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Cryogenic Propellant and Pressurization Modeling

♦ Presentation Outline
• Computational Propellant and Pressurization Program – One Dimensional 

(CPPPO) Model Development
− Define Control Volumes
− Various Model Information
− Conservation Equations
− Heat and Mass Transfer

• CPPPO Model Validation
− Conservation of mass and energy internal to model

• Validated during all scenarios for heat and mass transfer
− Comparison to existing analytic model

• ROCETS used for design of Ares I Upper Stage
− Flight Experiment

• AS-203 (S-IVB stage orbital test)
− Ground Experiment

• NASA Glenn LH2 tank self pressurization testing

• Application to Lunar Landing Vehicle (currently named Altair)
− Parametric analysis on pressurant conditions
− Unequal tank pressurization and draining for multiple tank designs
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Cryogenic Propellant and Pressurization Modeling

♦ CPPPO Model Development
• Control Volume Definitions

− Ullage gas: mixture of propellant 
vapor and Helium pressurant

− Surface: infinitely thin layer 
containing no mass at propellant 
saturation conditions (used to 
pass heat between ullage and 
liquid and allow for surface layer 
evaporation)

− Liquid: liquid propellant remaining 
in tank

• 5 Node Model
− Tank wall exposed to ullage gas
− Ullage gas
− Surface layer
− Liquid
− Tank wall exposed to liquid

J Corpening/MSFC/TBE
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Cryogenic Propellant and Pressurization Modeling

J Corpening/MSFC/TBE

♦ CPPPO Model Development
• Variable Definitions
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Cryogenic Propellant and Pressurization Modeling

♦ CPPPO Model Development
• Various Model Information

− Finite Difference method
− All fluid properties updated at 

each time step using NIST 
Refprop

− All internal tank heat transfer is 
Free Convection

− Helium pressurant tank assumed 
isentropic blowdown

− Tank wall is modeled as a lump 
thermal mass

− External heat transfer rates 
assumed averaged over exposed 
tank surface area

− Simplistic Thermodynamic Vent 
System (TVS) modeled during 
any in-space coast phases
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Cryogenic Propellant and Pressurization Modeling

♦ CPPPO Model Development
• Conservation Equations

− Ullage Gas:

− Applying Ideal Gas assumption to internal energy in ullage:

− Pressure and Volume rate of change:

J Corpening/MSFC/TBE
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Cryogenic Propellant and Pressurization Modeling

♦ CPPPO Model Development
• Conservation Equations

− Liquid:

− Apply internal energy and enthalpy relationship to get:

− Therefore, liquid propellant remains a real fluid.
− This is very important for LH2 during in-space coast phases since it is highly 

compressible, contracting and swelling from pressure and heat.
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Cryogenic Propellant and Pressurization Modeling

♦ CPPPO Model Development
• Heat Transfer

− Internal Tank Heat Transfer is all in form of Free Convection
• During rapid pressurization this assumption breaks down due to forced convective 

motion of pressurant gas in ullage
• However, these time scales are minimal compared to the burn duration and coast 

times of interest
− Free Convection coefficient and exponent taken from standard text with 

acceleration vector parallel and normal to plane
• Mass Transfer

− Included in form of evaporation, bulk boiling, and condensation
− Certain conditions must be achieved before any form of mass transfer occurs

• Heat and Mass Transfer are most difficult to validate
− Limited data exists for pressure rise in closed tanks however the method of heat 

transfer (free/forced convection, conduction) and mass transfer (evaporation, 
bulk boiling, condensation) causing such a pressure rise is difficult to pinpoint
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Cryogenic Propellant and Pressurization Modeling

♦ CPPPO Model Validation
• Conservation of mass and energy internal to model

− Validated during all scenarios for heat and mass transfer
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Cryogenic Propellant and Pressurization Modeling

♦ CPPPO Model Validation
• Comparison to existing analytic model

− ROCETS used for design of Ares I Upper Stage
− LH2 Tank Examples

J Corpening/MSFC/TBE

Using CPPPO Model calculated 
heat transfer rates

Forcing ROCETS calculated heat 
transfer rates
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Cryogenic Propellant and Pressurization Modeling

♦ CPPPO Model Validation
• Comparison to existing analytic model

− ROCETS used for design of Ares I Upper Stage
− LO2 Tank Examples

J Corpening/MSFC/TBE

Using CPPPO Model calculated 
heat transfer rates

Forcing ROCETS calculated heat 
transfer rates
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Cryogenic Propellant and Pressurization Modeling

♦ CPPPO Model Validation
• Flight Experiment

− AS-203 (S-IVB stage orbital test, LH2 tank results)
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Continuous vent comparison: 
remained around 20 psia

Closed tank pressure rise comparison: 
very good correlation
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Cryogenic Propellant and Pressurization Modeling

♦ CPPPO Model Validation
• Ground Experiment

− NASA Glenn LH2 tank self pressurization testing (29% fill level)

J Corpening/MSFC/TBE

Using published heat transfer 
rates from test data

Increasing heat transfer rate to ullage 
gas by 20%
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Cryogenic Propellant and Pressurization Modeling

♦ CPPPO Model Implementation
• Applied to Altair Descent Module

− Engine Operation Phase
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Cryogenic Propellant and Pressurization Modeling

♦ CPPPO Model Implementation
• Applied to Altair Descent Module

− In-Space Coast Phase

J Corpening/MSFC/TBE

Thermodynamic Vent System 
operation to maintain LH2
temperature during coast

Total boil-off mass:  TVS boil-off is 
dumped overboard, Evaporation or 
Bulk Boiling remains in the ullage
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Cryogenic Propellant and Pressurization Modeling

♦ CPPPO Model Implementation
• Applied to Altair Descent Module

− Differential Tank Draining
− Variations in pressurization and feed line resistances will cause variations in tank 

pressures when using multiple propellant tanks
− Result is differential draining, possibly causing early engine cutoff and CG shifts
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Cryogenic Propellant and Pressurization Modeling

♦ CPPPO Model Implementation
• Other Altair Descent Module Applications

− Used in feed system pressure loss calculations
• Added ability to calculate pressure loss in varying lines and components
• Also part of differential draining analysis

− Propellant Scavenging post landing
• Calculated various methods of venting and heating the tanks after landing to supply 

residual propellant to life support and power subsystems
− Cold Helium tank characteristics

• Calculated real fluid property results of rapid blowdowns of cold Helium tanks
• Results show drastic variation from ideal fluid behavior

− Applied to alternative tank designs
• Used code to model pressurization characteristics of alternative and novel tank 

designs in attempt to reduce the number of propellant tanks (and avoid differential 
draining issues)

− Liquid Methane based vehicles
• Used model to calculate some preliminary results of pressurization for liquid methane

− Storable vehicles
• Have updated model to also calculate pressurization properties of storable propellant 

vehicles such as NTO/MMH
• NIST Refprop does not contain properties for these propellants so manually coded
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Cryogenic Propellant and Pressurization Modeling

♦ Future Work
• Validation against some preliminary CFD data is underway
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♦ Questions?
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