Active Vibration Reduction of Titanium Alloy Fan Blades (FAN1) Using Piezoelectric Materials

Benjamin Choi
Glenn Research Center, Cleveland, Ohio

Jeffrey Kauffman
Penn State University, University Park, Pennsylvania

Kirsten Duffy
The University of Toledo, Toledo, Ohio

Andrew Provenza and Carlos Morrison
Glenn Research Center, Cleveland, Ohio

May 2010
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA STI Help Desk at 443–757–5803

- Telephone the NASA STI Help Desk at 443–757–5802

- Write to:
 NASA Center for AeroSpace Information (CASI)
 7115 Standard Drive
 Hanover, MD 21076–1320
Active Vibration Reduction of Titanium Alloy Fan Blades (FAN1) Using Piezoelectric Materials

Benjamin Choi
Glenn Research Center, Cleveland, Ohio

Jeffrey Kauffman
Penn State University, University Park, Pennsylvania

Kirsten Duffy
The University of Toledo, Toledo, Ohio

Andrew Provenza and Carlos Morrison
Glenn Research Center, Cleveland, Ohio

Prepared for the
2010 Propulsion-Safety and Affordable Readiness (P–SAR) Conference
cosponsored by U.S. Army, Navy, and Air Force
Jacksonville, Florida, March 16–18, 2010
Active Vibration Reduction of Titanium Alloy Fan Blades (FAN1) Using Piezoelectric Materials

Benjamin Choi
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Jeffrey Kauffman
Penn State University
University Park, Pennsylvania 16802

Kirsten Duffy
The University of Toledo
Toledo, Ohio 43606

Andrew Provenza and Carlos Morrison
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

The NASA Glenn Research Center is developing smart adaptive structures to improve fan blade damping at resonances using piezoelectric (PE) transducers. In this paper, a digital resonant control technique emulating passive shunt circuits is used to demonstrate vibration reduction of FAN1 Ti real fan blade at the several target modes. Single-mode control and multi-mode control using one piezoelectric material are demonstrated. Also a conceptual study of how to implement this digital control system into the rotating fan blade is discussed.
Objective
Investigate possibility of using an active resonance controller for turbomachinery blade with piezoelectric sensors/actuators.

Outline
I. Introduction
II. Shunt damping and digital control design
III. Experimental test results
IV. Summary

I. Introduction

Previous Activities at GRC
• Developed new damping technologies to reduce excessive vibratory stresses that lead to high cycle fatigue (HCF) failures in aircraft engine turbomachinery.
• Investigated several technologies such as viscoelastic damping (O. Mehmmed and J. Kosmatka), passive impact damper, plasma sprayed damping coating, and high temperature shape memory alloy (HTSMA) - (K. Duffy).

Current Efforts at GRC
Develop a damping technology for fan blade incorporating smart structure using materials such as piezoelectric (PE) materials or shape memory alloy (SMA).
• Selected piezoelectric devices due to their fast response to voltage and current signal from controller.
• Demonstrated shunt damping of Ti-alloyed flat plates through bench tests and a RC shunt damping in rotating environment (K. Duffy).
• Developed a digital control that replaces equivalent passive-shunt analog circuits with a digital code. Demonstrated its technique to multi-mode control using single PE actuator on titanium-alloyed flat plates (B. Choi, 2009).
• In collaboration with MESA, developed a prototype of power transfer device that transmits control power to the PE actuators in the rotating frame (C. Morrison).
I. Introduction (continued)

Smart Fan Blade Technology Pros and Cons

- **Benefits/Payoffs**: support the NASA missions
 - Thinner and more efficient blades with shunt damping – fuel burn reduction, noise reduction, HCF failure reduction, etc.
 - Actively controlled blades - real-time health monitoring, aeroelastic control, mistuning problem, active fan distortion control for distributed propulsion system, etc.

- **Drawbacks**: structural characteristics degradation, durability and safety issues, added electronics weights, etc.
 - S. Mall (2002) investigated the integrity of the embedded active PZT sensor/actuator under monotonic and fatigue loads – no degradation seen in experimental tests.
 - R. Pickering and K. Barlow (2007) specified the duration (10^7 cycles) for each vibration mode for durability spin test according to the Goodman diagram.
 - Completed a preliminary durability bench test for 10^9 cycles under 4.6g at target frequency. Need retest at high speed rotor.
 - On-going system trade study of blade weights reduction vs. added electronics weights.

Literature Survey for Recent Advances

1. **Analog Shunt Circuits for Turbomachinery Blades**
 - Passive control of turbomachinery blading flow-induced vibrations (C. Cross, 2002).
 - Synthetic inductor replacing \(L = 342 \, \text{H} \) controlled the first bending mode – real challenge.
 - Passive shunt circuit was tested for piezoblade damping (S. Livet, 2008).
 - Virtual inductor (or “gyrator”) that consists of op amps, resistors, capacitors, and ext. power supply.
 - Numerous papers published for passive shunt for rotorcraft vibration.

2. **Active Control of PE Actuator for Turbomachinery Blades**
 - Cascade flutter control using PE device in subsonic flow (T. Watanabe, 2005).
 - Trailing edge of non-rotating airfoil was oscillated by PE to control the passage shock.
 - Low-speed fan noise control using PE actuators mounted on stator vanes (P. Remington, 2003). Reduced fan-stator interaction noise using 210 vane actuators.
 - NASA Ames/Boeing developed shape-shifting helicopter blades (2009). PE actuators created a mechanical motion that moves a flap up and down.
 - Force excitation control using surface-mounted PE patches on the rotating blades (I. Santos, 2009).
 - First demo in the spin pit. Used Thunder flexible patches covering full blade surfaces.
Summary of Conventional Control Approaches

- Wider and thicker patches were used at room temperature, possibly resulting in aerodynamic performance penalty.
- For passive damping (or shunt damping), semi-passive circuits were used to simulate physical inductors which can be huge size for low frequency.
- For active damping cases, conventional PD control law was used.

Our Unique Approach Extends To

1) Rotating fan blades under high centrifugal loads /g-loads
2) High temperature environment
3) Adaptive features to follow change in blade frequencies vs. the rotor speed
4) Ultimate goal of “Smart blade” - thinner and more efficient, fuel burn reduction, noise reduction, HCF failure reduction, real-time health monitoring, aeroelastic control, mistuning problem, active fan distortion control for distributed propulsion system.

In this presentation, a digital resonant control technique is demonstrated to reduce blade vibration at several target modes. Notice that the control feedback is effective only at targeted vibration frequencies.

II. Shunt Damping and Digital Control Design

Resistive/Inductive Shunt

\[\omega_n = \frac{1}{\sqrt{LC_n}} \]

Passive Controller Implementation Issues

- Huge inductor size for low frequency tuned damping circuit.
- Adding large rotating circuits to high speed rotor.
- Space problem for multi-mode control implementation.
- Semi-passive circuit requires constant power supply to the rotating frame.
Digital Control Design

Digital Control Approach

- Transfer function of LRC shunt circuit is expressed in S-domain so that it can be programmed in a digital code.
- As opposed to analog shunt circuit, a real-time adaptive control for change in blade frequencies in Campbell Diagram is possible.
- Adaptive capability to aged blade dynamics change is possible.
- Effective for multi-mode control because a few coding lines are necessary, as opposed to analog circuit approach.
- Control feedback is effective only at targeted blade frequencies.

Digital Controller Implementation Issues

- Added weights of power electronics in the rotating frame.
- Durable power electronics surviving high centrifugal loads/g-loads.
- Operational overhead of transducing high voltage power to the blades.
- Potential cross-talk between high voltage control signals and blade sensor signals.
- Safety and durability issues of power electronics, etc.

Transfer Function of Analog LRC Circuit

\[
\begin{align*}
Z_o & = \frac{C}{R} + \frac{1}{L} \\
Z_i & = \frac{Z_o}{Z_i} \frac{R + i\omega L}{R + i\omega L - i/(\omega C)} \\
V_o & = Z_o V_i \\
V_i & = Z_i V_i \\
\end{align*}
\]

General feedback control LRC network.

The controller is expressed in terms of passive circuit components (LRC) regardless of modal shape.

PID (proportional-integral-derivative) Control Law

\[
u(t) = MV(t) = K_p e(t) + K_i \int_0^t e(\tau) \, d\tau + K_d \frac{de(t)}{dt}
\]

\[K_p: \text{proportional gain}, K_i: \text{integral gain}, K_d: \text{derivative gain}\]
The actuator voltage $V_a(s)$ is

$$V_a(s) = -A(s)V_f(s) + V_i(s)$$

where $A(s)$ is

$$A(s) = \frac{Cs(R_s + Ls)}{Ls^3 + CR_s L} + 1$$

- A set of control laws in parallel circuits can be summed to control several modes (B. Choi, 2009).

The Closed-loop System Transfer Functions

\[
\begin{align*}
V_f(s) &= \frac{G_{n_f}(s)F(d,s)}{1 + A(s)G_{n_f}(s)} \frac{G_{n_i}(s)V_i(s)}{1 + A(s)G_{n_i}(s)} \\
Y_r(s) &= \frac{G_{s_f}(r,s)F(d,s)}{1 + A(s)G_{n_f}(s)} \frac{G_{s_i}(r,s)V_i(s)}{1 + A(s)G_{n_i}(s)}
\end{align*}
\]

where

\[
\begin{align*}
G_{n_f}(s) &= \frac{V_f(s)}{F(d,s)} \quad G_{n_i}(s) = \frac{V_i(s)}{V_f(s)} \\
G_{s_f}(r,s) &= \frac{Y_r(s)}{F(d,s)} \quad G_{s_i}(r,s) = \frac{Y_i(s)}{Y_r(s)}
\end{align*}
\]

Test specimens with different patch topology

- S. Mall (2002) investigated the integrity of the embedded active PZT sensor/actuator under monotonic and fatigue loads to confirm structural characteristics.
- Mechanical and structural properties were not affected due to insertion of PEs. No degradation in the fatigue strength/lives up to $1e+07$ cycles.

Material properties of piezoelectric patches

<table>
<thead>
<tr>
<th>d31 Patches</th>
<th>Type</th>
<th>Dimension</th>
<th>Capacitance</th>
<th>Vmax</th>
<th>Fmax</th>
<th>Strain</th>
<th>Life cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA16N (a)</td>
<td>flex</td>
<td>1.81 x 1.31 x 0.006</td>
<td>60 μF</td>
<td>±200 V</td>
<td>46 lbf</td>
<td>550 με</td>
<td></td>
</tr>
<tr>
<td>M-8528 (b, c)</td>
<td>flex</td>
<td>3.40 x 1.100 x 0.012</td>
<td>172.0 μF</td>
<td>±360V, -60V</td>
<td>46 lbf</td>
<td>> 10^7 @ 1kVp-p</td>
<td></td>
</tr>
<tr>
<td>QP10W (d)</td>
<td>flat</td>
<td>1.81 x 1.31 x 0.010</td>
<td>105 μF</td>
<td>±120 V</td>
<td>15 lbf</td>
<td>500 με</td>
<td></td>
</tr>
<tr>
<td>M-2814 (e)</td>
<td>flex</td>
<td>1.10 x 0.600 x 0.012</td>
<td>25.7 μF</td>
<td>±360V, -60V</td>
<td>19 lbf</td>
<td>> 10^7 @ 1kVp-p</td>
<td></td>
</tr>
</tbody>
</table>
III. Experimental Test Results

Experimental Test Setup

- One actuating PE patch actuation was bonded at the near root side and one accelerometer at the tip for feedback sensing for the target resonances – 1st and 2nd bending, 2nd torsion modes in this test.
- After fine-tuning the controller to the experimental target resonances, downloaded the control algorithm to the dSPACE control system.
- HP Analyzer generated swept sine signal to send to the shaker, and it read all signals from accelerometers, and command signal to PE actuator as well as controller voltage and current from the power amplifier.
- Analyzed open- and closed-loop transfer functions to investigate achieved damping performance for each target mode.

2010 P-SAR Conference, March 16-18, Jacksonville, FL Cold Section Durability

1.a) Passive Shunt for 2nd Torsion (478 Hz) and 2nd Bending (907 Hz) Modes

- For the 1st tuned circuit, several inductors in serial and parallel series were used. But high resistor value made controller peak flat – less peak reduction. Thus, low resistance valued inductors are required for better performance.

2010 P-SAR Conference, March 16-18, Jacksonville, FL Cold Section Durability

NASA/TM—2010-216335
Comparison of Passive Shunt and Active Control Performance

The measured resistor value of passive shunt circuit was about 475 Ω. An active controller with $R=500$ Ω shows nearly same bandwidth as the passive shunt has.

This demonstrated that the passive shunt can be programmed into digital code to perform flawlessly.

The measured resistor value of passive shunt circuit was about 475 Ω. An active controller with $R=500$ Ω shows nearly same bandwidth as the passive shunt has.

This demonstrated that the passive shunt can be programmed into digital code to perform flawlessly.

Large R values (wide bandwidth) can reduce side peaks for better performance.

Notice that multi-control using one PE works for 2T and 2B - different mode types.

Cont. Gain $=[25, 0]$ 63% -41%
Cont. Gain $=[12, 12]$ 60% 64%

Cont. Gain $=[25, 0]$ 63% -41%
Cont. Gain $=[12, 12]$ 60% 64%

Cont. Gain $=[25, 0]$ 63% -41%
Cont. Gain $=[12, 12]$ 60% 64%

Cont. Gain $=[25, 0]$ 63% -41%
Cont. Gain $=[12, 12]$ 60% 64%
Investigate How R Affects The Performance

Active Controllers with R=250 and 500

Experimental T_f of Active Controllers

Peak Reduction at Target Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>R=250</th>
<th>R=500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cont. Gain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0, 25]</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>[0, 15]</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>[0, 10]</td>
<td>15%</td>
<td>7%</td>
</tr>
<tr>
<td>[12, 0]</td>
<td>3%</td>
<td>73%</td>
</tr>
</tbody>
</table>

- Larger R value reduced side peaks.

Ideal and Experimental Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>R=250</th>
<th>R=500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st mode</td>
<td>477</td>
<td>911</td>
</tr>
<tr>
<td>2nd mode</td>
<td>477</td>
<td>911</td>
</tr>
<tr>
<td>Multi-mode</td>
<td>145</td>
<td>145</td>
</tr>
</tbody>
</table>

- Good match between ideal and experimental target frequencies, but fine-tuned controller is a must for lower frequency.

Time History of Tip Displacements at 478 Hz (2T) and 907 Hz (2B)

- Shows time history of controlled and uncontrolled tip displacement when excitation force at torsion mode (478 Hz) was applied. See signals in out of phase.
- As anticipated, about 80% tip reduction achieved.

- Shows time history of tip displacement when excitation force at bending mode (907 Hz) was applied. See signals in phase.
- As anticipated, about 80% tip reduction achieved.
Power Measurement of Using Active Controller

Active Damping at 478Hz (2T)

- Shows time history of control V, I, and W required to achieve about 80% reduction.
- Notice that V and I are not in phase, resulting in about $0.09 \ W_{peak-peak}$.

Active Damping at 907Hz (2B)

- Shows required power for about 80% damping. Needed about $0.08 \ W_{peak-peak}$ which is well within the capability of a slip ring for the spin test.
- Double checked with the average power formula over a complete cycle:

$$P_{avg} = \frac{V_{peak} I_{peak}}{2} \cos \phi$$

1st Bending Mode Control at 116 Hz – Technical Challenge

1.c) **1st Bending control is explored by fine-tuning controller transfer function**

- Controller has to have high peak. If un-tuned controller with $R=500 \ \Omega$ is used, no peak reduction can be achieved at the target resonance.
- For the passive LRC circuit, the inductors’ R value is $2.77 \ k\Omega$ which makes controller’s peak flat – near zero peak reduction.

Bode plot of controller transfer function

- With R between .5 and $1 \ k\Omega$, better peak reduction anticipated.
1.d) **Flexible Patch Performance at 947 Hz (2B)**

- PA16N flexible patch used for actuator. *Two different feedback sensing* signals from tip acc. and QP10W patch at near base of blade.

![Bode plot of $T_f |a_{tip}/f_{base}|$ with $R=300$](image)

Acc. sensor
PA16N actuator
| 8.0 | 7.0 | 6.0 | 5.0 | 4.0 | 3.0 |
| 800 | 850 | 900 | 950 | 1000 |

| 3.0 | 2.0 | 1.0 | 0.0 |
| 800 | 850 | 900 | 950 | 1000 |

![Bode plot of $T_f |PE_{root}/f_{base}|$ with $R=300$](image)

Acc. sensor
PA16N actuator
QP10W sensor
| 8.0 | 7.0 | 6.0 | 5.0 | 4.0 | 3.0 |
| 800 | 850 | 900 | 950 | 1000 |

| 3.0 | 2.0 | 1.0 | 0.0 |
| 800 | 850 | 900 | 950 | 1000 |

Spin Test in Dynamic Spin Rig

- Currently fabrication of a canister is in progress to modify spin facility to incorporate slip ring.
- Completed bench test on the slip ring to investigate any cross talk, signal loss, phase lag, etc.
- Confirmed power limit of each channel of the slip ring.

![Trapezoidal blade](image)

Bench test setup using LC circuit

Bode plots of $T_f |a_{tip}/f_{base}|$ for LC circuit

| 637 Hz | 760 Hz |
| Signal loss thru slip ring | 3.4% | 4% |

Less than 1.3% signal loss if $V_{in} > 50V$
VI. Summary

- Demonstrated that the passive shunt can be viewed as a feedback control problem and thus a digital control that replaces analog circuit components can be developed.
- Achieved significant peak reduction at the target modes with different mode types.
- Presented conceptual implementation of digital control to the rotating frame.

Future work

- Complete dynamic spin test of PE embedded blades in the GRC’s Dynamic Spin Rig.
- Further comprehensive system-leveled trade-off study must be done to prove a viable means of using this approach for the rotating blades.
1. REPORT DATE
01-05-2010

2. REPORT TYPE
Technical Memorandum

4. TITLE AND SUBTITLE
Active Vibration Reduction of Titanium Alloy Fan Blades (FAN1) Using Piezoelectric Materials

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
WBS 561581.02.08.03.15.13

6. AUTHOR(S)
Choi, Benjamin; Kauffman, Jeffrey; Duffy, Kirsten; Provenza, Andrew; Morrison, Carlos

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135-3191

8. PERFORMING ORGANIZATION REPORT NUMBER
E-17270

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITOR’S ACRONYM(S)
NASA

11. SPONSORING/MONITORING REPORT NUMBER
NASA/TM-2010-216335

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Categories: 05 and 07
Available electronically at http://gltrs.grc.nasa.gov
This publication is available from the NASA Center for AeroSpace Information, 443-757-5802

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The NASA Glenn Research Center is developing smart adaptive structures to improve fan blade damping at resonances using piezoelectric (PE) transducers. In this paper, a digital resonant control technique emulating passive shunt circuits is used to demonstrate vibration reduction of FAN1 Ti real fan blade at the several target modes. Single-mode control and multi-mode control using one piezoelectric material are demonstrated. Also a conceptual study of how to implement this digital control system into the rotating fan blade is discussed.

15. SUBJECT TERMS
Piezoelectric transducer; Active control; Damping tests; Fan blades; Vibration damping; Shunt damping

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
<td>UU</td>
<td>18</td>
<td>STI Help Desk (email:help@sti.nasa.gov)</td>
</tr>
</tbody>
</table>

19b. TELEPHONE NUMBER (include area code)
443-757-5802