Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube ("CNT") array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.
FIG. 2

45 (overcoating)

44

43

Fe, Co and/or Ni

42

Al and/or Ir

41

substrate

FIG. 3

50

54

53

Al and/or Ir

52

Pt, Pd, Cr, Mo, Ti and/or W

51

substrate
FIG. 5A

FIG. 5B
FIG. 7

Growth Temperature

FIG. 8

111, D(T(111))

112, D(T(112)) (> D(T(111)))
FIG. 9

coated substrate

FIG. 10
Provide desired growth density \(D_1 = D_0 \cdot A^x A^y \)

Provide selected electrical field \(E_b \), oriented perpendicular to a catalyst-coated substrate surface, that will produce growth density \(D_1' = D_0 \cdot A^x \) (coarse scale)

Provide adjusted temperature range, \(T_L \leq T \leq T_u \), for growth density \(D_1 = D_1' \cdot A^y \)

Provide selected feed gas \(C_{m_1} H_{n_1} \) in the adjusted temperature range, \(T_L \leq T \leq T_u \), for the growth of the desired CNT array in the presence of the selected electrical field \(E_b \), applied adjacent to the substrate, to produce CNTs with an average CNT growth density of about \(D_1 = D_0 \cdot A^x A^y \)

FIG. 11
Provide desired growth density $D_1 = D_0 \cdot A^{\alpha(k)} \omega^{\gamma(k)}$ for each of N spaced apart regions, numbered $k = 1, ..., N$ ($N \geq 2$)

Initialize k to $k = 1$

Provide selected electrical field $E_b(k)$, oriented perpendicular to a catalyst-coated substrate surface, that will produce growth density $D_1'(k) = D_0 \cdot A^{\alpha(k)}$ (coarse scale) for region no. k

Provide adjusted temperature range, $T_L(k) \leq T \leq T_U(k)$, for growth density $D_1''(k) = D_1'(k) \cdot A^{\gamma(k)}$ for region no. k

Provide selected feed gas C_mH_n in the adjusted temperature range, $T_L(k) \leq T \leq T_U(k)$, for the growth of the desired CNT array in region no. k, in the presence of the selected electrical field $E_b(k)$, applied to the region no. k, to produce CNTs with an average CNT growth density of about $D_1''(k) = D_0 \cdot A^{\alpha(k)} \omega^{\gamma(k)}$ in region no. k

Increment K ($K \rightarrow K + 1$)

Is $K > N$?

Yes

No

Terminate Process

FIG. 12
CARBON NANOTUBE GROWTH DENSITY CONTROL

SUMMARY OF THE INVENTION

These needs are met by the invention, which provides control or influence of CNT growth density on a relatively coarse scale, with density adjustment over several orders of magnitude, using an applied electrical field or voltage difference, aligned substantially perpendicular to the substrate surface adjacent to the surface during growth. Control or influence of CNT growth density on a finer scale, estimated at a factor of 2-10, is provided using temperature control for the CNT growth process. For example, application of a modest electrical field of between 5 and 20 volts over a transverse electrode-to-electrode gap of about 25 µm (electrical field value $|E|=2-8\times10^3$ volts/cm) is estimated to change CNT growth density by 1-3 orders of magnitude (coarse scale); and variation of CNT source average temperature between $T=700^\circ C$ and $T=850^\circ C$ is estimated to change CNT growth density by a multiplicative factor of $2-10$ (fine scale).

A first region may have a first range of CNT densities and an adjacent second region, spaced apart from the first region, may have a second range of CNT densities that partly overlaps, or has no overlap with, the first density range. The second region has a higher CNT density and uses variable heating and/or a reduced electrical field to provide the higher CNT density, based on an experimentally determined growth curve and experimental configuration of a device (CNT density versus temperature). This approach should be distinguished from masking of regions on a substrate, where the result is binary; either a CNT array with a fixed density appears, or no CNTs appear in the region.

FIELD OF THE INVENTION

This invention relates to control of growth density of carbon nanostructures.

BACKGROUND OF THE INVENTION

In 1991, S. Iijima (Nature, vol. 354: 56-58) reported growth of multi-wall coaxial nanotubes, containing 2-50 layers with radial separations of about 0.34 nm, using an arc discharge evaporation method similar to that used for Fullerene synthesis. The nanotubes originally observed by Iijima were formed on the negative voltage end of a carbon electrode and were plentiful in some regions and sparse in other regions. Since that time, other workers have developed other discharge means for controlled deposition of graphitic carbon. However, it is not straightforward to control the growth of, or density of, single wall nanotubes ("SWCNTs"), multi-wall nanotubes ("MWCNTs") and/or carbon-based nanofibers ("CNFs").

Recently, interest has grown in use of arrays of carbon nanotubes ("CNTs") as an intermediary for transport of electrical particles (e.g., electrons) and/or transport of thermal energy from one body to another. For example, a CNT array may be used for dissipation of thermal energy or accumulated electrical charge associated with operation of an electronics device or system. However, the device or system connected to the CNT array(s) may require use of different CNT array densities in different regions, because of differing transport requirements. Use of a mask to discriminate between a CNT growth region and a no-growth region has been demonstrated.

However, this approach only produces different regions where CNTs are present (with a substantially constant density) and where CNTs are absent (density substantially 0). Where maximum thermal transport is a focus, the desired CNT density is likely to be as high as possible, and no other limit is of concern. However, where electrical transport is a focus (e.g., between adjacent signal processing components on a semiconductor chip, the desired CNT density may lie in an intermediate range, with both a lower bound and an upper bound.

What is needed is an approach that allows control of CNT growth density on a coarse scale and on a fine scale simultaneously, preferably with two or more substantially different and adjustable scales (coarse and fine) for the CNT density. The CNT density is allowed to vary from one location to another, if desired. Preferably, the approach should allow variation and control, over a factor of about 1-1000, in the coarse scale local CNT density and should allow variation and control over a factor of about 1-10 in the fine scale local CNT density.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a system for generating and controlling the growth of an SWCNT or an MWCNT, depending upon the choice of several parameters. FIG. 2 schematically illustrates a four-layer structure, used to grow coated SWCNTs. FIG. 3 schematically illustrates a structure having one, two or three layers, used to grow CNT's. FIGS. 4A-4C are photomicrographs showing well defined carbon nanotube growth regions adjacent to mask edges, for an SWCNT, and MWCNT and a CNT, respectively. FIGS. 5A and 5B graphically illustrate growth in length with time of a CNT. FIGS. 6A-6D are photomicrographs illustrating the effects of use of different capacitive power levels on growth of CNTs and CNFs. FIG. 7 is a representative curve of CNT growth density versus CNT growth temperature, manifesting a maximum density at an intermediate temperature. FIG. 8 schematically illustrates an effect of application of different temperatures to different CNT growth regions on a substrate. FIGS. 9 and 10 illustrate systems for implementing coarse scale CNT density control. FIGS. 11 and 12 are flow charts illustrating a procedure for implementing combined coarse scale and fine scale CNT growth density control. FIGS. 13A-13K display some catalyst patterns and CNT growth patterns, producable according to the invention.
FIG. 1 illustrates a system 11 for generating and controlling patterned growth of an array of CNTs. A substrate 13, located in a chamber 12, is coated with a first layer 15 (optional) of a selected first metal, preferably Al and/or Ir, having a thickness of at least 1-10 nm (for Al) or 5-20 nm (for Ir). A thicker first layer can be used but does not produce any significant further changes in the array thus produced. Optionally, the first layer 15 has a multi-layer structure, including a first sub-layer 15A of a metal or alloy, such as Pt, Pd, Cr, Mo, Ti and/or W, with selected electrical conductivity properties, and a second sub-layer 15B, preferably Al (thickness 2-10 nm) and/or Ir (thickness 5-20 nm), that provides a substructure for a catalyst layer 17 of Fe, Ni, Co, Mo or Pd or a similar material. Use of a second sub-layer 15B also allows growth of SWCNTs, MWCNTs and CNFs on a (coated) substrate that need not be compatible with the catalyst. An example is use of highly oriented pyrolytic graphite (HOPG) or amorphous carbon on the substrate. For convenience, the optional first layer 15 will be referred to as the “first layer,” whether the structure is single-layer or multi-layer, except where details of this layer are important.

One or more ion sources 18 (e.g., ion guns) provide ion beams that are directed at a metal sputtering source 19 that produces particles of a selected metal, such as Fe, Co, Ni, Mo, or Pd that forms a catalyst layer 17 of Fe, Ni, Co, Mo or Pd or a similar material. A shutter or similar mechanism 23 and aperture 24 are sequentially positioned between the sputtering source 19 and the feed gas 21. The shutter 23 is opened and the mask 20 is used to form a pattern including one or more catalysts 16A and 16B deposited on the substrate 13 for purposes of subsequent growth of carbon nanotubes. In another approach, catalyst deposit and patterned carbon nanotube growth occur in the same chamber.

A feed gas source 21 within the chamber 12 (e.g., a quartz tube) provides a heated gas, such as CH₄ at a temperature in the range 1000-3000 °C, at a selected gas flow rate, such as 1000 sccm. A relatively inert carrier gas, such as Ne or Ar or Xe or Kr or N₂, is optionally used to transport the heated gas across the coated support structure 13/15/17, and the coated support structure successively strips the hydrogen atoms from the heated gas to ultimately produce C particles (bare C atoms and C molecules, etc.) that are received at, and accumulate on, a portion of the coated substrate and contribute to the growth of SWCNTs, according to the catalyst pattern deposited on the substrate. If the heated gas temperature adjacent to the coated support structure 13/15/17 drops substantially below T=800 °C, for example, to T=750 °C., the growth of SWCNTs will substantially stop. The gas CH₄ requires use of a relatively high temperature (T=800-1100 °C) in order to promote H atom stripping to produce substantially “bare” C atoms and molecules. The chamber temperature is then dropped to or below T=300 °C, before the coated substrate and SWCNT growth array are exposed to air.

A shutter or similar mechanism 23 and aperture 24 are sequentially positioned between the sputtering source 19 and the feed gas source 21. The shutter 23 is opened and the mask 20 is positioned when the sputtering source 19 is to be used to deposit a first layer 15 or second layer 17 of material on the substrate 13 for purposes of subsequent growth of carbon nanotubes. When this deposit has ended and the feed gas is to be admitted into the chamber 12, the shutter 23 is closed, and the gas CH₄ is optionally used to transport the heated gas across the coated support structure 13/15/17, and the coated support structure successively strips the hydrogen atoms from the heated gas to ultimately produce C particles (bare C atoms and C molecules, etc.) that are received at, and accumulate on, a portion of the coated substrate and contribute to the growth of SWCNTs, according to the catalyst pattern deposited on the substrate. If the heated gas temperature adjacent to the coated support structure 13/15/17 drops substantially below T=800 °C, for example, to T=750 °C., the growth of SWCNTs will substantially stop. The gas CH₄ requires use of a relatively high temperature (T=800-1100 °C) in order to promote H atom stripping to produce substantially “bare” C atoms and molecules. The chamber temperature is then dropped to or below T=300 °C, before the coated substrate and SWCNT growth array are exposed to air.

A shutter or similar mechanism 23 and aperture 24 are sequentially positioned between the sputtering source 19 and the feed gas source 21. The shutter 23 is opened and the mask 20 is positioned when the sputtering source 19 is to be used to deposit a first layer 15 or second layer 17 of material on the substrate 13 for purposes of subsequent growth of carbon nanotubes. When this deposit has ended and the feed gas is to be admitted into the chamber 12, the shutter 23 is closed, and the gas CH₄ is optionally used to transport the heated gas across the coated support structure 13/15/17, and the coated support structure successively strips the hydrogen atoms from the heated gas to ultimately produce C particles (bare C atoms and C molecules, etc.) that are received at, and accumulate on, a portion of the coated substrate and contribute to the growth of SWCNTs, according to the catalyst pattern deposited on the substrate. If the heated gas temperature adjacent to the coated support structure 13/15/17 drops substantially below T=800 °C, for example, to T=750 °C., the growth of SWCNTs will substantially stop. The gas CH₄ requires use of a relatively high temperature (T=800-1100 °C) in order to promote H atom stripping to produce substantially “bare” C atoms and molecules. The chamber temperature is then dropped to or below T=300 °C, before the coated substrate and SWCNT growth array are exposed to air.

A shutter or similar mechanism 23 and aperture 24 are sequentially positioned between the sputtering source 19 and the feed gas source 21. The shutter 23 is opened and the mask 20 is positioned when the sputtering source 19 is to be used to deposit a first layer 15 or second layer 17 of material on the substrate 13 for purposes of subsequent growth of carbon nanotubes. When this deposit has ended and the feed gas is to be admitted into the chamber 12, the shutter 23 is closed, and the gas CH₄ is optionally used to transport the heated gas across the coated support structure 13/15/17, and the coated support structure successively strips the hydrogen atoms from the heated gas to ultimately produce C particles (bare C atoms and C molecules, etc.) that are received at, and accumulate on, a portion of the coated substrate and contribute to the growth of SWCNTs, according to the catalyst pattern deposited on the substrate. If the heated gas temperature adjacent to the coated support structure 13/15/17 drops substantially below T=800 °C, for example, to T=750 °C., the growth of SWCNTs will substantially stop. The gas CH₄ requires use of a relatively high temperature (T=800-1100 °C) in order to promote H atom stripping to produce substantially “bare” C atoms and molecules. The chamber temperature is then dropped to or below T=300 °C, before the coated substrate and SWCNT growth array are exposed to air.

A shutter or similar mechanism 23 and aperture 24 are sequentially positioned between the sputtering source 19 and the feed gas source 21. The shutter 23 is opened and the mask 20 is positioned when the sputtering source 19 is to be used to deposit a first layer 15 or second layer 17 of material on the substrate 13 for purposes of subsequent growth of carbon nanotubes. When this deposit has ended and the feed gas is to be admitted into the chamber 12, the shutter 23 is closed, and the gas CH₄ is optionally used to transport the heated gas across the coated support structure 13/15/17, and the coated support structure successively strips the hydrogen atoms from the heated gas to ultimately produce C particles (bare C atoms and C molecules, etc.) that are received at, and accumulate on, a portion of the coated substrate and contribute to the growth of SWCNTs, according to the catalyst pattern deposited on the substrate. If the heated gas temperature adjacent to the coated support structure 13/15/17 drops substantially below T=800 °C, for example, to T=750 °C., the growth of SWCNTs will substantially stop. The gas CH₄ requires use of a relatively high temperature (T=800-1100 °C) in order to promote H atom stripping to produce substantially “bare” C atoms and molecules. The chamber temperature is then dropped to or below T=300 °C, before the coated substrate and SWCNT growth array are exposed to air.
responding electrical resistances across a 5 mm separation that results from provision of an underlayer of a metal or alloy, such as Al, Ir, Pt, Pd, Cr, Mo, Ti and/or W, as part of the growth structure for a CNF array (with similar results being obtained for SWCNTs and MWCNTs).

The system 11 in FIG. 1 can also be used to generate and control the growth of a patterned array of SWCNTs and MWCNTs. For MWCNTs and CNFs, presence of a metal underlayer 15 is not required, but may be included. The substrate 13 located in the chamber 14 is optionally coated with a first layer 15 of a selected first metal, preferably Al and/or Ir, having a thickness of at least 1-20 nm. The substrate 13 and optional first layer 15 are coated with a second layer 17 of a selected catalyst, such as Fe, Co and/or Ni, having a thickness of 0.1-20 nm in a desired pattern. A thicker second layer 17 may be used here. Alternatively, the active catalyst includes a co-catalyst, such as a small amount of Mo in addition to the Fe, Co and/or Ni. The first layer 15, if present, may be deposited using ion beam sputtering from a first layer source 19 located adjacent to the substrate 13, or using arc discharge, laser ablation, CVD or evaporation. The catalyst(s) in the second layer 17 is preferably provided using ion beam sputtering, arc discharge or laser ablation with a suitable catalyst source 19 and a suitably apertured mask.

A source 21 within the chamber 12 in FIG. 1 provides a heated gas, preferably CH hydrogen gas, for growing CNTs within the temperature range of T=650-900°C. The heated gas moves across the support structure 13/15/17, which successively strips the hydrogen atoms from the heated gas to ultimately produce C particles (C atoms, C—C, C=C, C=C molecules, etc.) that are received at, and accumulate on, a portion of the coated substrate and contribute to the patterned growth of MWCNTs. If the heated gas temperature drops substantially below T=650°C, for example, to T=600°C, the growth of MWCNTs will stop. Use of the gas CH allows use of a somewhat lower temperature (T=650-900°C) in order to promote H atom stripping to produce C particles.

A mask in the form of a 400 mesh grid can be positioned on the support structure 13/15/17, and MWCNTs or SWCNTs can be grown (only) in the exposed regions (50 µm×50 µm with 10 µm grid widths, in one experiment) not covered by the grid, with sharp transitions between the exposed and masked regions, as shown in photomicrographs in FIGS. 4A-4C. Alternatively, the mask may be formed using electron beam lithography, which allows formation of sharply defined apertures on a suitable substrate, with diameters as low as 20 nm, with an increase in available pattern detail. It is estimated that as many as 4×10^5 SWCNTs or MWCNTs will grow within a 50 µm×50 µm growth region, using hexagonal close packing and assuming a diameter of 20 nm, and that 1-4 SWCNTs or MWCNTs will grow in a 20 µm×20 nm growth region, where growth is not constrained or enhanced as discussed herein.

An MWCNT or CNF may be a substantially coaxial assembly of CNTs with a diameter depending upon the number of CNT layers (e.g., 2-50) that contribute to the MWCNT or CNF. A MWCNT or CNF with a sufficient number of layers is self-supporting and can provide a CNT tower with a height that can be seen by an un-aided eye (e.g., 0.1-1 mm). FIGS. 5A and 5B graphically illustrate some measured lengths of different CNTs, as a function of cumulative time of growth. Not all CNTs grow at the same rate, but FIG. 5A indicates that the CNT length often grows with time t approximately as [a+b(t−t_0)]^1.5 with a<1 (characteristic of a diffusion process) over relatively long time periods. An Ni catalyst appears to provide more uniform growth of an MWCNT than does an Fe catalyst.

A CNF has a substantially non-hollow core of graphitic carbon and is configured in one mode as a sequence of similar truncated cones of graphitic C that fit together in a substantially coaxial pattern resembling an MWCNT. Typically, a CNF has a cone apex angle of 10°-90°, has a diameter of 15-200 nm and may reach a maximum height of tens to hundreds of microns or more. The feed gas used to generate a CNF is typically CH₄, C₂H₄ or C₂H₂ in an appropriate temperature range.
Plasma-enhanced CVD (PECVD) or normal CVD has been used to grow CNTs on a two-layer, three-layer or four-layer structure, using various materials for the support layers, and electrical resistances have been measured for these structures. A support structure of Al/Fe/Mo, deposited using sputtering, allows CVD growth of SWCNTs having electrical resistance of about 22 kilo-ohms. Table 2 sets forth estimated electrical resistances for MWCNTs and CNFs grown using PECVD to provide the support structure. MWCNTs and CNFs can be grown using a plasma with or without using the Al/Ir layer shown in FIG. 2, but SWCNTs grown using a plasma may require this layer.

PECVD can also be used to form SWCNTs and MWCNTs with a modest number (2-5) of CNT walls. SWCNT growth is normally promoted by using a thinner catalyst layer and higher growth temperatures than the catalyst thicknesses and temperatures used for growth of CNFs and MWCNTs.

In any plasma discharge, change of the temperature, the pressure, the flow rate(s), the feed gas(es) and feed gas ratios, the method of initiating the plasma, sample pre-treatment, electrical bias, capacitive power, inductive power and/or catalyst will affect the type and quality of carbon nanotubes grown.

<table>
<thead>
<tr>
<th>Support Structure</th>
<th>Resistances with PECVD-Grown MWCNTs and CNFs (Ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr/Fe (MWCNT)</td>
<td>345</td>
</tr>
<tr>
<td>Cr/Al/Fe (CNF)</td>
<td>460</td>
</tr>
<tr>
<td>Pt/Al/Fe (MWCNT)</td>
<td>70</td>
</tr>
<tr>
<td>Ti/Fe (MWCNT)</td>
<td>300</td>
</tr>
<tr>
<td>W/Fe (MWCNT)</td>
<td>22,000</td>
</tr>
<tr>
<td>W/Fe (CNF)</td>
<td>80</td>
</tr>
<tr>
<td>W/Al/Fe (MWCNT)</td>
<td>50</td>
</tr>
<tr>
<td>Ni (CNF)</td>
<td>≥2,000</td>
</tr>
<tr>
<td>Fe (CNF)</td>
<td>5,000</td>
</tr>
</tbody>
</table>

FIGS. 6A, 6B, 6C and 6D illustrate a transition in the carbon nanotube structure for the respective capacitive power values of 20 W, 30 W, 40 W and 50 W, respectively. At 50 W, the carbon nanotubes appear to be substantially all CNFs. Changing the inductive power level in such a process has no substantial effect on the relative amounts of CNTs and CNFs grown in a plasma reactor environment.

From results produced by “scraping” an array of MWCNTs from the coated substrate, it appears that the MWCNTs are strongly attached to the coated substrate. This attachment may be Ohmic. When the coated substrate is scraped, the SWCNT arrays appear to come off as flakes, which is consistent with a base growth pattern, as opposed to a tip growth pattern.

FIGS. 4A, 4B and 4C are photomicrographs showing well defined carbon nanotube growth regions adjacent to mask edges, for a SWCNT, an MWCNT and a CNF, respectively. These images demonstrate that the (exposed) growth regions are more or less uniformly filled with carbon nanotubes and that, at a line between a growth region and a masked region, the concentration of carbon nanotubes changes abruptly from substantially zero in the masked region to a non-zero, approximately uniform value in the growth region.

FIG. 7 is an approximate graphical representation of average CNT growth density D(T) in a suitably prepared CNT growth region, as a function of growth temperature T. The growth density D(T) rises from a very small value (substantially 0) at a first temperature limit, T = T1, to a maximum growth density value D(max) at an intermediate temperature, T = T2, and decreases to a very small value (substantially 0) as the temperature increases further (above T = T3) to a second temperature limit, T = T4. Preferably, one operates in the temperature range T1 ≤ T ≤ T2 if only fine scale density control is of concern.

The density D of CNT growth illustrated in FIG. 7, expressed as a function of growth temperature T, can be approximated by a relation such as

\[D(T) = a - b \cdot (T - T_o)^p, \]

where a, b, q and p are selected positive parameters that depend upon the particular growth process being used. As the exponent p increases, the curve in FIG. 7 becomes increasingly sharply curved or peaked near T = T_o. As the exponent difference q = 1 increases from 0, the curve in FIG. 7 becomes increasingly non-symmetric about T = T_o. The approximation in Eq. (1) can be used to demonstrate some qualitative features of density difference over a region.

A density curve according to Eq. (1) will behave approximately as shown in FIG. 7, for a selected temperature range, such as T_o = T ≤ T ≤ T_o + 6T_o. The growth temperature T may not be precisely the same at all points in a region R and may have a small range, such as T_o ≤ T ≤ T_o + 6T_o, with T_o + 5T_o (max) < T ≤ T_o, with T_o + 6T_o (max) < T ≤ T_o + 6T_o. The density function D(T) has a temperature slope (dD/dT) that decreases monotonically as T increases from T_o to T_o, the maximum density – minimum density difference will decrease monotonically as T_o increases, for fixed temperature difference ΔT. This is also confirmed for the approximation D(T;app) in Eq. (1). For a fixed temperature uncertainty ΔT, one has a maximum density uncertainty ΔD(max) at or near the lowest temperature in the range, T = T_o, and the density uncertainty decreases substantially monotonically as T_o increases toward T_o + ΔT.

If the desired CNT density range is to be relatively small, the growth temperature T in the region should be more tightly controlled so that the growth temperature difference ΔT can be reduced. One can use a selected temperature range (e.g., T_o ≤ T ≤ T_o + 6T_o) and lowest value (T_o) to vary the relative density of CNTs grown in a region, and one can thereby control the density difference or density uncertainty in this region on a relatively fine scale a factor of (2-10) by controlling the temperature difference, ΔT = T_o – T_o.

In an earlier-filed patent application (U.S. Pat. No. 6,858, 197), Dezel et al observed that growth of single wall CNTs (SWCNTs), multi-wall CNTs (MWCNTs) and carbon nanofibers (CNFs) may proceed under the following approximate environmental conditions:

- SWCNTs: T = 800-1100° C.; feed gas = CH_4;
- MWCNTs: T = 650-900° C.; feed gas = C_2H_2 or C_2H_4;
- CNFs: T = 400-900° C.; feed gas = C_2H_2 or C_2H_4.

Other feed gases containing C may also be suitable for such growth. Dezel et al also observed that deposit of a catalyst layer of Fe, Co, Ni and/or Mo, of thickness 0.1-20 nm, on a substrate will promote the growth of a CNT array, especially in the absence of a supplemental layer of Al or Ir. Where the supplemental layer is too thin or is absent and no catalyst layer is present, few or no CNTs are likely to grow on the substrate, even with the right environmental conditions. It is likely that, as a lower limit for temperature is approached from above (e.g., T decreasing toward 800° C for SWCNTs), the density of CNTs grown in an array will drop precipitously toward 0 as the lower limit is approached.

Dezel et al also observed that use of the following, or a two-layer structure (e.g., Pt/Fe), or a three-layer structure (e.g., Pt/AlFe) on a substrate, used to grow CNF arrays, will
provide CNF arrays with electrical resistances of about 30 Ohms and about 50 Ohms, respectively, whereas absence of the Pt layer will produce arrays with electrical resistances of 500-10,000 Ohms. The Wiedemann-Franz law in physics indicates that the ratio of thermal conductivity to electrical conductivity is approximately a constant (within a factor of about 3) across a variety of materials so that high thermal conductivity and high electrical conductivity tend to occur in the same material.

FIG. 8 illustrates an application of the invention to density control for an electronic device or substrate 110, where a first region 111 requires that the local CNT growth temperature be no more than about T(111) (e.g., with T(111)=500°C), with associated CNT growth density of D(T1) and a spaced apart second region 112 requires a CNT array with a larger CNT growth density D(T2), corresponding to a higher temperature T(112) (e.g., T(112)=700°C) that is substantially greater than T1, but less than T2. CNT growth at a first temperature T(111) proceeds as indicated in the preceding so that the entire substrate has (at least) a first CNT density of approximately D(T111), corresponding to the temperature T=T(111). Simultaneously or subsequently, the second region 112 is preferentially heated to a higher second or augmented temperature, T=T(112), using a local resistive or inductive heater, a focused laser beam, a focused particle beam or a similar localizable heating source. In the second region 112, the CNT density is approximately D(T2), corresponding to the augmented temperature T(112), as discussed in the preceding. This approach can be used to provide a CNT density D(Tn) (n=1, ..., N; N?2) in each of N spaced apart regions using localizable heating sources for each region where the CNT growth temperature in other regions is to be substantially larger than the base growth temperature (T1) used for the remainder of the substrate 110.

The invention provides a procedure for varying the CNT density D(T) in one or more regions of a substrate on which the CNTs are grown, by varying the local temperature and/or the local electrical field applied within each of these regions. For a growth temperature range, T2?4=T1, of reasonable thermal width, such as AT=T2-T1=50°C, and a reasonable end-to-end width (e.g., 200°C C), the CNT growth density curve in FIG. 7 permits a "fine scale" variation in CNT growth density by a factor of 2-10 (estimated), by variation of a central temperature, T=C(T1+T2)/2. It may be unreasonable to expect to hold the growth temperature range to within a width less than about AT=50°C. However, if a smaller thermal width can be maintained, the fine scale control (precision) of CNT density is improved accordingly.

A coarse scale control of CNT density is also available, extending over densities of 1-3 orders of magnitude, by imposing an electrical field of modest field strength E in a direction substantially perpendicular to a plane defined by a catalyst layer or substrate surface. A development in Appendix 1 indicates that the phase space probability associated with CNT growth density p varies exponentially with p, for fixed electrical field strength E. A modest change in the electric field magnitude E or in the voltage difference V (for fixed electrode spacing) may change the CNT growth density by 1-3 orders of magnitude or more so that one also has in hand a "coarse scale" adjustment for CNT growth, namely modest adjustment of the longitudinal electrical field strength E or of the voltage difference V.

FIG. 9 illustrates an embodiment where a CNT growth density decrease by several powers of ten (e.g., 1-3) has been achieved, using a modest voltage difference. A substrate 121, having a thin metal catalyst surface (e.g., Fe, Ni, Co or Mo) is located close to one or more substantially planar metal surfaces, 122A and 122B, but transversely spaced apart from the catalyst-coated surface by a small distance d, such as d=10-50 µm. A small voltage difference, such as V=5-20 volts, is applied to the two metal surfaces by a voltage source 123, and a plurality of electrical field lines 124 ("E-fields") develops between these two surfaces, as illustrated schematically in FIG. 9. Close or adjacent to the interior of the catalyst-coated substrate surface, the E-field lines are oriented substantially perpendicular to this surface and have a modest curvature; any CNTs grown in this interior region will grow in an electrical field with substantially perpendicular E-field vectors. In an earlier technical article, "Directed Growth Of Single-Walled Carbon Nanotubes", Intl. Jour. of Nanotechnology, vol. 1 (2002) pp. 197-204, presented by L. Delzeit et al, this configuration was found to produce catalyst coating islands of reduced diameter and reduced connectivity when a non-zero voltage difference is imposed between the electrodes, 122A and 122B. Reduced catalyst coating connectivity and reduced CNT growth density appear to arise from imposition of the substantially perpendicular E-field adjacent to the substrate surface.

The configuration in FIG. 9, with two transversely spaced apart electrode plates, can be replaced by a catalyst-coated substrate 131 and two longitudinally spaced apart electrode plates, 132A and 132B, and a voltage source 133, as illustrated in FIG. 10, where the near-perpendicular orientation of the E-field lines 134 ("E3") near the CNT growing surface of the substrate 131 is preserved. With a separation distance, d=25 µm and a voltage difference V=5-20 volts, the CNT growth density should again be reduced by one or more orders of magnitude, relative to the CNT growth density with no voltage difference applied.

Beginning with a nominal CNT growth density D0, which results from growth with zero base electrical field (E0=0) imposed (which may be 0) and a nominal CNT growth temperature range, Tmin in T1?4=T2, one provides a desired CNT growth density Df, which is normal, but not necessarily, less than D0. The quantity log2[D0/Df] for a selected logarithmic base A, preferably with A?2, e=2.718282, vio=10, 4, 5, 8, 10, 16, v1000=31.67) is expressed as

\[
\log_2[D0/Df] \approx X+Y, \tag{2}
\]

where X is approximately an integer (normally ?0) and Y is a fraction having a magnitude no greater than about 1 (-1<Y<1). The integer X indicates the approximate number of orders of magnitude (powers of A) by which the nominal density D0 is to be reduced in order to achieve a density Df that differs from D1 by less than one "order of magnitude." The fraction Y indicates the further decrease (Y>0), preferably by a multiplicative factor less than A, by which the intermediate density Df must be further modified to achieve the desired density Df. With a non-zero base electrical field E0 imposed and the nominal temperature
range, \(T_l \leq T \leq T_u \), used for CNT growth, the resulting CNT growth density value is about
\[
D_1 = D_0 \cdot A^{-x}
\]
(4)

With no electrical field imposed and an adjusted temperature range, \(T_1 \leq T \leq T_2 \), used for CNT growth, the resulting CNT growth density value is about
\[
D_1' = D_0 \cdot A^{-x}
\]
(5)

More generally, for \(N \) distinct regions (\(N \geq 2 \)), one begins with a nominal density value \(D_0 \) and provides a desired density \(D_1(n) \) for region no. \(n = 1, \ldots, N \). Preferably, \(D_1(n) \neq D_0 \). By analogy with Eq. (2), define
\[
\log \left(\frac{D_0}{D_1(n)} \right) = x(n) + y(n),
\]
(6)

\[
y(n) = \log \left(\frac{D_0}{D_1(n)} \right) - x(n)
\]
(7)

where the values \(x(n) \) and \(y(n) \) are analogous to \(X \) and \(Y \), respectively.

A first density change \(D_0 \to D_1'(n) \) is preferably achieved by application of a non-zero base electrical field \(E_b \), oriented substantially perpendicular to the catalyst-coated substrate surface, where \(E_{b \perp} \) may (but need not) differ from \(E_{b \parallel} \) if \(n \neq 2 \). Another density change \(D_0 \to D_1''(n) \), which can be up or down, is preferably achieved by choice of an adjusted temperature range, \(T_L(n) \leq T \leq T_U(n) \), to replace the nominal temperature range, \(T_1 \leq T \leq T_2 \), for CNT growth, with no electrical field imposed, where the nominal temperature range and the adjusted temperature range may partly overlap or may be non-overlapping. That is, the nominal temperature range is adjusted up or down, according to the tendencies shown in Fig. 7, according to whether \(Y(n) > 0 \) (increase in density) or \(Y(n) \leq 0 \) (decrease in density). Imposition of a non-zero, substantially perpendicular base electrical field and replacement of the nominal temperature range by the adjusted temperature range have substantially independent effects on the CNT growth density.

Optionally, the regions \(n = 1, \ldots, N \) with different densities \(D_1(n) \) can be chosen so that the lower temperatures \(T_l(n) \) satisfy
\[
T_{L,\max} \leq T_{L,\min} \leq \cdots \leq T_{L,(n)}
\]
(8)

so that the low end temperatures for each range increase monotonically. This sequence permits an overall temperature range to increase monotonically as the different density regions are fabricated. Where two low end temperatures, \(T_{L,\min} \) and \(T_{L,\max} \), are equal, the corresponding upper end temperatures are accounted for by requiring that
\[
T_{U,\min} = T_{U,\max}
\]
(9)

Combined use of fine scale control and of coarse scale control for CNT growth density is illustrated in a flow chart in Fig. 11, for a single specified growth density, and in Fig. 12, for a plurality of specified growth densities. In step 141 in Fig. 11, a specification of desired CNT growth density is provided, as \(D_1 = D_0 \cdot A^{-x} \cdot A^{-y} \), where \(D_0 \) is a nominal or average CNT growth density for a nominal CNT growth temperature range, \(T_1 \leq T \leq T_2 \), with no electrical field applied to the substrate, \(X \) is approximately an integer (positive, negative or zero), and \(Y = \log \left[\frac{D_0}{D_1} \right] - X \) is a fraction satisfying \(|Y| < 1 \).

In step 142, a base electrical field value \(E_b \) oriented substantially perpendicular to a catalyst-coated surface of the substrate, is provided, which would produce a first intermediate density \(D_1 = D_0 \cdot A^{-x} \cdot A^{-y} \) (course scale), using the nominal CNT growth temperature range. In some instances, \(E_b = 0 \).
FIGS. 13A-13K illustrate some catalyst patterns that can be set down and for which the coarse scale/finite scale procedures discussed herein can be applied. FIGS. 13A and 13B illustrate periodic (or, optionally, non-periodic) patterns using regular (or, optionally, non-regular) polygons, such as quadrilaterals and pentagons. FIGS. 13C, 13D, 13E, 13F and 13G illustrate geometric characters, such as an arrow (13C), a keyhole (13D), a letter “L” or its reverse (13E), the letter “Y” (13F), and the numeral “S” (13G). FIG. 13H illustrates a spiral and FIG. 13I illustrates a circle or oval with complex sector patterning within. FIGS. 13J and 13K illustrate a non-regular (and non-convex) polygon and a non-regular curvilinear polygon.

Appendix 1. Estimation of Electrical Field Alignment Effect(s) On CNT Growth Density

Consider an array of CNTs grown in a hexagonal close packed area pattern as shown in FIG. 13 for ease of discussion. Assume that the CNT array is grown in the presence of a non-zero electrical field E (assumed uniform initially) that is oriented substantially perpendicular to a catalyst or substrate surface. Because of the longitudinal field E imposed on the CNT array, each CNT in this region will have an appropriately uniform, non-zero electrical charge γE induced at the exposed end of the CNT. A central site CS in the array will be surrounded by: (1) a first perimeter $P(1)$ containing 6 other CNT sites, each located at a distance r from CS; (2) a second perimeter $P(2)$ containing 12 other CNT sites, each located at a distance $2r$ from CS; . . . ; and (M) an mth perimeter $P(M)$ (not shown for M=2) containing 6-M other CNT sites, each located at a distance Mr from CS. The interaction force between the induced charge at CS and the similar charge at the surrounding $3M(M+1)$ sites can be expressed as

$$\Sigma(E;CS)-\rho E_{0}^2\sum_{M}[6/(2r)^{2}+12/(2r)^{2}+\ldots+6/(M)^{2}]/(M)^{r}]/(M)^{r}/(M)^{r}, \quad (A-1)$$

where E_{0} (proportional to electrical field strength) and ρ_{e} are values with appropriate units and $\gamma (=0.577 \ldots)$ is the Euler-Mascheroni constant. The area density of CNTs on the site S as shown is

$$\rho=\text{area density}=[1+6+16+26+6+\ldots+66]/(\pi/3)/\sqrt{(M)^{r}} \quad \rho_{e}, \quad (A-2)$$

for sufficiently large values of M. Equation (A-1) may be restated as

$$\Sigma(E;CS)=\rho_{e}^{2}\sum_{M}[1/(M)^{r}]/(M)^{r} \quad \rho_{e}^{2} \quad (A-3)$$

which establishes an approximate relationship between area density ρ and the interaction between induced charges on neighboring CNTs. If this computation is repeated for each hexagon node in the array in FIG. 11 (taking care not to double count), the total interaction of induced charges on the CNT exposed ends will have an approximate form

$$\Sigma(E;\text{Total})=\rho_{e}^{2}\sum_{M}[a(M)/1/(M)^{r}]/(M)^{r} \quad (A-4)$$

where the function $a(M)$ is weakly dependent upon M, and thus upon the diameter of the site S.

The phase space probability function associated with the induced electrical charge interactions will have an approximate form

$$\exp[-\Theta]\exp[-\Theta F p] \quad (A-5)$$

where Θ is a factor depending upon the ambient environment (e.g., temperature, surface coating material) and F is a value proportional to field strength magnitude or strength $|E|$ and weakly dependent upon the diameter of the site S. Thus, for a fixed electrical field strength $|E|$, the phase space probability decreases exponentially with increasing area density.

The preceding development assumes presence of a close packed hexagonal CNT array, which arguably (1) is the most efficient array pattern and (2) has the smallest total interaction energy associated with the array pattern. The actual pattern will likely differ from a hexagonal close packed pattern and will thereby have a greater total interaction $\Sigma(E;\text{total})$ and a smaller phase space probability function $\exp[-\Theta F p]$, with a dependence upon average area density that is qualitatively similar to the conclusions drawn from Eq. (A-5).

What is claimed is:

1. A method for control of growth density of carbon nanotubes on a substrate, the method comprising:
 - providing a substrate, with at least one surface coated with a catalyst that enhances growth of carbon nanotubes ("CNTs") thereon;
 - providing a nominal or average growth density value D_0 for carbon nanotubes ("CNTs") grown in a nominal temperature range, $T_1 \leq T \leq T_2$, and a desired CNT growth density value D_1, with $D_1 \leq D_0$;
 - representing a logarithm of a ratio of average growth density value D_0 divided by desired growth density value D_1 as a value $\log_{10} \{D_0/D_1\}=X-Y$, where X is approximately an integer and $Y=\log_{10} \{D_0/D_1\}=X$ has a magnitude Y no greater than about 1, where A is a selected logarithm base value at least equal to about 2;
 - imposing an electrical field having a value $E=E_0$, adjacent to the catalyst-coated substrate surface, where the field is oriented substantially perpendicular to the catalyst-coated substrate surface and adjacent to the substrate surface, for which imposition of the electrical field E_0, and growth of the CNTs in the nominal temperature range, $T_1 \leq T \leq T_2$, will produce CNTs having an average growth density of $D_1=10^{A-Y}$;
 - providing at least one feed gas comprising C_mH_{n+1}, where $m=1$ and $m \geq 2$, adjacent to the substrate, where at least one feed gas is heated to a temperature T within an adjusted temperature range, $T_0 \leq T \leq T_1$, having a lower temperature value T_0 and an upper temperature range T_1 that is at least equal to T_2 for which growth of CNTs in the adjusted temperature range with no electrical field imposed will produce CNTs having an average growth density of $D_1=10^{A-Y}$; and transporting the heated feed gas across the catalyst-coated surface, allowing at least a portion of the heated feed gas to decompose to provide two or more C particles, and allowing at least a portion of the C particles to form an array of CNTs having an average CNT density of about D_1 in a selected region of the catalyst-coated substrate surface.

2. The method of claim 1, further comprising:
 - providing a nominal CNT growth density value $D_0=\Sigma(|E_0|=0,T_0 \leq T \leq T_2)$ greater than said density value D_1, for an array of CNTs grown, using said feed gas heated in a second selected temperature range, $T_2 \leq T \leq T_2$, with no electrical field imposed at said catalyst-coated substrate surface; and
 - choosing said base electrical field magnitude $|E_0|$ so that said average CNT growth density $D(|E_0|,T_2 \leq T \leq T_2)$ satisfies $\log_{10} \{D(|E_0|,T_2 \leq T \leq T_2)/D_0\} \leq 1$.

3. The method of claim 1, further comprising choosing said feed gas to include at least one of CH₄, C₂H₄ and C₂H₂.

4. The method of claim 1, further comprising choosing said feed gas to include at least one of CH₄, C₂H₄ and C₂H₂.

5. The method of claim 1, further comprising choosing said feed gas to include at least one of CH₄, C₂H₄ and C₂H₂.

6. A method for control of growth density of carbon nanotubes on each of N regions, numbered n=1, ..., N (N≥2) on a substrate, the method comprising:

 - providing a substrate, with at least one surface coated with a catalyst that enhances growth of carbon nanotubes ("CNTs") thereon;
 - providing a nominal or average growth density value D₀ for carbon nanotubes ("CNTs") grown in a nominal temperature range, T₁≤T≤T₂, and a desired CNT growth density value D₁(n) for region number n, with D₁(n)≤D₀, where for at least two regions, number n₁ and n₂, D₁(n₁)≠D₁(n₂);
 - representing a logarithm of a ratio of average growth density value D₀ divided by desired growth density value D₁(n) as a value log₂[D₀/D₁(n)]=X(n)+Y(n), where X(n) is approximately an integer and Y(n)=log₂[D₀/D₁(n)]-X(n) has a magnitude |Y(n)| no greater than about 1, where A is a selected logarithm base value at least equal to about 2;
 - imposing an electrical field having a value E=E_b(n) adjacent to and in the regions number n=1 and n=n₂, where the field is oriented substantially perpendicular to the catalyst-coated substrate surface and adjacent to the substrate surface, for which imposition of the electrical field E_b(n), and growth of the CNTs in the nominal temperature range, T₁≤T≤T₂, will produce CNTs having an average growth density of D₁(n)=D₀A⁻ⁿₓ(n), for at least the first and second regions, number n₁ and n₂, providing at least a first feed gas comprising C₄H₁₀, and a second feed gas comprising C₅H₁₀, respectively, where m₁=1, m₂=1, 2≤k₁≤2m₁+1 and 2≤k₂≤2m₂+2, adjacent to the substrate, where each of the first and second feed gases is heated to a temperature T within an adjusted temperature range, Tₑ₁(n)≤T≤Tₑ₂(n), having a lower temperature value Tₑ₁(n) and an upper temperature range Tₑ₂(n) that is at least equal to Tₑ₁(n), for which growth of CNTs in the adjusted temperature range with no electrical field imposed for regions n=n₁ and n=n₂ will produce CNTs having an average growth density of D₁(n)=D₀A⁻ⁿₓ(n), and where the first feed gas and the second feed gas may be the same or may differ from each other;
 - transporting the heated first feed gas and the heated second feed gas across the regions n=n₁ and n=n₂, respectively, allowing at least a portion of the heated first feed gas and the second feed gas to decompose to provide two or more C particles, and allowing at least a portion of the C particles to form an array of CNTs having an average CNT density of about D₁(n) in the regions number n=n₁ and n=n₂, respectively, of the substrate surface.

7. The method of claim 6, further comprising:

 - providing a nominal CNT growth density value D₀=D (|E|=0,T₁≤T≤T₂) greater than said density value D₁(n), for an array of CNTs grown in at least one of said regions number n, using said first feed gas heated in said temperature range, T₁≤T≤T₂, with no electrical field imposed at said substrate surface; and
 - choosing said base electrical field magnitude |E_b(n)| so that said average CNT growth density D₁(n) is less than said density value D₁(n).

8. The method of claim 6, further comprising choosing said temperature range T₁≤T≤T₂ to be included in a temperature range 650° C.≤T≤1100° C.

9. The method of claim 6, further comprising choosing at least one of said first feed gas and said second feed gas to include at least one of CH₄, C₂H₄ and C₂H₂.

10. The method of claim 6, further comprising choosing said feed gas to be different from said second feed gas.

11. The method of claim 1, further comprising choosing said first and second feed gases to be the same feed gas.

12. The method of claim 6, further comprising choosing said first feed gas to be different from said second feed gas.

13. The method of claim 6, further comprising providing said first feed gas at said temperature in said range Tₑ₁(n₁)≤T≤Tₑ₂(n₁) in said region n₁, and subsequently providing said second feed gas at said temperature in said range Tₑ₁(n₂)≤T≤Tₑ₂(n₂) in said region n₂, where Tₑ₁(n₁)≠Tₑ₂(n₂).

14. The method of claim 13, further comprising providing said first feed gas at said temperature in said range Tₑ₁(n₁)≤T≤Tₑ₂(n₁) in said region n₁, and subsequently providing said second feed gas at said temperature in said range Tₑ₁(n₂)≤T≤Tₑ₂(n₂) in said region n₂, where Tₑ₁(n₁)≠Tₑ₂(n₂) and Tₑ₁(n₂)≠Tₑ₂(n₁), where Tₑ₁(n)=Tₑ₂(n).