
A Game-Theoretic Approach to Branching Time
Abstract-Check-Refine Process

Yi Wang
The University of Tokyo
Meguro-ku, Tokyo, Japan

wangyi@graco.c.u-tokyo.ac.jp

Tetsuo Tamai
The University of Tokyo
Meguro-ku, Tokyo, Japan

tamai@graco.c.u-tokyo.ac.jp

Abstract

Since the complexity of software systems continues to grow, most engineers face two serious
problems: the state space explosion problem and the problem of how to debug systems. In this pa-
per, we propose a game-theoretic approach to full branching time model checking on three-valued
semantics. The three-valued models and logics provide successful abstraction that overcomes the
state space explosion problem. The game style model checking that generates counterexamples can
guide refinement or identify validated formulas, which solves the system debugging problem. Fur-
thermore, output of our game style method will give significant information to engineers in detecting
where errors have occurred and what the causes of the errors are.

1 Introduction

Model checking is a major technique for verifying finite state systems [5]. The procedure normally uses
an exhaustive search of the state space of the system to determine whether some specification is satisfied
or not. Given sufficient resources, the procedure will always terminate with a yes/no answer. Since the
size of a given system (concrete model) is usually very large, the state explosion problem may occur in
model checking such a model. Abstraction as an indispensable means to reduce the state space makes
model checking feasible [4, 5]. The traditional abstraction method uses two-valued semantics. It brings
about two kinds of situations: under-approximation and over-approximation. In under-approximation,
the abstract model exhibits behavior that exists in the concrete model but may miss some of its behavior.
On the other hand, over-approximation may bring in additional behavior that does not exist in the con-
crete model. Unfortunately both of these two-valued abstractions have the unsoundness problem. That is
for every existential property satisfied by an under-approximate model also holds in the concrete model
but universal properties (for example safety) do not necessarily hold, and for every universal property
satisfied by an over-approximate model also holds in the concrete model but existential properties (for
example liveness) do not necessarily hold. Such unsoundness makes abstraction less useful and the state
space explosion problem still remains. In the past ten years, three-valued models and logics have been
studied. The main benefit of this approach is that both universal and existential properties are guaran-
teed to be sound. The three-valued semantics evaluates a formula to either true, false or an indefinite
value as the third value. In Kleene’s strongest regular three-valued propositional logic, the third value is
understood as unknown that means it can take either true or false. The three-valued models, or modal
transition systems, contain may-transitions which over-approximate transitions of the concrete model,
and must-transitions which under-approximate transitions of the concrete model. To ensure logical con-
sistency, truth of universal formulas is then examined over may-transitions, whereas truth of existential
formulas is examined over must-transitions. We follow this approach.

Full branching time logic CTL∗ as an expressive fragment [6, 2, 5] of µ-calculus can describe prop-
erties in computation trees. There has been much work on model checking for sublogic of CTL∗ such as
LTL and CTL [11, 3], but little on CTL∗. This paper introduces ideas for full branching time temporal
logic CTL∗.

There are several approaches to studying computations: computational model approach, algebraic
approach, logical approach and game-theoretic approach. In the field of model checking, one uses the

E. Denney, D. Giannakopoulou, C.S. Păsăreanu (eds.); The First NASA Formal Methods Symposium, pp. 26-35

26

Game-based Approach to Abstract-Check-Refine Yi Wang and Tetsuo Tamai

logical approach to capture temporal ordering of events, the algebraic approach to model examined sys-
tems, and the computational model approach and the game-theoretic approach to do model checking. A
typical model checking approach is the automata-theoretic approach. Kupferman, Vardi and Wolper have
shown how to solve the model checking problem for branching time by using alternating automata [9].
In their approach the model checking problem is reduced to a non-emptiness checking problem of the
alternating automaton composed as a product between a Kripke structure and an automaton expressing
the interesting property. The game-theoretic approach to model checking can also be viewed as simu-
lating alternating automata [10, 12]. Their winning conditions correspond to a special Rabin acceptance
condition of the automata approach. In contrast to the automata-theoretic model checking approach it is
not necessary to compose automata for the properties.
Related Work. Martin Lange and Colin Stirling proposed Model checking games for CTL∗ in [10].
They described a two-player CTL∗ focus game for Kripke structure on Boolean semantics. We pro-
pose a generalization of the two-player game for Modal Transition System on three-valued seman-
tics. There were many papers of three-valued abstraction that proposed by Godefroid, Jagadeesan and
Bruns [1, 7, 8]. They showed advantages of three-valued models. In this paper, we not only discuss
advantages of three-valued models but also analyze the returning information for debugging, proving
or refining such models. Sharon Shoham and Orna Grumberg proposed muti-valued games for µ-
calculus [12]. We investigate games for CTL∗ which is the most expressive fragment of µ-calculus.
To sum up, the contribution of this paper are: (1) new game-based approach to three-valued model
checking, (2) new game-based algorithm showing winning strategy of each player for solving the game,
(3) new analysis based on focus game for debugging, proving or refining abstract models.

2 Preliminaries

We introduce key notions behind the framework of abstraction and model checking. Let AP be a finite
set of atomic propositions. We define that an atomic proposition p is in AP if and only if its negation ¬p
is in AP. In the rest of this paper we suppose that all models, both abstract and concrete, share the set
AP.
The full branching time logic CTL∗ formulas are composed of propositions, negation, Boolean connec-
tives, path quantifiers and temporal operators.
Definition 1 (Syntax of CTL∗) There are two types of formulas in CTL∗: state formulas and path
formulas. The syntax of state formulas is given by the following rules:
If p is an atomic proposition, then p is a state formula.
If ψ1 and ψ2 are state formulas, then ¬ψ1, ψ1∨ψ2 and ψ1∧ψ2 are state formulas.
If ψ is a path formula, then Eψ and Aψ are state formulas.
If ψ is a state formula, then ψ is also a path formula.
If ψ1,ψ2 are path formulas then ¬ψ1,ψ1∨ψ2,ψ1∧ψ2,Xψ1,Fψ1,Gψ1,ψ1Uψ2, and ψ1Rψ2
are path formulas.
The F , G temporal operators can be replaced with U,R operators by rules: Fψ = true Uψ , Gψ =
false Rψ . The set of subformulas Sub(ϕ) for a given ϕ is defined in the usual way, except that
- Sub(ϕUψ) := {ϕUψ,X(ϕUψ),ϕ ∧X(ϕUψ),ψ ∨ (ϕ ∧X(ϕUψ))}∪Sub(ϕ)∪Sub(ψ),
- Sub(ϕRψ) := {ϕRψ,X(ϕRψ),ϕ ∨X(ϕRψ),ψ ∧ (ϕ ∨X(ϕRψ))}∪Sub(ϕ)∪Sub(ψ).
We consider that every CTL∗ formula begins with a path quantifier “A” to ensure that it is a state for-
mula. The following semantics of CTL∗ shows that this is not a restriction because of the equivalence
Q1Q2ϕ = Q2ϕ for Q1,Q2 ∈ {A,E}.
Definition 2 (Semantics of CTL∗) Suppose that π i denotes the suffix of π starting at si. Let ψ be CTL∗

formula and M be a model. If ψ is a state formula, the notation M,s |= ψ means that ψ holds at state s

27

Game-based Approach to Abstract-Check-Refine Yi Wang and Tetsuo Tamai

in model M. Similarly, if ψ is a path formula, M,π |= ψ means that ψ holds along path π in model M.
The relation |= is defined inductively as follows (assuming that ψ1 and ψ2 are state formulas and ψ ′

1 and
ψ ′

2 are path formulas):

M,s |= p ⇐⇒ p ∈ L(s). M,s |= ¬ψ1 ⇐⇒ M,s 6|= ψ1.
M,s |= ψ1∨ψ2 ⇐⇒ M,s |= ψ1 or M,s |= ψ2. M,s |= ψ1∧ψ2 ⇐⇒ M,s |= ψ1 and M,s |= ψ2.
M,s |= Eψ ′

1 ⇐⇒ there is a path π from s M,s |= Aψ ′
1 ⇐⇒ for every path π starting

such that M,π |= ψ ′
1. from s, M,π |= ψ ′

1.
M,π |= ψ1 ⇐⇒ s is the first state of π M,π |= ¬ψ ′

1 ⇐⇒ M,π 6|= ψ ′
1.

and M,s |= ψ1. M,π |= ψ ′
1∨ψ ′

2 ⇐⇒ M,π |= ψ ′
1 or M,π |= ψ ′

2.
M,π |= ψ ′

1∧ψ ′
2 ⇐⇒ M,π |= ψ ′

1 and M,π |= ψ ′
2. M,π |= Xψ ′

1 ⇐⇒ M,π1 |= ψ ′
1.

M,π |= Fψ ′
1 ⇐⇒ there exists a k ≥ 0 M,π |= Gψ ′

1 ⇐⇒ for all i ≥ 0, M,π i |= ψ ′
1.

such that M,πk |= ψ ′
1. M,π |= ψ ′

1Uψ ′
2 ⇐⇒ there exists a k ≥ 0 such that

M,π |= ψ ′
1Rψ ′

2 ⇐⇒ for all j ≥ 0, if for every i < j M,πk |= ψ ′
2 and for all

M,π i 6|= ψ ′
1 then M,π j |= ψ ′

2. 0 ≤ j < k, M,π j |= ψ ′
1.

Consider that every concrete model is given as a Kripke structure (KS for short) over AP, denoted by
Mc. A KS is four tuple 〈Sc,S0

c ,Rc,Lc〉 where Sc is a finite set of states. S0
c ⊆ Sc is the set of initial states.

Rc ⊆ Sc×Sc is a transition relation that must be total, that is, for every state sc ∈ Sc there is a state s′ ∈ Sc

such that sc → s′c ∈ Rc. Lc : Sc → 2AP is a labeling function such that for every state s and every p ∈ AP,
p ∈ Lc(s) iff ¬p 6∈ Lc(s). [Mc |= ϕ] = tt (= ff) or Mc |= ϕ (Mc 6|= ϕ) means that Mc satisfies (refutes) the
CTL∗ formula ϕ .

An abstraction (Sa,γ) for Sc consists of a finite set of abstract states Sa and a total concretization
function γ : Sa → 2Sc that maps each abstract state to the (nonempty) set of concrete states it represents.
The function α : 2Sc → Sa as the inverse of γ is said to be abstraction function. An abstract model Ma

is said to be on two-valued semantics if it is a KS model. An abstract model is said to be on three-
valued semantics if it is a Modal Transition System (MTS) model [1, 7, 8]. MTSs contain two types of
transitions: may-transitions and must-transitions.
Definition 3 A Modal Transition System Ma over AP is a tuple 〈Sa,S0

a,Rmay,Rmust ,La〉, where Sa is a
nonempty finite set of states, S0

a ⊆ Sa is the set of initial states, Rmay ⊆ Sa× Sa and Rmust ⊆ Sa× Sa are
transition relations such that Rmust ⊆ Rmay. La : Sa → 2AP.

Rmay is the set of all possible transitions and Rmust is the set of all inevitable transitions. Note that
Rmust ⊆ Rmay, because all inevitable transitions are possible transitions. Consider a concrete KS Mc and
an abstract MTS Ma of Mc. Let (Sa,γ) be the three-valued abstraction between Mc and Ma. Labelings in
each state in Sa are constructed by the following rules:

p ∈ Lc(s)∧¬p ∈ Lc(s′)
p 6∈ La(sa)

p ∈ Lc(s)∧ p ∈ Lc(s′)
p ∈ La(sa)

¬p ∈ Lc(s)∧¬p ∈ Lc(s′)
¬p ∈ La(sa)

where s,s′ ∈ γ(sa). Note that it is possible that neither p nor ¬p is in La(sa) though either p or ¬p must
be in Lc(sc). After state abstraction, transitions in Ma can be constructed by using the following rules:

∃s1 ∈ γ(sa),∃s2 ∈ γ(s′a) : s1 → s2

sa
may→ s′a

∀s1 ∈ γ(sa),∃s2 ∈ γ(s′a) : s1 → s2

sa
must→ s′a

Other constructions of abstract models are based on Galois connections, which can be found in [7].
The three-valued semantics of CTL∗ over MTSs, denoted [M |=3 ϕ], preserving both satisfaction and
refutation from the abstract model Ma to the concrete model Mc. However, a new truth value (the third
value unknown), denoted by ⊥, is introduced meaning that the truth value over the concrete model is not

28

Game-based Approach to Abstract-Check-Refine Yi Wang and Tetsuo Tamai

S0

S1

S2

S3 S4

S5
P

S7
S6V

P

P

V

V

P P

V

PV

V

PV

P

V

S0

May-transition

Must-transition

S1,5,7

S3,4 S2

P

P

S6PV

V

P

V

Figure 1: Example of Three-Valued Abstraction

known that can either be the truth value true or false.
Example 4 Let AP = {p,¬p,v,¬v}. Figure 1 shows a concrete KS model Mc (left) and its abstract
MTS model Ma (right). Let (Sa,γ) be an (three-valued) abstraction, where Sa = {s0,s2,s3,4,s1,5,7,s6}
and γ(s0) = {s0}; γ(s2) = {s2}; γ(s3,4) = {s3,s4}; γ(s1,5,7) = {s1,s5,s7}; γ(s6) = {s6}.

3 Generalization of Focus Game

Model checking games for CTL∗ over two-valued models are two-player games, called focus game,
which is proposed by Lange and Stirling [10]. There are two players in the focus game: the first player
∀ and the second player ∃. ∀’s task is to show that a formula is unsatisfied, while ∃’s task is to show the
converse. In the two-player focus game, the set of configurations for a model (system) M and a formula ϕ ,
written in CTL∗, is con f (M,ϕ) = {∀,∃,⊥}×S×Sub(ϕ)×2Sub(ϕ). A configuration is written p,s, [ψ],Φ
where p is a player called the path player, s ∈ S, ψ ∈ Sub(ϕ) and Φ ⊆ Sub(ϕ). Here ψ is said to be in
focus and Φ are called side formulas. If p denotes a player then p̄ denotes the other one in any round. A
play between player p and p̄ is a sequence of configurations. There are eighteen rules of the form

p,s, [ϕ],Φ
p′,s, [ϕ ′],Φ′ p′′

for transforming configurations, where p, p′, p′′ ∈ {∀,∃,⊥} denote players. We follow these definitions
and propose a three-player game for evaluating a CTL∗ formula ϕ on an abstract MTS model Ma with
respect to three-valued semantics. We generalize the game by inserting a new player (the third player) ⊥
and setting the game played in two rounds. Without loss of generality, we match ∀ vs. ⊥ in the first round
and ∃ vs. ⊥ in the second round. We define that ∀ wins the game if ∀ wins the first round; ∃ wins the
game if ∃ wins the second round; ⊥ wins the game if ⊥ wins both rounds. At each configuration the set
of side formulas together with the formula in focus can be understood as a disjunction(resp. conjunction)
of formulas in case the path player is ∀(resp. ⊥) in the first round, ⊥(resp. ∃) in the second round.

A play for model M with starting state s and a formula begins with the configuration ∀,s, [ϕ] in the
first round and with the configuration ⊥,s, [ϕ] in the second round. There are eighteen rules in the two-
player focus game.
Path-chosen rules : Discarding rules :

(1)
p,s, [Aϕ],Φ
∀,s, [ϕ]

(2)
p,s, [Eϕ],Φ
∃,s, [ϕ]

(3)
p,s, [ϕ],Qψ,Φ

p,s, [ϕ],Φ
p̄ (4)

p,s, [ϕ],q,Φ

p,s, [ϕ],Φ
p̄

29

Game-based Approach to Abstract-Check-Refine Yi Wang and Tetsuo Tamai

Boolean-connection rules :

(5)
∀,s, [ϕ0∧ϕ1],Φ
∀,s, [ϕi],Φ

∀ (6)
∀,s, [ϕ0∨ϕ1],Φ
∀,s, [ϕi],ϕ1−i,Φ

∃ (7)
∃,s, [ϕ0∨ϕ1],Φ
∃,s, [ϕi],Φ

∃ (8)
∃,s, [ϕ0∧ϕ1],Φ
∃,s, [ϕi],ϕ1−i,Φ

∀

Unfolding rules :

(9)
p,s, [ϕUψ],Φ

p,s, [ψ ∨ (ϕ ∧X(ϕUψ))],Φ
(10)

p,s, [ϕRψ],Φ
p,s, [ψ ∧ (ϕ ∨X(ϕRψ))],Φ

Progress rules :

(11)
∀,s, [Xψ],ϕ0∧ϕ1,Φ

∀,s, [Xψ],ϕi,Φ
∀(12)

∀,s, [Xψ],ϕ0∨ϕ1,Φ

∀,s, [Xψ],ϕ0,ϕ1,Φ
(13)

∃,s, [Xψ],ϕ0∨ϕ1,Φ

∃,s, [Xψ],ϕi,Φ
∃(14)

∃,s, [Xψ],ϕ0∧ϕ1,Φ

∃,s, [Xψ],ϕ0,ϕ1,Φ

(15)
p,s, [Xχ],ϕUψ,Φ

p,s, [Xχ],ψ ∨ (ϕ ∧X(ϕUψ)),Φ
(16)

p,s, [Xχ],ϕRψ,Φ

p,s, [Xχ],ψ ∧ (ϕ ∨X(ϕRψ)),Φ

To apply our three-player game, we restrict moves for different players. Since transitions may take place
only in configurations with subformulas of the form Xψ , it is the only case where the rule (17) need to
be applied to may-transitions and must-transitions.
∀ and ∃ move on must-transitions: ⊥ moves on may transitions:

(17a)
p,s, [Xϕ0],Xϕ1, · · · ,Xϕk

p, t, [ϕ0],ϕ1, · · · ,ϕk
p ∈ {∀,∃},s must→ t (17b)

⊥,s, [Xϕ0],Xϕ1, · · · ,Xϕk

⊥, t, [ϕ0],ϕ1, · · · ,ϕk
⊥,s

may→ t

The special rule (Change focus)

(18)
p,s, [ϕ],ψ,Φ

p,s, [ψ],ϕ,Φ
p̄

A move in a play consists of two steps. First the path player and the focus determines which of the
rules (1) – (17a) or (1) – (17b) apply, and hence which player makes the next choice. After that the path
player’s opponent has the chance to reset the focus by using rule (18). A play is finished after a full move
if it has reached one of the following configurations (finish conditions).
1. p,s, [q],Φ.
2. C = ∃,s, [ϕUψ],Φ after the play already went through C and ∀ never applied (18) in between.
3. C = ∀,s, [ϕRψ],Φ after the play already went through C and ∃ never applied (18) in between.
4. p,s, [ϕ],Φ for the second time possibly using rule (18) in between.
6. ∀,s, [Xψ],Xϕ1, · · · ,Xϕk and the rule (17a) can not be applied.
7. ∃,s, [Xψ],Xϕ1, · · · ,Xϕk and the rule (17a) can not be applied.
The winning criteria for three-player game are:
If the rule (17b) has been applied in a play and the play ends with one of the above finish conditions then
⊥ wins, else
In the first round (∀ vs. ⊥)
1. When a play ends with the first finish condition, ∀ wins if ¬q ∈ L(s), otherwise ⊥ wins.
2. When a play ends with the second finish condition, ∀ wins.
3. When a play ends with the third finish condition, ⊥ wins.
4. When a play ends with the fourth finish condition, the path player p wins if the second
or the third finish condition does not apply.
5. Whenever a play ends with the fifth or the sixth finish condition, ⊥ wins.
In the second round (∃ vs. ⊥)

30

Game-based Approach to Abstract-Check-Refine Yi Wang and Tetsuo Tamai

1. When a play ends with the first finish condition, ∃ wins if q ∈ L(s), otherwise ⊥ wins.
2. When a play ends with the second finish condition, ⊥ wins.
3. When a play ends with the third finish condition, ∃ wins.
4. When a play ends with the fourth finish condition, the path player p wins if the second
or the third finish condition does not apply.
5. Whenever a play ends with the fifth or the sixth finish condition, ⊥ wins.
The second round of the game is not always played. It is played if ⊥ wins the first round, else the game
is over and ∀ wins the game. Note that the game on three-valued semantics is an unfair game. Players ∀
and ∃ cannot move on all may-transitions whereas ⊥ can move.
Let ΓCT L∗(M,s,ϕ) be a game over M for a CTL∗ formula ϕ . A game ΓCT L∗(M,s,ϕ) can be described as
trees of all possible plays.
Definition 5 A (game) tree is said to be a winning tree for player p, if p wins every branch (play) in it.
We say that the player p wins or has a winning strategy for ΓCT L∗(M,s,ϕ) if p can force every play into
a configuration that makes p win the play. A player p wins a round if p wins all possible plays in that
round.
Example 6 Let ϕ = AX(p)∨EF(v) be a property that we want to check. Let Ma be the abstract model
given in figure 1. We show that ⊥ wins the game (⊥ wins both rounds) with the following winning trees.
The first round. The second round.

∀,s0, [ϕ]
∀,s0, [AX(p)],EF(v)

∀,s0, [AX(p)]
∀,s0, [X(p)]
∀,s3,4, [p]

∀,s0, [EF(v)],AX(p)
⊥,s0, [F(v)]

⊥,s0, [v∨XF(v)]
⊥,s0, [XF(v)]
⊥,s1,5,7, [F(v)]

⊥,s1,5,7, [v∨XF(v)]
⊥,s1,5,7, [v]

⊥,s0, [ϕ]
⊥,s0, [AX(p)],EF(v)
⊥,s0, [EF(v)],AX(p)

· · ·

⊥,s0, [EF(v)],AX(p)
∃,s0, [F(v)]

∃,s0, [v∨XF(v)]
∃,s0, [XF(v)]
∃,s1,5,7, [F(v)]

∃,s1,5,7, [v∨XF(v)]
∃,s1,5,7, [v]

4 Game-Based Algorithm

In the rest of this paper we assume that Mc, as a Kripke structure, represents a given concrete model
and Ma, a Modal Transition System, denotes the abstract model of Mc. Let ϕ be a CTL∗ formula that
represents the property we are interested in and ΓCT L∗(Ma,s,ϕ) be the three-player model checking game
on the abstract MTS Ma.

We propose a game-based model checking algorithm, called Mark Configuration, for solving the
game. Mark Configuration marks every configuration with one of symbols {∀,∃,⊥} in each round.
Let C = p,s, [ϕ] be the starting configuration. Mark Configuration runs recursively and finally marks
the starting configuration C with one of the three symbols.

Mark Configuration (the 1st round) Mark Configuration (the 2st round)
1. BEGIN Mark(C) 1. BEGIN Mark(C)
2. INITIAL : history = /0 ; 2. INITIAL : history = /0 ;
3.1 IF ϕ = Aψ THEN Mark(∀,s, [ψ]) 3.1 IF ϕ = Aψ THEN Mark(⊥,s, [ψ])
3.2 ELSE IF ϕ = Eψ THEN Mark(⊥,s, [ψ]) 3.2 ELSE IF ϕ = Eψ THEN Mark(∃,s, [ψ])
3.3 ELSE 3.3 ELSE
3.4 SWITCH(ϕ) 3.4 SWITCH(ϕ)
3.5 CASE 1 – CASE 6 ; 3.5 CASE 1 – CASE 6 ;
4. END 4. END

31

Game-based Approach to Abstract-Check-Refine Yi Wang and Tetsuo Tamai

From the syntax of CTL∗, six types of formula ϕ can be considered when it is neither started by A nor
E. That is ϕ = q | ψ1∧ψ2 | ψ1∨ψ2 | Xψ | ψ1Uψ2 | ψ1Rψ . Each of them corresponds to one case in this
algorithm. When the focus formula ϕ is q, ψ1∧ψ2 or ψ1∨ψ2, the configuration C’s mark is decided by
its children’s marks. Let C′

1,C
′
2 be configurations with subformula ψ1,ψ2, respectively. We represents

case 1 – 3 as follows.

1. C = p,s, [q] (where p ∈ {∀,∃,⊥})
If p wins in C then return p else return p̄;

2. C = p,s, [ψ1∧ψ2] (where p ∈ {∀,∃,⊥}).
if Mark(C′

1) = ∃ and Mark(C′
2) = ∃ then return ∃;

if Mark(C′
1) = ∀ or Mark(C′

2) = ∀ then return ∀;
if Mark(C′

1) = ∃ and Mark(C′
2) =⊥ or Mark(C′

1) =⊥ and Mark(C′
2) = ∃ then return ⊥;

3. C = p,s, [ψ1∨ψ2] (where p ∈ {∀,∃,⊥}).
if Mark(C′

1) = ∀ and Mark(C′
2) = ∀ then return ∀;

if Mark(C′
1) = ∃ or Mark(C′

2) = ∃ then return ∃;
if Mark(C′

1) = ∀ and Mark(C′
2) =⊥ or Mark(C′

1) =⊥ and Mark(C′
2) = ∀ then return ⊥;

The function must-next (may-next) is assumed to calculate all possible successors of a configuration by
one move from rules 17a (17b). The configuration C’s mark in case ϕ = Xψ is determined not just by
its children’s marks but also by who the current player is and which the current round is. We distinguish
different players in different rounds. The case 4 is as follows.

4a. C = ∀,s, [Xψ] (1st round) or ⊥,s, [Xψ] (2nd round).
if there is a C′ ∈ must-next(C) and Mark(C′) = ∀ then return ∀; if for all C′ ∈ must-next(C):
Mark(C′) = ∃ then return ∃; if there is C′ ∈ may-next(C): Mark(C′) =⊥ and for any other C′′ ∈
may-next(C): Mark(C′′) = ∃ or Mark(C′′) =⊥ then return ⊥;

4b. C =⊥,s, [Xψ] (1st round) or ∃,s, [Xψ] (2nd round).
if for all C′ ∈ may-next(C) : Mark(C′) = ∀ then return ∀; if there is a C′ ∈ must-next(C) and
Mark(C′) = ∃ then return ∃; if there is a C′ ∈ may-next(C) and Mark(C′) =⊥ and for any other
C′′ ∈ may-next(C): Mark(C′′) = ∀ or Mark(C′′) =⊥ then return ⊥;

To determine the configuration C’s mark in case ϕ = ψ1Uψ2 and case ϕ = ψ1Rψ , first we should look
for who is the path player in C. Next we check whether C is the starting configuration of a loop. The
variable history is used in recording checked configurations in loops on any path. The case 5, 6 are as
follows.

5a. C = p,s, [ψ1Uψ2]. 5b. C = p,s, [ψ1Uψ2]
(where p = ∀ in 1st round, p =⊥ in 2nd round) (where p =⊥ in 1st round, p = ∃ in 2nd round)
if C ∈ history then marks all C′ ∈ history with p; if C ∈ history then marks all C′ ∈ history with p̄;
history := /0; return p; history := /0; return p̄;
else history := {C}∪ history; else history := {C}∪ history;
Mark(p,s, [ψ2∨ (ψ1∧Xψ1Uψ2)]); Mark(p,s, [ψ2∨ (ψ1∧Xψ1Uψ2)]);

6a. C = p,s, [ψ1Rψ2] 6b. C = p,s, [ψ1Rψ2]
(where p = ∀ in 1st round, p =⊥ in 2nd round) (where p =⊥ in 1st round, p = ∃ in 2nd round)
if C ∈ history then marks all C′ ∈ history with p̄; if C ∈ history then marks all C′ ∈ history with p;
history := /0; return p̄; history := /0 ; return p;
else history := {C}∪ history; else history := {C}∪ history;
Mark(p,s, [ψ2∧ (ψ1∨Xψ1Rψ2)]); Mark(p,s, [ψ2∧ (ψ1∨Xψ1Rψ2)]);

32

Game-based Approach to Abstract-Check-Refine Yi Wang and Tetsuo Tamai

Proposition 7 (Terminating) The algorithm Mark Configuration always terminates.

Proof. The total number of all configuration can be calculated as |S| ·2|ϕ|. Every configuration is marked
by Mark Configuration only once.

Proposition 8 Assume that Mark Configuration marks all configurations in the graph of ΓCT L∗(Ma,s,ϕ).
The following two statements hold.
1. Every configuration C is marked with one of ∀, ∃, ⊥.
2. If a configuration C is marked with p ∈ {∀,∃,⊥} then p wins the (sub) game of ΓCT L∗(Ma,s,ϕ)
that is started from C.

Proof. The first statement follows from the fact that every case in Mark Configuration marks configu-
rations with one symbol and each case corresponds to one syntax element of the focus formula in C.
We show the second statement by the induction on structure of game tree that rooted by C. Without loss
of generality, assume that p ∈ {∀,∃,⊥} wins a game. When any winning tree of p consists of a single
configuration, since the case 1 can be applied, C is marked with the symbol p. When any winning tree
of p consists of an infinite sequence, in which the configuration C appears infinitely often, the focus
formula of C must be either of the form ψ1Uψ2 or ψ1Rψ2. Suppose that the focus formula is U-formula
and C is marked with ∀ or ⊥. According to the case 5a or case 5b, ∀ or ⊥ wins, since ψ2 never holds.
Suppose that the focus formula is R-formula and C is marked with ∃ or ⊥. According to the case 6a or
case 6b, ∃ or ⊥ wins, since ψ2 always holds. For any other structure of the game tree, there is at least a
next configuration C′ as a child of C that is marked with p. According to the remaining cases in Mark
Configuration, C’s mark is decided by the mark of C′ in each corresponding case. By the induction
hypothesis, C′ is marked with p and it is deduced that p wins the game started by C.

Proposition 9 Consider a game has been marked by Mark Configuration. Let Cs be the starting
configuration marked with χ(∈ {∀,∃,⊥}). For any configuration Ci, if Ci is marked with χ and may-
next(Ci) 6= /0 then there is at least one configuration C j such that C j ∈ may-next(Ci) and C j is marked
with χ .

Proof. This follows from the observation that the Mark Configuration recursively marks every con-
figuration depending on the marks of its child vertices. The starting configuration is guaranteed to be
marked eventually by the exhaustiveness of the search.

Lemma 10 The following statements hold.
1. Every play terminates.
2. Every play has a uniquely determined winner.
3. item For every round of ΓCT L∗(Ma,s,ϕ) one of the players has a winning strategy.
4. One player wins the game iff the other players do not win.

Proof. Lange and Stirling [10] showed that these four statements hold in two-player games. In ΓCT L∗(Ma,s,ϕ),
each round can be seen as a two-player game with more constraints. In particular, rules (17a) and (17b)
do not introduce new moves to every player. Therefore, these four statements hold in each round, which
derives this lemma.

Theorem 11 (Soundness)
1. ∀ wins ΓCT L∗(Ma,s,ϕ) ⇒ Mc 6|= ϕ .
2. ∃ wins ΓCT L∗(Ma,s,ϕ) ⇒ Mc |= ϕ .
3. ⊥ wins ΓCT L∗(Ma,s,ϕ) ⇒ both Mc |= ϕ and Mc 6|= ϕ are possible.

33

Game-based Approach to Abstract-Check-Refine Yi Wang and Tetsuo Tamai

Proof. We now show the statement 1 (statement 2). Every play in ∀’s (∃’s) winning tree terminates either
in a loop or at a terminating configuration. If it terminates in a loop then there exists a configuration
appearing twice and during the loop ⊥ (∃) cannot (can) win with the finish condition 2 or 4 (3 or 4).
Otherwise it terminates at a configuration in which ∀ (∃) wins with the finish condition 1. According to
our constraint and winning criteria, the rule (17b) cannot be applied in whole ∀’s (∃’s) winning tree. It
implies that all plays in winning tree are based on must-transition in Ma. Therefore, ∀ (∃) can also win
on the model Mc. That is Mc 6|= ϕ (Mc |= ϕ).
We show the statement 3. ⊥ has winning trees for both rounds. There must be a play that either terminates
at a terminating configuration, or uses the rule (17b) that is based on a transition in Rmay−Rmust of Ma.
Suppose it terminates at a configuration, denoted by p,sa, [q],Φ, with finish condition 1. According to
abstraction, there are two states sc,s′c ∈ γ(sa) such that q ∈ Lc(sc) and ¬q ∈ Lc(s′c), or ¬q ∈ Lc(sc) and
q∈ Lc(s′c). Hence, both ∀ wins in Mc and ∃ wins in Mc are possible. Information is not sufficient to show
Mc |= ϕ or Mc 6|= ϕ .

Lemma 12 The following two statements hold.
1. Mc |= ϕ ⇒ [Ma |=3 ϕ] = tt or [Ma |=3 ϕ] =⊥.
2. Mc 6|= ϕ ⇒ [Ma |=3 ϕ] = ff or [Ma |=3 ϕ] =⊥.

Proof. By the tree-valued abstraction, they are trivial.

Lemma 13 The following three statements hold.
1. [Ma |=3 ϕ] = tt ⇒ ∃ wins ΓCT L∗(Ma,s,ϕ).
2. [Ma |=3 ϕ] = ff ⇒ ∀ wins ΓCT L∗(Ma,s,ϕ).
3. [Ma |=3 ϕ] =⊥ ⇒ ⊥ wins ΓCT L∗(Ma,s,ϕ).

Proof. We show a winning strategy based on Mark Configuration for each player p ∈ {∀,∃,⊥}. As-
sume that Mark Configuration has been applied in the game ΓCT L∗(Ma,s,ϕ). Let p ∈ {∀,∃,⊥} be a
player and C be the current configuration. It does not matter whether p is the path player in C or not.
Since ⊥ can play ∃’s role in the first round and can play ∀’s role in the second round, we distinguish ⊥
from other players.
∀’s and ∃’s winning strategies: If there is a next configuration C′ of C such that C′ is marked with symbol
p, then select C′ by using one of rules 1 – 16, 17a or 18; Else do nothing.
⊥’s winning strategy: If there is a next configuration C′ of C such that C′ is not marked with the mark of
⊥’s opponent, then select C′ by using one of rules 1 – 16, 17b or 18; Else do nothing.
We use Proposition 8, 9 to prove that such strategy is a winning strategy for each corresponding player.
Proposition 8 shows that a player p wins the game ΓCT L∗(Ma,s,ϕ) if the starting configuration is marked
with p. Proposition 9 shows that for any configuration C marked with symbol p, there is a C′ such that
C′ is a next configuration of C and it is also marked with p. By the definition of each player’s task, we
have ∃ wins if [Ma |=3 ϕ] = tt, ∀ wins if [Ma |=3 ϕ] = ff, ⊥ wins if [Ma |=3 ϕ] =⊥.

Theorem 14 (Completeness)
- Mc |= ϕ ⇒ ∃ wins ΓCT L∗(Ma,s,ϕ) or ⊥ wins.
- Mc 6|= ϕ ⇒ ∀ wins ΓCT L∗(Ma,s,ϕ) or ⊥ wins.

Proof. It directly follows from the Lemma 12 and 13.

Refinement issues. The main advantage of game-based model checking approach is availability of more
precise debugging information on the examined system. Using games is not necessary to create an addi-
tional debugger, because the game-based approach annotates each state on the proofs/counterexamples
or refinements with a sub-formula of the interesting temporal formula ϕ that is true/ false or unknown in

34

Game-based Approach to Abstract-Check-Refine Yi Wang and Tetsuo Tamai

that state. The annotating sub-formulas being true/false or unknown in the respective states, provide the
reason for ϕ to be true/false or unknown. By analyzing such information we can figure out where errors
have occurred and what the causes of the errors are.
Complexity issues. The best currently known complexity for CTL∗ model checking is in PSPACE time.
So is our algorithm. Let all sub-games are started from formula Aψ or Eψ . Mark Configuration can be
applied in every sub-tree in each round. There are at most |S| · |ϕ|/2 sub-games. Mark Configuration
might have to be invoked |S| · |ϕ|/2 times. After a sub-game, the space it needs can be released. Thus
the algorithm for each round as a two-player game costs PSPACE time. The total complexity is the same
class as the complexity of a round.
Conclusions. We presented two problems in the beginning of this paper: the state space explosion
problem and the system debugging problem. To overcome both of these problems, we proposed an
game-based approach by combining several powerful techniques: abstraction, refinement and three-
valued logic. The abstraction on three-valued semantics was used to overcome the first problem. The
analysis of the game-based model checking was used to solve the second problem. We also proposed a
game-based algorithm for model checking, and proved its termination, soundness and completeness.

References
[1] Glenn Bruns and Patrice Godefroid. Model checking partial state spaces with 3-valued temporal logics. In

Proceedings of the 11th Conference on Computer Aided Verification Lecture Notes in Computer Science,
1877, July 1999.

[2] Glenn Burns and Patrice Godefroid. Model checking with multi-valued logics. In Proceedings of the 31st
ICALP LNCS, May 2004.

[3] Edmund M. Clarke and E. Allen Emerson. Synthesis of synchronization skeletons for branching time tem-
poral logic. Logic of Programs LNCS, 131, 1981.

[4] Orna Grumberg Edmund M. Clarke and David E. Long. Model checking and abstraction. ACM Transactions
on Programming Languages and Systems, 16, 1994.

[5] Orna Grumberg Edmund M. Clarke, Jr. and Doron A. Peled. Model Checking. The MIT Press Cambridge,
Massachusetts, London, England, 1999.

[6] Allen E. Emerson and Prasad A. Sistla. Deciding branching time logic. In Proceedings of the 16th Annual
ACM Symposium on Theory of Computing, March 1984.

[7] Patrice Godefroid and Radaha Jagadeesan. Abstraction-based model checking using modal transition sys-
tems. In Proceedings of CONCUR’(12th International Conference on Concurrency Theory),, 2001.

[8] Patrice Godefroid and Radaha Jagadeesan. Automatic abstraction using generalized model checking. In
Proceedings of CAV’(14th Conference on Computer Aided Verification),, July 2002.

[9] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic approach to branching-time
model checking. Journal of the Association for Computing Machinery, March 2000.

[10] Martin Lange and Colin Stirling. Model checking games for branching time logics. Oxford University Press
J.Logic Computat., 12, 2002.

[11] Amir Pnueli. The temporal logic of programs. 18th IEEE Symposium on the Foundations of Computer
Science 46–57, 1977.

[12] Sharon Shoham and Orna Grumberg. Muti-valued model checking games. Automated Technology for Verifi-
cation and Analysis, 3707, 2005.

35

