Algorithms for Learning Preferences for Sets of Objects
The user gives examples of preferred sets; the algorithms do the rest.

NASA's Jet Propulsion Laboratory, Pasadena, California

A method is being developed that provides for an artificial-intelligence system to learn a user’s preferences for sets of objects and to thereafter automatically select subsets of objects according to those preferences. The method was originally intended to enable automated selection, from among large sets of images acquired by instruments aboard spacecraft, of image subsets considered to be scientifically valuable enough to justify use of limited communication resources for transmission to Earth. The method is also applicable to other sets of objects: examples of sets of objects considered in the development of the method include food menus, radio-station music playlists, and assortments of colored blocks for creating mosaics.

The method does not require the user to perform the often-difficult task of quantitatively specifying preferences; instead, the user provides examples of preferred sets of objects. This method goes beyond related prior artificial-intelligence methods for learning which individual items are preferred by the user: this method supports a concept of set-based preferences, which include not only preferences for individual items but also preferences regarding types and degrees of diversity of items in a set. Consideration of diversity in this method involves recognition that members of a set may interact with each other in the sense that when considered together, they may be regarded as being complementary, redundant, or incompatible to various degrees. The effects of such interactions are loosely summarized in the term “portfolio effect.”

The learning method relies on a preference representation language, denoted DD-PREF, to express set-based preferences. In DD-PREF, a preference is represented by a tuple that includes quality (“depth”) functions to estimate how desired a specific value is, weights for each feature preference, the desired diversity of feature values, and the relative importance of diversity versus depth. The system applies statistical concepts to estimate quantitative measures of the user’s preferences from training examples (preferred subsets) specified by the user. Once preferences have been learned, the system uses those preferences to select preferred subsets from new sets.

The method was found to be viable when tested in computational experiments on menus, music playlists, and rover images. Contemplated future development efforts include further tests on more diverse sets and development of a submethod for (a) estimating the parameter that represents the relative importance of diversity versus depth, and (b) incorporating background knowledge about the nature of quality functions, which are special functions that specify depth preferences for features.

This work was done by Kiri L. Wagstaff of Caltech and Marie desJardins and Eric Eaton of the University of Maryland, Baltimore County, for NASA's Jet Propulsion Laboratory. Further information is contained in a TSP (see page 1).

The software used in this innovation is available for commercial licensing. Please contact Daniel Broderick of the California Institute of Technology at danielb@caltech.edu. Refer to NPO-43828.

Model for Simulating a Spiral Software-Development Process

A prior model for simulating a waterfall process has been extended.
John F. Kennedy Space Center, Florida

A discrete-event simulation model, and a computer program that implements the model, have been developed as means of analyzing a spiral software-development process. This model can be tailored to specific development environments for use by software project managers in making quantitative cases for deciding among different software-development processes, courses of action, and cost estimates.

A spiral process can be contrasted with a waterfall process, which is a traditional process that consists of a sequence of activities that include analysis of requirements, design, coding, testing, and support. A spiral process is an iterative process that can be regarded as a repeating modified waterfall process. Each iteration includes assessment of risk, analysis of requirements, design, coding, testing, delivery, and evaluation. A key difference between a spiral and a waterfall process is that a spiral process can accommodate changes in requirements at each iteration, whereas in a waterfall process, requirements are considered to be fixed from the beginning and, therefore, a waterfall process is not flexible enough for some projects, especially those in which requirements are not known at the beginning or may change during development. For a given project, a spiral process may cost more and take more time than does a waterfall process, but may better satisfy a customer’s expectations and needs.

Models for simulating various waterfall processes have been developed previously, but until now, there have been no models for simulating spiral processes. The present spiral-process-simulating model and the software that implements it were developed by extending a discrete-event simulation process model of the IEEE 12207 Software Development Process, which was built using commercially available software known as the...
Process Analysis Tradeoff Tool (PATT). Typical inputs to PATT models include industry-average values of product size (expressed as number of lines of code), productivity (number of lines of code per hour), and number of defects per source line of code. The user provides the number of resources, the overall percent of effort that should be allocated to each process step, and the number of desired staff members for each step. The output of PATT includes the size of the product, a measure of effort, a measure of rework effort, the duration of the entire process, and the numbers of injected, detected, and corrected defects as well as a number of other interesting features.

In the development of the present model, steps were added to the IEEE 12207 waterfall process, and this model and its implementing software were made to run repeatedly through the sequence of steps, each repetition representing an iteration in a spiral process. Because the IEEE 12207 model is founded on a waterfall paradigm, it enables direct comparison of spiral and waterfall processes. The model can be used throughout a software-development project to analyze the project as more information becomes available. For instance, data from early iterations can be used as inputs to the model, and the model can be used to estimate the time and cost of carrying the project to completion.

This work was done by Carolyn Mizell of Kennedy Space Center, Charles Curley of ASRC Aerospace Corp., and Umamath Niyak of Portland State University. Further information is contained in a TSP (see page 1), KSC-13094

Algorithm That Synthesizes Other Algorithms for Hashing

A synthesized algorithm is guaranteed to be executable in constant time.

NASA’s Jet Propulsion Laboratory, Pasadena, California

An algorithm that includes a collection of several subalgorithms has been devised as a means of synthesizing still other algorithms (which could include computer code) that utilize hashing to determine whether an element (typically, a number or other datum) is a member of a set (typically, a list of numbers). Each subalgorithm synthesizes an algorithm (e.g., a block of code) that maps a static set of key hashes to a somewhat linear monotonically increasing sequence of integers. The goal in formulating this mapping is to cause the length of the sequence thus generated to be as close as practicable to the original length of the set and thus to minimize gaps between the elements.

The advantage of the approach embodied in this algorithm is that it completely avoids the traditional approach of hash-key look-ups that involve either secondary hash generation and look-up or further searching of a hash table for a desired key in the event of collisions.

This algorithm guarantees that it will never be necessary to perform a search or to generate a secondary key in order to determine whether an element is a member of a set. This algorithm further guarantees that any algorithm that it synthesizes can be executed in constant time. To enforce these guarantees, the subalgorithms are formulated to employ a set of techniques, each of which works very effectively covering a certain class of hash-key values. These subalgorithms are of two types, summarized as follows:

• Given a list of numbers, try to find one or more solutions in which, if each number is shifted to the right by a constant number of bits and then masked with a rotating mask that isolates a set of bits, a unique number is thereby generated. In a variant of the foregoing procedure, omit the masking. Try various combinations of shifting, masking, and/or offsets until the solutions are found. From the set of solutions, select the one that provides the greatest compression for the representation and is executable in the minimum amount of time.

• Given a list of numbers, try to find one or more solutions in which, if each number is compressed by use of the modulo function by some value, then a unique value is generated.

This work was done by Mark James for Caltech for NASA’s Jet Propulsion Laboratory. Further information is contained in a TSP (see page 1), NPO-45175

Algorithms for High-Speed Noninvasive Eye-Tracking System

One of the algorithms enables tracking at a frame rate of several kilohertz.

NASA’s Jet Propulsion Laboratory, Pasadena, California

Two image-data-processing algorithms are essential to the successful operation of a system of electronic hardware and software that noninvasively tracks the direction of a person’s gaze in real time. The system was described in “High-Speed Noninvasive Eye-Tracking System” (NPO-30700) NASA Tech Briefs, Vol. 31, No. 8 (August 2007), page 51.

To recapitulate from the cited article: Like prior commercial noninvasive eye-tracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Most of the prior commercial noninvasive eye-tracking systems rely on standard video cameras, which operate at frame rates of about 30 Hz. Such systems are limited to slow, full-frame operation.

The video camera in the present system includes a charge-coupled-device (CCD) image detector plus electronic circuitry capable of implementing an advanced control scheme that effects readout from a small region of interest (ROI), or subwindow, of the full image. Inas-