoel, C. Neukom, D. Nishikawa, J.
Ossenfort, A. Sweet, S. Yentus, I. Roychoudhury, M.
Daigle, G. Biswas, and X. Koutsoukos (2007). Advanced
Diagnostics and Prognostics Testbed. In: Proc.
DX’07.

Roychoudhury I., G. Biswas, and X. Koutsoukos (2009).
Designing Distributed Diagnosers for Complex
Continuous Systems, IEEE Transactions on
Automation Science and Engineering, vol. 6, no.
2, pp. 277-290.

Siddiqi, S. and J. Huang (2007). Hierarchical diagnosis of
multiple faults. In: Proc. IJCAI’07, pp. 581–586.

Simon L., J. Bird, C. Davison, A. Volponi, R. E. Iverson,
(2008). Benchmarking Gas Path Diagnostic Methods: A
Public Approach, Proceedings of the ASME Turbo
Expo 2008: Power for Land, Sea and Air,
GT2008.

Zymnis A., S. Boyd, and D. Gorinevsky (2009). Relaxed
maximum a posteriori fault identification, Signal
Processing, vol. 89, no. 6, 2009, pp. 989–999.

Appendix A. FIGURES.

Fig. 1. The ADAPT EPS (Electrical Power System)

Fig. 2. Industrial track tier 1 false positive rate, false
negative rate, and detection accuracy by DA

Fig. 3. Industrial track tier 1 classification errors by DA

Fig. 4. Industrial track tier 1 detection and isolation times
by DA

Fig. 5. Industrial track tier 1 CPU time and peak memory
usage by DA

Fig. 6. Industrial track tier 2 false positive rate, false
negative rate, and detection accuracy by DA

Fig. 7. Industrial track tier 2 classification errors by DA

Fig. 8. Industrial track tier 2 detection and isolation
times by DA

Fig. 9. Industrial track tier 2 CPU time and peak
memory usage by DA

Fig. 10. Synthetic track DA utility scores by circuit

