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Abstract: A framework to compare and evaluate diagnosis algorithms (DAs) has been created jointly by 
NASA Ames Research Center and PARC. In this paper, we present the first concrete implementation of 
this framework as a competition called DXC’09. The goal of this competition was to evaluate and compare 
DAs in a common platform and to determine a winner based on diagnosis results. 12 DAs (model-based 
and otherwise) competed in this first year of the competition in 3 tracks that included industrial and 
synthetic systems. Specifically, the participants provided algorithms that communicated with the run-time 
architecture to receive scenario data and return diagnostic results. These algorithms were run on extended 
scenario data sets (different from sample set) to compute a set of pre-defined metrics. A ranking scheme 
based on weighted metrics was used to declare winners. This paper presents the systems used in DXC’09, 
description of faults and data sets, a listing of participating DAs, the metrics and results computed from 
running the DAs, and a superficial analysis of the results.  

 

1. INTRODUCTION 

The DX community meets every year at the International 
Workshop on the Principles of Diagnosis1 to discuss the latest 
developments in the field of model-based diagnosis. Various 
diagnostic modeling approaches, associated reasoning 
algorithms, and applications to real and toy systems are 
presented. However, efforts to compare and evaluate 
diagnosis algorithms (DAs) on a common platform have been 
far and few in between. Other diagnosis communities have 
also not been actively involved in creating such platforms.  

There have been attempts to benchmark DAs by computing 
performance metrics/indices (Orsagh et al., 2002, Bartys et 
al., 2006, Simon, et al., 2008). However these approaches 
were focused on specific domains and lack a general-purpose 
representation. In an effort to bridge this gap a framework 
called the DXC framework (Kurtoglu et al., 2009) was created 
to provide a level playing field to evaluate and compare DAs. 
This framework tried to establish a general purpose 
representation for system description, scenario data format, 
and diagnostic result format. A run-time architecture was 
created to execute DAs under similar conditions and compute 
performance metrics based on diagnostic output and ground-
truth data.  

In this paper, we present the first concrete implementation of 
the DXC framework called the DX Competition2 (DXC’09). 
12 DAs (model-based and otherwise) competed in 3 tracks 
that included industrial and synthetic systems. Initially the 

                                                 
1 http://www.isy.liu.se/dx09/ 
2 http://dx-competition.org/ 

participants were provided with system descriptions and a 
sample data set that included nominal and fault scenarios. The 
participants had to provide algorithms that communicated 
with the run-time architecture to receive scenario data and 
return diagnostic results. For the competition we ran all the 
algorithms on extended scenario data sets (different from 
sample set) to compute a set of pre-defined metrics. The 
metrics (with associated weighting) were used to rank the 
DAs.  

The rest of this paper details the constituent pieces of this 
competition. Section 2 describes the tracks and systems used 
in the competition. Section 3 lists the classes of faults that 
were injected, how they were injected, and the sensor data sets 
that were generated as a result. Section 4 defines all the 
metrics used in the competition. Section 5 describes the 
conditions of the competition including information on how 
the algorithms were started and executed. Section 6 lists and 
briefly describes the participating DAs. Section 7 provides 
results of the competition and an analysis of the performance 
of the DAs. Section 8 introduces the assumptions that were 
made in implementing this competition, issues that were 
identified, and scope for possible extensions. Section 9 
presents the conclusion and looks forward to the continuation 
of this competition in future years. 

2. TRACKS & SYSTEMS 

One of the primary goals of DXC’09 is to facilitate the 
development of domain independent diagnostic software. 
Furthermore, diagnostic software should be stress tested with 
difficult cases to determine its strengths and weaknesses and 
to pose a challenge. A diagnostic problem may be interesting 
due to its practical importance or it may be challenging due to 



 
 

     

 

its size and complexity. To facilitate all this we included 
multiple DXC tracks, and (optionally) multiple tiers in each 
track. The DXC’09 tracks and tiers are summarized in Table 
1. 

Table 1. Tracks, systems, and tiers in DXC'09 
Track Tier Systems Description 

1 ADAPT-
Lite 

Basic faults injected into a 
simplified EPS (Electrical 
Power System) testbed 

Industrial 
2 ADAPT More complex faults 

injected into the full EPS 
distribution system 

Synthetic 1 ISCAS85 Multiple faults injected into 
the circuits from the 
ISCAS85 benchmarks 

 
2.1 Industrial Track  
The hardware system for the DXC’09 Industrial Track is the 
Electrical Power System testbed in the ADAPT lab at NASA 
Ames Research Center (Poll et al., 2007). The ADAPT EPS 
testbed provides a means for evaluating diagnostic algorithms 
through the controlled insertion of faults in repeatable failure 
scenarios. The EPS testbed incorporates low-cost commercial 
off-the-shelf (COTS) components connected in a system 
topology that provides the functions typical of aerospace 
vehicle electrical power systems: energy conversion 
/generation (battery chargers), energy storage (three sets of 
lead-acid batteries), power distribution (two inverters, several 
relays, circuit breakers, and loads) and power management 
(command, control, and data acquisition). The EPS delivers 
AC (Alternating Current) and DC (Direct Current) power to 
loads, which in an aerospace vehicle could include subsystems 
such as the avionics, propulsion, life support, environmental 
controls, and science payloads. A data acquisition and control 
system commands the testbed into different configurations 
and records data from sensors that measure system variables 
such as voltages, currents, temperatures, and switch positions.  

The scope of the ADAPT EPS testbed used for DXC 
Industrial Track is shown in Fig. 1. Tier 1 has the reduced 
scope as indicated. The nomenclature in the figure is 
consistent with the system description provided to all 
participants, which provides component, connection, and 
mode information. The characteristics of Tier 1 and Tier 2 are 
summarized in Table 2. The greatest simplification of Tier 1 
relative to Tier 2 is not the reduced size of the domain but the 
elimination of nominal mode transitions. The starting 
configuration for Tier 1 data has all relays and circuit breakers 
closed and no nominal mode changes are commanded during 
the scenarios. Hence, any noticeable changes in sensor values 
may be correctly attributed to faults injected into the 
scenarios. By contrast, the initial configuration for Tier 2 data 
has all relays open and nominal mode changes are 
commanded during the scenarios. The commanded 
configuration changes result in adjustments to sensor values 
as well as transients which are nominal and not indicative of 
injected faults. 

 

Table 2. Industrial track tier characteristics 

Aspect Tier 1 Tier 2 
#Comps/Modes 37 / 93 173 /  430 

Initial State Relays closed; 
circuit breakers 
closed 

Relays open; circuit 
breakers closed 

Nominal mode 
changes? 

No Yes 

 
2.2 Synthetic Track 
For the synthetic track, we have used the well-known 
benchmark models of ISCAS85 circuits (Brglez and 
Fujiwara, 1985). These circuits are purely combinational, i.e., 
they contain no flip-flops or other memory elements. Note 
that the high-level structure of the ISCAS85 circuits, which 
can be beneficial to Model-Based Diagnosis (MBD) analysis, 
has been flattened out. A reverse engineering effort had 
resulted in high-level Verilog models (Hansen et al., 1999). 
Table 3 summarizes the circuits used in the synthetic 
DXC’09 track. Note that for many tasks of MBD (e.g., 
computing MFMC (Max-Fault Min-Cardinality) observations 
(Feldman et al., 2008)), the number of components in the 
ISCAS85 circuits can be reduced by performing cone 
identification (Siddiqi and Huang, 2007, de Kleer, 2008). The 
number of components in the reduced circuits is shown in the 
rightmost column of Table 3. We have left the decision if to 
identify cones to the competitors, i.e., we distribute the non-
reduced circuits. In this first year of the competition we 
injected the complete fault at one instant. For example, if 3 
components are faulted, the first observation provided to the 
DA is the result of all three faults injected simultaneously. 

Table 3. ISCAS85 models (V and C denote the 
total number of variables and clauses, 

respectively) 
 original reduced 

sys |IN| |OUT| |COMPS| V C |COMPS| 
74182 9 5 19 47 75 6 
74L85 11 3 33 77 118 15 
74283 9 5 36 81 122 14 
74181 14 8 65 144 228 15 
c432 36 7 160 356 1028 59 
c499 41 32 202 445 1428 58 
c880 60 26 383 826 2224 77 
c1355 41 32 546 1133 3220 58 
c1908 33 25 880 1793 4756 160 
c2670 233 140 1193 2695 6538 167 
c3540 50 22 1669 3388 9216 353 
c5315 178 123 2307 4792 13386 385 
c2688 32 32 2416 4684 14432 1456 
c7552 207 108 3512 7232 19312 545 

 

3. FAULT INJECTION AND SCENARIOS 

3.1 Industrial Track 

ADAPT supports the repeatable injection of faults into the 
system in one of three ways: 



 
 

     

 

Hardware-Induced Faults: These faults are physically 
injected at the testbed hardware. A simple example is tripping 
a circuit breaker using the manual throw bars. Another is 
using the power toggle switch to turn off the inverter. Faults 
may also be introduced in the loads attached to the EPS. For 
example, the valve can be closed slightly to vary the back 
pressure on the pump and reduce the flow rate. 

Software-Induced Faults: In addition to fault injection 
through hardware, faults may be introduced via software. 
Software fault injection includes one or more of the 
following: 1) sending commands to the testbed that were not 
intended for nominal operations; 2) blocking commands sent 
to the testbed; and 3) altering the testbed sensor data.  

Real Faults: In addition the aforementioned two methods, 
real faults may be injected into the system by using actual 
faulty components. A simple example includes a blown light 
bulb. This method of fault injection was not used in the first 
DX competition. 

In addition, the software architecture described in (Kurtoglu 
et al., 2009) allows the injection of multiple faults into the 
system. Distinct faults types that are injected into the testbed 
for the DX Competition are shown Table 4 and summarized 
in Table 5.  

Table 4. Fault types used for the industrial 
tracks of DXC’09 

Component Fault Description 
Battery Degraded 
Boolean Sensor Stuck at Value 

Tripped 
Failed Open 

Circuit Breaker 

Stuck Closed 
Inverter Failed Off 

Stuck Open Relay 
Stuck Closed 
Stuck at Value Sensor 
Offset 

 
Flow Blocked Pump (Load) 
Failed Off 
Over Speed 
Under Speed 

Fan (Load) 

Failed Off 
Light Bulb (Load) Failed Off 

As shown in Table 5, nominal scenarios comprise roughly 
half of the Tier 1 and one-third of the Tier 2 competition 
scenarios. The Tier 1 fault scenarios are limited to single 
faults. Half of the Tier 2 faults scenarios are single faults; the 
others are double or triple faults. For both tiers once faults are 
injected they persist until the end of the scenario. In the case 
of multiple faults, they may be injected simultaneously or 
sequentially. In the first year of the competition the fault 
types are limited to additive parametric (abrupt changes in 
parameter values) and discrete (unexpected changes in 
system state). 

Table 5. Number of sample and competition 
scenarios for industrial track 

 Sample Competition 
#Scenarios Tier 1 Tier 2 Tier 1 Tier 2 
Nominal 32 39 30 40 
Single-fault 27 54 32 40 
Double-fault 0 19 0 30 
Triple-fault 0 1 0 10 

 

3.2 Synthetic Track 

To present the scenario generation algorithm with the 
appropriate level of formality we need a number of 
definitions. 

Definition 1. (Diagnostic System). A diagnostic system DS 
is defined as the triple DS = <SD, COMPS, OBS>, where SD 
is a propositional theory over a set of variables V , COMPS 
⊂ V, OBS ⊂ V, COMPS is the set of assumables, and OBS is 
the set of observables. 

We  partition  the  set  of  observable  variables  OBS  into 
inputs IN and outputs OUT such that OBS = IN ∪ OUT and 
IN ∩ OUT = ∅. 

Definition 2.  (Diagnosis). Given  a diagnostic  system DS = 
<SD, COMPS, OBS>, an observation α over some variables 
in OBS, and a health assignment ω, ω is a diagnosis iff SD 
∧ α ∧ ω is consistent. 

Definition  3.  (Minimal  Diagnosis).  A  diagnosis  ω  is 
minimal  if  no  diagnosis  ω’  exists  such  that  NL(ω’)  ⊂ 
NL(ω), where NL(ψ) is the set of negative literals in ψ. 

Definition  4.  (Cardinality  of  a Diagnosis).  The  cardinality 
of a diagnosis, denoted as ¦ω¦,  is defined as  the number 
of negative literals in ω. 

A  minimal  cardinality  diagnosis  is  a  minimal  diagnosis, 
but  the  opposite  does  not  hold.  There  are  minimal 
diagnoses which are not minimal cardinality diagnoses. 

The purpose of Alg. 1 is to generate observations leading to 
diagnoses of increasing minimal cardinality. 

Algorithm 1: A greedy stochastic scenario generation 
algorithm 
    function MAKEALPHAS(DS, N ) returns set of terms 
  inputs: 
   DS = <SD, COMPS, OBS>, diag. system 
   OBS = IN ∪ OUT, IN ∩ OUT = ∅ 
   N, integer, observations per cardinality 
  local variables: 
   α, β, α n, fault, terms 
   i, c, integers, 
   R, set of terms, result, initially ∅ 
 1:  for i = 1 ... N do 
 2:   α ← RANDOMINPUTS(IN) 
 3:   β ← COMPUTENOMINALOUTPUTS(DS, α) 
 4:   c ← 0 



 
 

     

 

 5:   forall v ∈ OUT do 
 6:    α n ← α ^ FLIP (β, v) 
 7:    fault = MCFAULT(α n) 
 8:    if |fault| > c then 
 9:     c ← |fault| 
 10:     R ←  R ∪ <fault, α n> 
 11:    end if 
 12:   end for 
 13:  end for 
 14:  return R 
      end function 

Algorithm 1 uses a number of auxiliary functions. 
RANDOMINPUTS in line 2 assigns uniformly distributed 
random values to each input. Given the “all healthy” 
assignment, and the diagnostic system, 
COMPUTENOMINALOUTPUTS (line 3) propagates the inputs α 
and computes values for each output variable in OUT. The 
loop in lines 5 – 12 increases the cardinality by greedily 
flipping the values of the output variables. For each new 
candidate observation αn, Alg. 1 uses the diagnostic oracle 
MCFAULT in line 7 to compute the minimal cardinality of the 
diagnosis resulting from αn. If the cardinality of the diagnosis 
increases, the observation and the diagnoses are added to the 
result set (line 10). 

By running Alg. 1 we get up to N observations leading to 
faults of cardinality 1, 2, ..., n, where n is the cardinality of 
the MFMC diagnosis for the respective circuit. Alg. 1 clearly 
shows a bootstrapping problem. In order to create “difficult” 
scenarios for a DA we need the DA (in line 7) to be able to 
solve those “difficult” scenarios. To overcome this problem 
we have used subset-minimal diagnoses instead of MC 
diagnoses. Our approach is similar to (Feldman et al., 2008). 

4. EVALUATION METRICS 

A set of 9 metrics has been defined for assessing the 
performance of the diagnostic algorithms. For DXC we make 
a distinction between temporal, technical, and computational 
performance metrics. The temporal metrics measure how 
quickly an algorithm responds to faults in a physical system. 
The technical metrics measure non-temporal features of a 
diagnostic algorithm including accuracy and diagnostic 
cost/utility. Finally, computational metrics are intended to 
measure how efficiently an algorithm uses the available 
computational resources.  

In addition, we divide the metrics into 2 main categories:  

Detection metrics which deal with temporal, technical, and 
computational metrics associated with only detection of the 
fault. 

Isolation metrics which deal with temporal, technical, and 
computational metrics associated with isolation of the fault. 

The 9 metrics are listed in Table 6. The notation used for the 
definition of the metrics is as follows: 

 

Table 6. Metrics summary 

Symbol       Name   Description Class/Category/ 
Tracks Used 

“Per System Description” Metrics 

MFPR False 
Positives 
Rate 

Spurious 
faults rate 

Technical / 
Detection/I 

MFNR False 
Negatives 
Rate 

Missed faults 
rate 

Technical / 
Detection/I 

MFDA Detection 
Accuracy 

Correctness 
of the 
detection 

Technical / 
Detection/I 

“Per Scenario” Metrics 

Mfd Fault 
Detection 
Time 

Time for 
detecting a 
fault 

Temporal / 
Detection/I,S 

Mfi Fault 
Isolation 
Time 

Time for last 
persistent 
diagnosis 

Temporal / 
Isolation/I,S 

Mia Classification 
Errors 

Number of 
mode 
classification 
errors 

Technical / 
Isolation/I 

Mutl Diagnostic 
Utility 

Cost related 
to component 
replacements 
due to 
incorrect 
diagnosis 

Technical / 
Isolation/S 

Mcpu CPU        
Load 

CPU time    
spent 

Computational / 
Detection & 
Isolation/I,S 

Mmem Memory   
Load 

Memory 
allocated 

Computational / 
Detection & 
Isolation/I,S 

 
S – The set of scenarios for a given system description  

Sn – The set of nominal scenarios for a given system 
description 

Sf – The set of faulty scenarios for a given system description 

tfd – The time when the fault detection signal has been 
asserted for the first time 

tfi – The time when the last persistent fault isolation signal has 
been asserted 

ωact – The true component mode vector (ground truth) 



 
 

     

 

ωpre – The predicted component mode vector (represents the 
set of candidate diagnoses by the DA) 

Td – Total computation time 

Md – Peak amount of allocated memory 

C – All possibly faulted components 

D – Faulted components in ωpre. 

I – Faulted components in ωact. 

Finally, using the aforementioned notation, the 9 metrics are 
defined as: 

Mfd – Fault Detection Time: The reaction time for a 
diagnostic engine in detecting an anomaly (Kurtoglu et al., 
2008). 

      (1) 

Mfi – Fault Isolation Time: The time for isolating a fault 
(Kurtoglu et al., 2008). In many applications this metric is less 
important than the diagnostic accuracy, but it is important in 
sequential diagnosis, probing, etc. 

      (2) 

MFPR – False Positive Rate: The metric that penalizes 
diagnostic algorithms which announce spurious faults 
(Kurtoglu et al., 2008). The false positive rate is defined as: 

      (3) 

where for each scenario s the “false positive" function mfp(s) 
is defined as: 

   (4) 

MFNR – False Negative Rate: The metric that measures the 
ratio of missed faults by a diagnostic algorithm (Kurtoglu et 
al., 2008). 

     (5) 

where for each scenario s the “false negative" function mfn(s) 
is defined as: 

    (6) 

MFDA – Detection Accuracy: The fault detection accuracy is 
the ratio of number of correctly classified cases to the total 
number of cases (Kurtoglu et al., 2008). It is defined as: 

   (7) 

Mia – Classification Errors: Isolation classification error 
metric measures the accuracy of the fault isolation by a 

diagnostic algorithm and is defined as the Hamming distance 
between the true component mode vector ωact and the 
predicted component mode vector ωpre.

3 

In the calculation of the classification error metric, the data 
values for the Hamming distance are the respective modes of 
components comprising a system description. For example, if 
the true component mode vector of the system is [1,0,0,1,0] 
and the predicted component mode vector is [1,1,0,0,0], the 
classification error is 2. If more than one predicted mode 
vector is reported by a DA, (meaning that the diagnostic 
output consists of a set of candidate diagnoses), then the 
classification error is calculated for each predicted component 
mode vector and weighted by candidate probabilities reported 
by the DA. 

Mutl – Diagnostic Utility: The intuition behind the metric is to 
charge a DA for every incorrect component replacement it 
required to restore the circuit to functioning. For example, the 
correct diagnosis should always receive a perfect score. The 
diagnosis all components bad has a cost of the number of 
components. Consider a single fault and the DA reports all 
components good. Finding the faulty component would 
require on average replacing component by component until 
the system was functioning correctly (on average half the 
components). More generally: 

Mutl=|I| / (|D| + c (|I – D|, |C – D|)   (8) 

Where c(n,m) is defined as the expected number of trials 
needed to isolate n out of m. If n is much smaller than m, then 
it is approximately: 

 c(n, m) = nm | (n + 1)    (9) 

For example, to find 1 fault in m has cost m/2. To find 2 faults 
in m is 2m/3. Similarly to the classification metric, if more 
than one predicted mode vector is reported by a DA, then 
error is calculated for each predicted component mode vector 
and weighted by candidate probabilities reported by the DA. 

Mcpu – CPU Load: This is the average CPU load during the 
experiment 

    (10) 

where ts is the startup time of the diagnostic engine and Td is 
a vector with the actual CPU time spent by the diagnostic 
algorithm at every time step in the diagnostic session. 

Mmem – Memory Load: This is the maximum memory size at 
every step in the diagnostic session. CPU load during the 
experiment 

     (11) 

where Md is a vector with the maximum memory size at every 
step in the diagnostic session. 

 

                                                 
3 The Hamming distance between two strings of data values 
(of equal length) is the number of positions for which the 
corresponding data values are different. 



 
 

     

 

5. COMPETITION SETUP AND SCORING 

Version 1.1 of the DXC Framework, implemented as 
specified in (Kurtoglu et al., 2009), was used to run the 
competition. Two computers with identical hardware4 were 
set up, one running Windows™ and the other Linux. The 
choice of target operating system was left to DA developers. 

System profiling was performed on the machines over a 
period of days to ensure stable experiment conditions. 

DAs were run on competition datasets over a period of two 
weeks. The Evaluator was then run on the full results set, 
assigning relative rankings for each metric. Since there were 
multiple systems in the Synthetic Track, the metrics 
computed for each system were aggregated before assigning 
relative rankings. The per scenario metrics were averaged 
over all scenarios and aggregated over all systems. For each 
of the Industrial track tiers there was only one system, so no 
aggregation was necessary. 

A DA that ranked first place in a given metric was awarded 
10 points, second place was awarded 8, third 7, etc. This 
score was then multiplied by a metric weight, shown in 
Tables 8, 9, and 10, and added to the DA’s total.  

Metric weights for the Industrial Track were determined by 
considering a number of use cases in which the importance of 
each metric was subjectively assessed. For example, in an 
abort use case high importance was given to the mean time to 
detect a fault whereas in a maintenance use case more weight 
was given to the ability to isolate a fault. Similar 
considerations were given to use cases such as real-time 
recovery and control, ground support operations, and 
resource limited applications. Since a use case was not 
specified as part of the competition scenarios, we simply 
averaged over all of the use cases to arrive at the final metric 
weights.    

6. DIAGNOSTIC ALGORITHMS 

The teams that participated in the First International Diagnosis 
Competition are listed in Table 7.  

Table 7. DXC participating DAs 

Team Name Track(s) Algorithm Type 
FACT I1 Model-based 
Fault Buster I1, I2 Statistical 
HyDE-A I1, I2 Model-based 
HyDE-S I1 Model-based 
Lydia S Model-based 
NGDE S Model-based 
ProADAPT I1, I2 Probabilistic 
RacerX I1 Change detection 
RODON I1, I2, S Model-based 
RulesRule I1 Rule-based 
StanfordDA I2 Optimization 

                                                 
4 Intel® XEON™ 2x2.20Ghz, 3.60 GB RAM 

Wizards of Oz I1, I2 Model-based 
A total of twelve DAs participated, nine in Tier 1 of the 
Industrial Track, six in Tier 2, and three in the Synthetic 
Track. Brief descriptions of each of these algorithms are 
provided below: 

1. FACT – a model-based diagnosis system that uses hybrid 
bond graphs, and models derived from them, at all levels 
of diagnosis, including fault detection, isolation, and 
identification. Faults are detected using an observer-based 
approach with statistical techniques for robust detection. 
Faults are isolated by matching qualitative deviations 
caused by fault transients to those predicted by the model. 
For systems with few operating configurations, fault 
isolation is implemented in a compiled form to improve 
performance (Roychoudhury et al., 2009). 

2. Fault Buster – is based on a combination of multivariate 
statistical methods, for the generation of residuals. Once 
the detection has been done a neural 
network performs classification for doing isolation. 

3. HyDE-A – HyDE (Hybrid Diagnosis Engine) is a model-
based diagnosis engine that uses consistency between 
model predictions and observations to generate conflicts 
which in turn drive the search for new fault candidates. 
HyDE-A uses discrete models of the system and a 
discretization of the sensor observations for diagnosis 
(Narasimhan and Brownston, 2007). 

4. HyDE-S – uses the HyDE system but runs it on interval 
values hybrid models and the raw sensor data 
(Narasimhan and Brownston, 2007). 

5. Lydia – is a declarative modeling language specifically 
developed for Model-Based Diagnosis (MBD). The 
language core is propositional logic, enhanced with a 
number of syntactic extensions for ease of modeling. The 
accompanying toolset currently comprises a number of 
diagnostic engines and a simulator tool (Feldman et al., 
2006). 

6. NGDE – Allegro Common Lisp implementation of the 
classic GDE. Uses a minimum-cardinality candidate 
generator to construct diagnoses for the competition. 

7. ProADAPT – processes all incoming environment data 
(observations from a system being diagnosed), and acts as 
a gateway to a probabilistic inference engine. It uses the 
Arithmetic Circuit (AC) Evaluator which is compiled 
from Bayesian network models. The primary advantage 
to using ACs is speed, which is key in resource bounded 
environments (Mengshoel 2007). 

8. RacerX – is a detection-only algorithm which detects a 
percentage change in individual filtered sensor values to 
raise a fault detection flag. 

9. RODON – is based on the principles of the General 
Diagnostic Engine (GDE) as described by de Kleer and 
Williams and the G+DE by Heller and Struss. RODON 
uses contradictions (conflicts) between the simulated and 
the observed behavior to generate hypotheses about 
possible causes for the observed behavior. If the model 



 
 

     

 

contains failure modes besides the nominal behavior, 
these can be used to verify the hypotheses, which speed 
up the diagnostic process and improve the results (Karin 
et al., 2006). 

10. RulesRule – is a rule-based isolation-only algorithm. The 
rule base was developed by analyzing the sample data and 
determining characteristic features of fault. There is no 
explicit fault detection though isolation implicitly means 
that a fault has been detected. 

11. StanfordDA – is an optimization-based approach to 
estimating fault states in a DC power system. The model 
includes faults changing the circuit topology along with 
sensor faults. The approach can be considered as a 
relaxation of the mixed estimation problem. We develop a 
linear model of the circuit and pose a convex problem for 
estimating the faults and other hidden states. A sparse 
fault vector solution is computed by using l1 
regularization (Zymnis et al., 2009). 

12. Wizards of Oz – is a consistency-based algorithm. The 
model of the system completely defines the stable (static) 
output of the system in case of normal and faulty 
behavior. Given a new command or new observations, the 
algorithm waits for a stable state and computes the 
minimum diagnoses consistent with the observations and 
the previous diagnoses. 

7. RESULTS AND DISCUSSION 

7.1 Industrial Track  

The results for the Industrial Track are shown in Table 8 and 
Table 9 for Tier 1 and Tier 2, respectively. The overall winner 
for both tracks was ProADAPT. RODON placed second in 
Tier 1 and third in Tier 2. The StanfordDA, which did not 

participate in Tier 1, placed second in Tier 2. However, 
ProADAPT and StanfordDA benefitted from previous funded 
experience with ADAPT so RODON was the official winner 
of both tiers. The distribution of first or second ranks within 
each metric was spread out among the DAs, no DA ranked 
first or second for all of the metrics. Note that the final scores 
and ranks depend on the weights applied to each metric. 
Different weights, corresponding to different use cases, would 
affect the results. The sensitivity of the results to the metrics 
and weights is left for future study.  

Figures 2-9 are graphical depictions of the data in Tables 8 
and 9. A few observation follow. False positives were counted 
in the following two situations: for nominal scenarios where 
the DA declared a fault; and for faulty scenarios where the 
DA declared a fault before any fault was injected. An error in 
the rule base of RulesRule led to more false positive 
indications for the faulty scenarios than for the nominal 
scenarios and also resulted in a large number of classification 
errors. For other DAs, false positives also resulted from 
nominal commanded mode changes in Tier 2 in which the 
relay feedback did not change status as of the next data 
sample after the command. Here is an extract from one of the 
input scenario files that illustrates this situation:   
command @120950 EY275_CL = false; 
sensors @121001 {… ESH275 = true, …} 
sensors @121501 {… ESH275 = false, …} 

A command is given at 120.95 seconds to open relay EY275. 
The associated relay position sensor does not indicate open as 
of the next sensor data update 51 milliseconds later. This is 
nominal behavior for the system and examples were provided 
in the sample data. A DA that does not account for this delay 
will likely indicate a false positive in this case.  
In several instances DAs reported diagnosis mode IDs which 

Table 8. Industrial track tier 1 results 

  Weight RODON 
Wizards 

Of Oz 
Fault 

Buster ProADAPT 
HyDE-

A 
HyDE-

S RulesRule FACT RacerX 
FP Rate 1.3 0.0645 0.0000 0.1333 0.0333 0.0000 0.2000 0.8246 0.2813 0.0645 

  Ranking   4 1 6 3 1 7 9 8 4 
Points   6 9 4 7 9 3 1 2 6 

FN Rate 1.3 0.0968 0.5000 0.3438 0.0313 0.4688 0.0741 0.0000 0.0667 0.1613 
Ranking   5 9 7 2 8 4 1 3 6 

Points   5 1 3 8 2 6 10 7 4 
Det Acc 0.3 0.9194 0.7419 0.7581 0.9677 0.7581 0.8548 0.2419 0.8226 0.8871 

    Ranking   2 8 6 1 6 4 9 5 3 
Points   8 2 3.5 10 3.5 6 1 5 7 

Class Errors 2.2 10.000 24.000 32.000 2.000 26.649 26.000 76.000 25.000 32.000 
    Ranking   2 3 7 1 6 5 9 4 7 

Points   8 7 2.5 10 4 5 1 6 2.5 
T_det (ms) 2.2 218 11530 1893 1392 13223 130 1000 373 126 

    Ranking   3 8 7 6 9 2 5 4 1 
Points   7 2 3 4 1 8 5 6 10 

T_iso (ms) 1.5 7205 11626 9259 4084 13840 653 282 9796 999999 
    Ranking   4 7 5 3 8 2 1 6 9 

Points   6 3 5 7 2 8 10 4 1 
CPU (ms) 0.6 11766 1039 2039 1601 24795 513 117 1767 139 

    Ranking   8 4 7 5 9 3 1 6 2 
Points   2 6 3 5 1 7 10 4 8 

Mem (kb) 0.6 26679 1781 2539 1680 5447 5795 3788 4340 3572 
     Ranking   9 2 3 1 7 8 5 6 4 

Points   1 8 7 10 3 2 5 4 6 
FINAL 

SCORES:   59.850 46.300 35.750 72.800 31.750 59.500 51.800 50.400 51.850 
FINAL 
RANK:   2 7 8 1 9 3 5 6 4 

 



 
 

     

 

did not match the names specified in the system catalog. For 
these cases the diagnosis was treated as an empty candidate. 
This could either negatively or positively impact the 
classification error metric depending on whether the DA had a 
correct or incorrect isolation. Participants were encouraged to 
run their DA output through the evaluator code that was 
distributed with the sample data sets to check for and correct 
these syntax errors.   

There are a few remarks in regards to the timing metrics listed 
in Table 6 and shown graphically in Fig. 4. First, RacerX did 
not have an isolation time as it was a detection-only DA. 
Second, note the somewhat confusing result that the mean 
isolation time for RulesRule was less than the mean detection 
time. This has to do with the way the metrics are calculated. 
The detection time is undefined for scenarios with a false 
positive; however, the isolation time is not necessarily 
undefined and is calculated as discussed in section 4. The 
intent is to account for the situation where a DA retracts a 
spurious detection signal and subsequently isolates to the 
correct component. In this case the scenario is declared a false 
positive but the accuracy and timing of the isolation is 
calculated with respect to the last persistent diagnosis. 
Consequently, for DAs with many false positives the detection 
time may be calculated for fewer scenarios than the isolation 
time with the result that the mean isolation time for all 
scenarios could be less than the mean detection time. 
However, in any scenario where both times are defined, the 
DA isolation time is always greater than or equal to the 
detection time, as would be expected. 

Tier 1 had the interesting circumstance that the same DA was 
implemented by two different modelers. HyDE-A was 
modeled primarily with Tier 2 in mind and had a policy of 

waiting for transients to settle before requesting a diagnosis. 
The same policy was simply applied to Tier 1 as well, even 
though transients in Tier 1 corresponded strictly to fault 
events. On the other hand, HyDE-S was modeled only for Tier 
1 and did not include a lengthy time-out period for transients 
to settle. HyDE-S had dramatically smaller mean detection 
and isolation times (see Fig. 4) with roughly the same number 
of classification errors (Fig. 3) as HyDE-A. This illustrates the 
kind of impact that modeling and implementation decisions 
have on DA performance.  

7.2 Synthetic Track  

As can be seen in Table 7 all synthetic track DAs are model-
based. Lydia uses a stochastic approach to identify diagnoses 
while RODON and NGDE use the familiar GDE-like 
approaches.  Their overall utility scores are not dramatically 
different. 

The results for the Synthetic Track are presented in Table 10. 
Based on the overall metric NGDE was first, Lydia second, 
and RODON third.  Lydia was used to generate the scenario 
sets and therefore is disqualified. Furthermore the designers 
of Lydia and NGDE both participated in the design of DXC, 
and are thus disqualified.  So RODON is the official winner.  
RODON scored reasonably well on the smaller circuits but 
failed to return any diagnoses for the 4 larger circuits. 

Use of computational resources varied dramatically over the 
systems. Lydia used an order of magnitude fewer resources 
than either RODON or NGDE and thus ranked first along the 
memory and CPU metrics.  RODON and NGDE are very 
similar in resource usage, with RODON edging out NGDE. 

Fig. 10 shows the DA utility for each of the circuits.  Note 
that the utility score decreases significantly with circuit size.   

Table 9. Industrial track tier 2 results 

  Weight RODON 
Wizards 

Of Oz 
Fault 

Buster ProADAPT HyDE Stanford 
FP Rate 1.3 0.5417 0.5106 0.8143 0.0732 0.0000 0.3256 

  Ranking   5 4 6 2 1 3 
Points   5 6 4 8 10 7 

FN Rate 1.3 0.0972 0.0959 0.2400 0.1392 0.3000 0.0519 
Ranking   3 2 5 4 6 1 

Points   7 8 5 6 4 10 
Det Acc 0.3 0.7250 0.7417 0.4250 0.8833 0.8000 0.8500 

    Ranking   5 4 6 1 3 2 
Points   5 6 4 10 7 8 

Class Errors 2.2 84.067 159.248 130.000 76.000 121.569 110.547 
    Ranking   2 6 5 1 4 3 

Points   8 4 5 10 6 7 
T_det (ms) 2.2 3490 30742 14099 5981 17610 3946 

    Ranking   1 6 4 3 5 2 
Points   10 4 6 7 5 8 

T_iso (ms) 1.5 36331 47625 37808 12486 21982 14103 
    Ranking   4 6 5 1 3 2 

Points   6 4 5 10 7 8 
CPU (ms) 0.6 80261 23387 5798 3416 29612 963 

    Ranking   6 4 3 2 5 1 
Points   4 6 7 8 5 10 

Mem (kb) 0.6 29878 7498 10261 6539 20515 5912 
     Ranking   6 3 4 2 5 1 

Points   4 7 6 8 5 10 
FINAL 

SCORES:   70.500 51.400 52.400 83.200 61.000 81.500 
FINAL 
RANK:   3 6 5 1 4 2 

 



 
 

     

 

This decrease is not a result of poor performance or algorithm 
design.  Rather, an oracle could not do much better as a large 
number of faults can exhibit the same input-output  behavior 
and no DA could isolate the injected fault out of the large 
ambiguity groups.  The challenge presented by large 
ambiguity groups is discussed further in the following section 
and the NGDE and Lydia papers included in this collection. 

8. ASSUMPTIONS, ISSUES, AND EXTENSIONS 

The primary goal of this competition was to demonstrate an 
end-to-end implementation of the DXC framework and create 
a foundation for future DX competitions. As a result we made 
several simplifying assumptions. We also ran into several 
issues during the course of this implementation that could not 
be addressed. In this section, we try to present those 
assumptions and issues, which we hope can be addressed in 
future competitions.  

Although the competition was a success, it only addresses a 
small set of the types of diagnostic tasks, which occur in 
practice. It would be unfortunate for the DX community to 
focus only on the tasks of this competition. Our goal is to 
continually expand the coverage of diagnostic challenges 
experienced in the field. Our hope is that every successive 
year will expand the set of tasks in the competition and in 
doing so produce an ever growing repository DX researchers 
have available to evaluate their own algorithms. 

8.1 Competition Scope 

In the first year of the diagnostic competition, the fault 

signatures were limited to abrupt parametric and discrete 
types. Faults were inserted assuming uniform probabilities 
and included component and sensor faults. In future years, we 
will provide the failure rates of components and use these to 
evaluate the precision of diagnoses. For the Industrial Track, 
other fault types are presently possible to inject in the testbed 
– including incipient, intermittent, and noise – and could be 
included in future work. Additional ideas for future research 
include giving DAs reduced sensor sets, introducing multi-
rate sensor data, injecting transient faults, allowing for 
autonomous transitions, adding variable loads, and extending 
the scope and complexity of the physical system. For the 
synthetic track, all the systems were known a priori. This 
means researchers could optimize for these circuits. We don’t 
believe this happened this year, but to avoid this in future 
years we will include entirely novel circuits along with the 
familiar ones. This year we sampled only one observation 
time. We will provide multiple observations. This will 
evaluate a DAs ability to merge information from multiple 
times. An important component of troubleshooting is 
introducing probe points. In future years, we can evaluate the 
number of probes needed to isolate the fault. This year the 
input vector was supplied. The diagnostician could construct 
the input vector, which was most informative. This year the 
Synthetic Track focused on combinatorial circuits. In 
subsequent years we hope to introduce troubleshooting of 
sequential circuits. Finally, digital circuits are convenient to 
model and conveniently illustrate many aspects of diagnostic 
algorithms. In future years, we will extend the types of 

Table 10. Synthetic track results 

    Lydia NGDE RODON 
circuit #comp cpu mem utl cpu mem utl cpu mem utl 

74182 19 51 154 0.4137 6335 11540 0.4793 3043 19773 0.4448 
74L85 33 68 223 0.2433 6365 11784 0.3098 3888 20979 0.1952 
74283 36 60 229 0.1580 6385 12231 0.1553 5351 20637 0.1147 
74181 65 64 401 0.1504 6619 14625 0.1931 12527 25432 0.1417 
c432 160 115 878 0.0871 7520 17868 0.2096 22621 36811 0.0906 
c499 202 130 1094 0.0622 20347 32649 0.0699 23504 39872 0.0089 
c880 383 203 1945 0.0483 13718 28622 0.0401 20347 43687 0.0182 
c1355 546 296 2759 0.0295 22550 37930 0.0246 23253 33530 0.0012 
c1908 880 538 4134 0.0179 26171 39843 0.0150 27718 38557 0.0180 
c2670 1193 937 5867 0.0647 20537 61722 0.1076 35680 43063 0.0442 
c3540 1669 1674 7900 0.0319 27022 82045 0.0407 0 0 0.0000 
c5315 2307 3091 11316 0.0165 30926 93116 0.0275 0 0 0.0000 
c6288 2416 3530 12037 0.0008 17483 102420 0.0563 0 0 0.0000 
c7552 3512 11817 16679 0.0317 37989 125910 0.0283 0 0 0.0000 

Averaged 1613 4687 0.0969 17855 48022 0.1255 12709 23024 0.0770 
Per Metric Rank 1 1 2 3 3 1 2 2 3 

Points 10 10 8 7 7 10 8 8 7 
Metric Weight 1.5 1.5 7 1.5 1.5 7 1.5 1.5 7 

Final Scores  86   91   73  
Final Rank  2   1   3  

 
 



 
 

     

 

systems to include. Two comparatively easy types of systems 
to add are reprographic engines as we have a tool available to 
generate such models, and analog circuits. 

8.2 Metrics 

Selecting the set of metrics to be used for evaluation was a 
challenging job. We based our decision on the system and 
kinds of faults we were dealing with. In reality we also need 
to design metrics more closely associated with the context of 
use. One common metric is to minimize total cost of repair 
where cost includes down time to the customer, 
diagnostician’s time, parts, etc. In addition since we were 
dealing with abrupt, persistent, and discrete faults, metrics 
associated with incipient, intermittent, and/or continuous 
faults were not considered. The metrics listed in this paper do 
not capture the amount of effort necessary to build models of 
sufficient fidelity for the diagnosis task at hand. Furthermore, 
we did not attempt to investigate the ease or difficulty of 
updating models with new or changed system information. 
The art of building models is an important practical 
consideration which is not addressed in the current work.  

The isolation accuracy metric used for the industrial track was 
not suitable for the synthetic track. A DA which reported 
nothing wrong on every scenario would come close to 
winning the competition based on this metric. The main 
problem with this metric is that the number of faulty 
components is always small with respect to the size of the 
system. As a result we cannot differentiate adequately 
between a few faults and no faults. 

Isolation classification error was also not suitable for the 
synthetic track.  This metric still suffers from the problem that 
all good is scored too high:  The Hamming distance between a 
single fault and every component good is very small! 

Ideally we would like to use a SAT solver to evaluate the 
accuracy of a DA’s diagnosis. However, we did not have time 
to implement it so as an alternate we selected utility as the 
isolation accuracy metric for the synthetic track. One of the 
major flaws of this metric is that average expected utility 
scores decrease with system size, thereby implicitly de-
weighting diagnoses of larger circuits. We also considered and 
rejected a classification error metric which would assign a 
high score to any fault from an ambiguity group which we 
considered a bigger flaw than the flaw for the utility metric. 

Finally, the current isolation metrics evaluate diagnostic 
performance based on a discrete isolation assumption in 
which faults are isolated to one of the discrete modes of a 
component. As more continuous type faults are introduced, 
additional or generalized metrics are required in order to 
calculate the accuracy of isolation estimates on a continuous 
scale. 

8.3 Competition Setup 

Some practical issues arose in the execution of competition 
experiments. Much effort was put into ensuring stable, 
uniform conditions on the host machines; however, due to 
time constraints and the unpredictable element introduced by 
running external DA submissions, it was necessary to take 
measures that may have caused slight variability. One 

example was the manual examination of ongoing experiment 
results for quality assurance. Future releases of the DXC 
Framework can address this by being more robust to 
unexpected DA behavior, and sending email notifications in 
the event of such. 

Additionally, for Java DAs, significant differences were 
evident in the peak memory usage metric when run on Linux 
versus Windows™. The cause for this was not explored due to 
time constraints, as the method used on Windows™ for 
calculating peak memory usage involved a Windows™ API 
system call, the analysis of which was deemed too expensive. 

The problem was bypassed by running all Java DAs on Linux. 
This worked for all save one, RODON. When it was 
determined that any change in RODON’s peak memory usage 
score would not affect the final rankings in any way, the issue 
was waived. 

9. CONCLUSIONS 

We presented the successful implementation of the DXC 
framework called DXC’09. We learned some valuable lessons 
trying to run this competition. One major takeaway is that 
there is still a lot of work and discussion needed to determine 
common comparison and evaluation framework for the 
diagnosis community.  

We hope to continue the work next year by running DXC’10. 
We have identified several ways to extend the systems used in 
the current competition some of which can be achieved in a 
year’s time. We also hope to add other systems to the fold, 
which may pose different diagnostic challenges. 
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Appendix A. FIGURES. 

 
 
 
 
 

 
Fig. 1. The ADAPT EPS (Electrical Power System) 



 
 

     

 

 
Fig. 2. Industrial track tier 1 false positive rate, false 
negative rate, and detection accuracy by DA 

 
 

 

       
 

 
 

 
Fig. 3. Industrial track tier 1 classification errors by DA 

 
 

 
Fig. 4. Industrial track tier 1 detection and isolation times 
by DA 

 
 

 
Fig. 5. Industrial track tier 1 CPU time and peak memory 
usage by DA 

 
 

 
Fig. 6. Industrial track tier 2 false positive rate, false 
negative rate, and detection accuracy by DA 

 
 

 
Fig. 7. Industrial track tier 2 classification errors by DA 

 
 



 
 

     

 

 

 
Fig. 8. Industrial track tier 2 detection and isolation 
times by DA 

 
 

 
Fig. 9. Industrial track tier 2 CPU time and peak 
memory usage by DA 

 
 

 
Fig. 10. Synthetic track DA utility scores by circuit 

 
 


