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Cryogenic Propellant and Pressurization Modeling

¢ Presentation Outline

e Computational Propellant and Pressurization Program — One Dimensional
(CPPPQO) Model Development
— Define Control Volumes
— Various Model Information
— Conservation Equations
— Heat and Mass Transfer

e CPPPO Model Validation

— Conservation of mass and energy internal to model
e Validated during all scenarios for heat and mass transfer

— Comparison to existing analytic model
e ROCETS used for design of Ares | Upper Stage

— Flight Experiment
e AS-203 (S-1VB stage orbital test)

— Ground Experiment
e NASA Glenn LH, tank self pressurization testing

e Application to Lunar Landing Vehicle (currently named Altair)
— Parametric analysis on pressurant conditions
— Unequal tank pressurization and draining for multiple tank designs
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[Nasa

¢ CPPPO Model Development
Control Volume Definitions
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¢ CPPPO Model Development

e Variable Definitions
Variable | Units Definition
mﬂutﬂg Ibm/s | Autogenous GHZ2 or GOZ2 pressurization mass flow rate
thge Ibm/s | Helium pressurization mass flow rate
Mypent Ibm/s | Ventrelief mass flow rate
Qexwg Blufs Heattransfer rate from external environment to metallictank wall skin exposed to ullage gas node
ng Blufs Heattransfer rate between ullage gas node andtank wall exposed to ullage gas node
Qgs Btufs | Heatfransfer rate between ullage gas node and saturated surface layer node
memp Ibm/s | Propellant evaporation mass flow rate
1y Ibm/s | Propellant bulk boiling mass flow rate
th Ibf-ft's | Ullage gas node work rate
QHW! Blufs Heattransfer rate from external environment to metallic tank wall skin exposed to liquid node
le Blufs Heattransfer rate between liquid node and tank wall exposed fo liquid node
st Blufs Heattransfer rate between liquid node and saturated surface layer node
Meona Ibm/s | Propellantvapor condensation mass flow rate
Wl Ibf#t/s | Liquid node work rate
i, Ibm/s | Propellantliquid mass flow rate
thrys Ibm/s | Propellant Thermodynamic Vent System (TVS) mass flow rate
Ptg psia Tank Pressure
Vtg i Ullage gas volume
v fi* Liquid volume
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Cryogenic Propellant and Pressurization Modeling N@%A

¢ CPPPO Model Development

e Various Model Information atitog
— Finite Difference method

— All fluid properties updated at f
each time step using NIST : Gas,

m or i, m

Vari

Refprop P (tg) or (g) dr,
— All internal tank heat transfer is ";_"ng =, =1, d;g

Free Convection 0. . ' ‘ ; |
— Helium pressurant tank assumed Do Mgy 1y,

isentropic blowdown . ..... $ ........ T ..................
— Tank wall is modeled as a lump $ ----- Uface () L

thermal mass o, N
— External heat transfer rates 0. —|:

assumed averaged over exposed

tank surface area

— Simplistic Thermodynamic Vent
System (TVS) modeled during
any in-space coast phases
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¢ CPPPO Model Development
e Conservation Equations

— Ullage Gas:
Q. = O + Moo Mier + MM + Moy Ml + Mg Py — Mg Moo — M h—PdV—tg—i(mu)
gs wg autog ' "autog He' 'He evap ' ‘evap bb" "bb cond " ‘cond vent” 'tg tg dt - dt tg 'ty

— Applying Ideal Gas assumption to internal energy in ullage:
dT. : . . . .

mtg Vig d;g = Qgs o ng + mautog (hautog o Cvtg Ttg )+ My (hHe o Cvtg Ttg )+ mevap (hevap o Cvtg Ttg )

. . . dV, dC,,
+ My, (hbb - Cvtg Ttg )_ Meong (hcond o Cvtg Ttg )_ M et (htg o Cvtg Ttg )_ Ptg d—tg o mthtg ?

— Pressure and Volume rate of change:

Ptg = Py Rthtg

Vtg :VI +— (mbb + mevap + Mpys —Megng )_VI ;I
| |
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Cryogenic Propellant and Pressurization Modeling N@%A

¢ CPPPO Model Development
e Conservation Equations

— Liquid:
QW| _le + Mg Neong — My AN, =My Ny — My by —mMyhy — tg d;/ %(mlul)
— Apply internal energy and enthalpy relationship to get:
dh : dP

g

' dt

le le + rhcond (hcond _ hI )_ mbbAhv o mbb (hbb o hI )_ rhTVS (hTVS o hI )+V

— Therefore, liquid propellant remains a real fluid.

— This is very important for LH, during in-space coast phases since it is highly
compressible, contracting and swelling from pressure and heat.
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Cryogenic Propellant and Pressurization Modeling

¢ CPPPO Model Development

e Heat Transfer

— Internal Tank Heat Transfer is all in form of Free Convection
e During rapid pressurization this assumption breaks down due to forced convective

motion of pressurant gas in ullage
e However, these time scales are minimal compared to the burn duration and coast

times of interest
— Free Convection coefficient and exponent taken from standard text with
acceleration vector parallel and normal to plane

e Mass Transfer
— Included in form of evaporation, bulk boiling, and condensation
— Certain conditions must be achieved before any form of mass transfer occurs

e Heat and Mass Transfer are most difficult to validate

— Limited data exists for pressure rise in closed tanks however the method of heat
transfer (free/forced convection, conduction) and mass transfer (evaporation,
bulk boiling, condensation) causing such a pressure rise is difficult to pinpoint
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Cryogenic Propellant and Pressurization Modeling

¢ CPPPO Model Validation

e Conservation of mass and energy internal to model
— Validated during all scenarios for heat and mass transfer
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¢ CPPPO Model Validation

e Comparison to existing analytic model
— ROCETS used for design of Ares | Upper Stage
— LH, Tank Examples
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¢ CPPPO Model Validation

e Comparison to existing analytic model

— ROCETS used for design of Ares | Upper Stage
— LO, Tank Examples

50 Pre-pressurization Mainstage burn USing CPPPO MOdel Calculated
45 N “— heat transfer rates
T 40 \l =
o / \__//
£ 35
@
£ 30
50 - Pre-pressurization Mainstage burn
25
45 \[\““-L
20 —CPPPO Model || —_ ',' \ g
----ROCETS 8 40
-400 -200 0 200 400 600 800 ;:; 35
Time [sec] b /
& 30 /
25
. 20 / —CPPPO Model |
Forcing ROCETS calculated heat ____——>| - ROCETS
15 T 1
tranSfer rates -400 -200 0 200 400 600 800
Time [sec]

05 May 2010

J Corpening/MSFC/TBE

20



- N(:A\‘g} %

Cryogenic Propellant and Pressurization Modeling

¢ CPPPO Model Validation

e Flight Experiment
— AS-203 (S-1VB stage orbital test, LH, tank results)
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Cryogenic Propellant and Pressurization Modeling

¢ CPPPO Model Validation

e Ground Experiment
— NASA Glenn LH, tank self pressurization testing (29% fill level)
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Cryogenic Propellant and Pressurization Modeling

CPPPO Model Implementation

e Applied to Altair Descent Module
— Engine Operation Phase
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Cryogenic Propellant and Pressurization Modeling @

¢ CPPPO Model Implementation

e Applied to Altair Descent Module
— In-Space Coast Phase
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¢ CPPPO Model Implementation

e Applied to Altair Descent Module
— Differential Tank Draining

— Variations in pressurization and feed line resistances will cause variations in tank
pressures when using multiple propellant tanks

— Result is differential draining, possibly causing early engine cutoff and CG shifts
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¢ CPPPO Model Implementation

e Other Altair Descent Module Applications
— Used in feed system pressure loss calculations
e Added ability to calculate pressure loss in varying lines and components
e Also part of differential draining analysis

— Propellant Scavenging post landing

e Calculated various methods of venting and heating the tanks after landing to supply
residual propellant to life support and power subsystems

— Cold Helium tank characteristics
e Calculated real fluid property results of rapid blowdowns of cold Helium tanks
e Results show drastic variation from ideal fluid behavior
— Applied to alternative tank designs
e Used code to model pressurization characteristics of alternative and novel tank
designs in attempt to reduce the number of propellant tanks (and avoid differential
draining issues)
— Liquid Methane based vehicles
e Used model to calculate some preliminary results of pressurization for liquid methane
— Storable vehicles

e Have updated model to also calculate pressurization properties of storable propellant
vehicles such as NTO/MMH

e NIST Refprop does not contain properties for these propellants so manually coded
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¢ Future Work
e Validation against some preliminary CFD data is underway
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¢ Questions?
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