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Following a failure in side 1 of the HST SI C&DH in September 2008, HST Servicing 

Mission 4 (SM-4) was delayed so that a SI C&DH Orbital Replacement Unit (ORU) could be 

qualified for flight.  This second generation SI C&DH (SI C&DH-2) included several 

enhancements which increased its thermal dissipation near critical components.  In order to 

maintain the SI C&DH-2 within its operational temperature limits, several thermal 

modifications were installed prior to its final qualification testing.  This paper presents the 

thermal modifications performed on the SI C&DH-2, as well as the thermal ground test 

results and a correlation of the SI C&DH-2 thermal design to flight telemetry.   

I. Introduction 

n September 2008, side 1 of the Science Instrument Control and Data Handling (SI C&DH) subsystem of the 

Hubble Space Telescope (HST) failed.  Since the SI C&DH had fully redundant electronics, the SI C&DH and 

HST were converted to Side 2 operation and the science mission continued. 

However, the SI C&DH side 1 failure left the HST with zero fault tolerance to another similar failure in that 

subsystem.  Without the SI C&DH subsystem, the HST would have no way to control the operation of the science 

instruments on board the observatory and no way to get science and engineering data from the instruments to the 

ground.  An additional failure in the SI C&DH could effectively end the useful scientific life of the telescope.  In 

order to restore redundancy in this critical subsystem, the National Aeronautics and Space Administration (NASA) 

delayed the launch of the HST Servicing Mission 4 (SM-4) from October 2008 to May 2009.  During this launch 

delay, a SI C&DH (SI C&DH-2) Orbital Replacement Unit (ORU) was qualified for flight and installation onto HST 

during SM-4. 

The SI C&DH-2 design included several enhancements, including additional memory and several electrical 

design improvements, which increased thermal dissipation near critical components.  Prior to performing the final SI 

C&DH-2 qualification testing, thermal modifications were installed onto SI C&DH-2 to reduce electronics 

temperatures during hot attitudes and environments.  This paper presents the thermal modifications performed on SI 

C&DH-2, as well as the thermal ground test results and a correlation of the SI C&DH-2 thermal design to flight 

telemetry.   
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II. Overview 

The SI C&DH-2 is the second generation Science Instrument Command and Data Handler subsystem for the 

HST.  The SI C&DH-2 handles the transfer of commands from the ground to the HST science instruments and 

provides both science and engineering data from the instruments to the ground.   

 For redundancy, the SI C&DH-2 has two sides with a 

full complement of electronics on each side.  The SI 

C&DH-2 subsystem consists of 14 individual electronics 

boxes mounted to one common baseplate.  As shown in 

Fig. 1, these electronics include:  4 Complementary 

metal-oxide-semiconductor (CMOS) Memories, 2 

Central Processor Modules (CPMs), 2 Standard Interface 

for Computer (STINT) boxes, 2 Remote Interface Units 

(RIUs), 2 Control Unit/Science Data Formatters 

(CU/SDFs), 1 Power Control Unit (PCU), and 1 Bus 

Coupler Unit (BCU).  Both sides of the redundant PCU 

and BCU are contained within their single electronics 

box.    

 

 

 

III. SI C&DH-2 Background and Thermal Modifications 

A. Pre- HST Launch Subsystem Development and Environmental Testing 

During HST development, the SI C&DH vendor conducted environmental testing at the component and the 

subsystem level.  Temperature requirements for the SI C&DH mounting interface (the ORU tray) were generated by 

the spacecraft thermal control engineers using an integrated thermal model.  This analysis used the expected power 

dissipation and mounting interface conductance and was confirmed during HST system-level thermal vacuum 

testing.    

In a near parallel design effort, the vendor also developed the flight spare, designated SI C&DH-2.  This design 

incorporated several electrical design enhancements to subsystem components resulting in an increase of the power 

dissipation in the CU/SDF by 5 W.   

To counter the rise in CU/SDF dissipation, the vendor increased heat paths from critical components to the box 

chassis, as well as paths through the chassis to the CU/SDF base plate.  Subsequent CU/SDF environmental testing 

was successful; however the base plate temperature specification was not increased to reflect the increased power 

dissipation and no system-level thermal analysis was performed.  The SI C&DH-2 subsystem environmental 

qualification tests were cancelled due to budget and programmatic constraints with the understanding that the 

environmental tests would be performed in the event that the flight spare SI C&DH-2 was called up for installation 

on the telescope.  Prior to SM-4, the SI C&DH-2 flight spare was used in air for various ground test activities. 

B. SM-4 SI C&DH-2 Commissioning 

Following the on-orbit failure of the SI C&DH and the subsequent addition of SI C&DH-2 to the SM-4 manifest, 

the HST Flight Servicing team began to qualify the SI C&DH-2 for launch.  With years of flight telemetry showing 

that the original SI C&DH was already operating near maximum temperature limits and the increased power 

dissipation in SI C&DH-2, HST thermal engineers began searching for design solutions to maintain SI C&DH-2 

within its operate limits under the extremely tight schedule constraints of the launch delay. 

Spacecraft thermal radiator temperatures would necessarily increase with the additional SI C&DH-2 thermal 

dissipation; however there was not hardware or servicing mission time available to address this problem and lower 

the radiator temperature.  Therefore, the thermal design solution would have to overcome the increased radiator 

temperatures with a significantly improved thermal path from the hot electronics components to the spacecraft 

radiator.  To that end, the thermal design modifications focused in two main areas: 

 Lowering the temperature gradients between critical components within the CU/SDF and the SI 

C&DH-2 tray, and 

 Lowering the temperature gradient at the SI C&DH-2 / HST mounting interface 

 
 

Figure 1.  SI C&DH-2 Mounted on a HST Door 

Mockup. 
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C. Initial Thermal Design Enhancements and Thermal Vacuum Test #1 

The original SI C&DH CU/SDF was formed from a magnesium alloy to reduce weight; however this created a 

dissimilar metals concern when the components were mated to the aluminum ORU tray.  The original designers 

overcame this obstacle by using a Choseal pad and slightly thinner metal spacers at the CU/SDF interface to provide 

a thermal path while providing some mechanical compliance.  The SI C&DH-2 CU/SDF was formed of aluminum 

and did not pose similar concerns.  Therefore, to reduce temperature gradients between the CU/SDF and the ORU 

tray, the metal spacers were eliminated and eGraf® interstitial material from GrafTech was used at the CU/SDF 

interface to increase contact area and conductivity. 

However, the first SI C&DH-2 thermal vacuum test showed that the heat rejection path from the CU/SDF to the 

ORU tray and from the tray to the cold plate simulating the HST bay door were not sufficient to maintain the 

CU/SDF temperatures with the increased power dissipation.  Under this configuration, the appropriate acceptance 

test environmental levels could not be achieved without hitting hot operate temperature limits on the CU/SDF.  

These results would mean that the SI C&DH-2 would not be fully qualified for flight.  Clearly, this condition was 

not acceptable so additional thermal design improvements were required.   

D. Final SI C&DH-2 Thermal Design and Thermal Vacuum Test #2 

Following Thermal Vacuum test #1, additional thermal modifications were designed, built and installed onto SI 

C&DH-2 to lower the temperature gradient from the CU/SDF to the simulated HST bay door.  The first modification 

consisted of adding a thermal link from the CU/SDF to the ORU tray.   

Since the microprocessor inside the CU/SDF was the hottest component, the thermal link was designed to attach 

to the side of the CU/SDF box close to the microprocessor and provide a direct thermal path to the ORU tray.  

Figure 2 shows the design of the thermal link and the implementation of the actual thermal link onto the CU/SDF.  

Note that the thermal link was later covered with black Kapton tape to provide more radiation to the environment.  

The link is shown here during a fit check without the black Kapton tape for clarity.  Thermal testing showed that the 

thermal link provided an additional 1.3W/°C effective end to end conductance from the CU/SDF to the ORU tray. 

 
The second thermal modification consisted of adding eGraf® between the SI C&DH-2 tray and the cold plate 

simulating the HST bay door to provide better contact area and conductance.  During the pre-launch HST 

observatory thermal vacuum test, engineers discovered that the bay door to which the SI C&DH is attached was not 

flat.  In addition, the SI C&DH-2 tray was not perfectly flat.  As such, there was minimal contact area between the 

SI C&DH tray and the bay door except around the bolts. 

In order to improve the thermal contact area and conductance between the SI C&DH-2 tray and the HST bay 

door, eGraf® strips were added under the ORU tray.  During the SI C&DH-2 thermal vacuum test, two 

configurations of eGraf® strips were tested to determine the optimum contact area.  The tray under Side A of the SI 

 
 

Figure 2.  CU/SDF Thermal Link Design and Implementation. 
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C&DH-2 was lined with eGraf® pads corresponding only the area directly under the electronics boxes.  On Side B 

of the tray, a long strip of eGraf® was applied over the length of the tray. 

The SI C&DH-2 thermal vacuum test #2 temperatures showed similar results between the two sides of the tray.  

Therefore, the longer single pads of eGraf® were chosen for the flight configuration due to easier implementation 

and reduced risk of eGraf® edge lifting during astronaut Extra Vehicular Activity (EVA) installation of the SI 

C&DH-2. 

  In order to determine the contact area gained by the eGraf®, contact area tests were performed using contact 

pressure sensitive film.  The film is designed to discolor at any areas with a minimum contact pressure of 15psi or 

greater.  Figure 3 shows the contact pressure test results for the thermal vacuum test configuration and the final 

flight configuration.  Figure 4 shows the flight eGraf® installed on the bottom of the SI C&DH-2 tray. 

 

 

 
  Following the addition of the thermal link onto the CU/SDF and the eGraf® under the SI C&DH-2 tray, a 

second thermal vacuum test was conducted to verify the thermal design and performance of the modifications.  With 

these thermal modifications, the SI C&DH-2 subsystem was successfully tested to their full defined acceptance test 

levels without hitting any hot operate temperature limits.   

IV. On Orbit Thermal Performance 

The combined performance of the thermal link and eGraf® interface between the CU/SDF and the tray was 

assessed again using onboard HST flight temperature telemetry.  Temperature sensors are available within the 

 
 

Figure 3.  Contact Pressure results for eGraf® in TV and Flight Configuration . 

 

 
 

Figure 4.  Flight eGraf® installed on the SI C&DH-2 tray. 
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CU/SDF and on the SI C&DH-2 tray.  The temperature difference between these sensors, along with power 

telemetry for the SI C&DH-2 subsystem, was used to assess the thermal conductance before and after SM-4 as 

shown in Fig. 5.  Based on this rough analysis, the modifications to the thermal path between the CU/SDF 

components and the tray (a combination of affects from the addition of the thermal link and from the installation of 

eGraf® under the CU/SDF box) increased conductance more than 600% over the original unit. 

 

The performance of the eGraf® interface between the SI C&DH-2 tray and HST was inferred by comparing 

temperature telemetry at the SI C&DH tray before and after SM-4.  Because no temperature sensor exists on the 

HST radiator beneath the SI C&DH-2, tray temperature telemetry was normalized for differences in equipment duty 

cycle and HST attitude by computing the total orbit average heat load on the thermal radiator.  Figure 6 

demonstrates the noticeable improvement in the interface thermal performance.   

The increased thermal conduction allows the SI C&DH-2 tray to run 8.5°C cooler than its predecessor under 

similar conditions (or equivalently, to dissipate an additional 8W with the same tray temperature).  This was a very 

significant improvement, although pre-flight predictions estimated the tray would run 12.5°C cooler for an 

underperformance of 4°C. 

 

The reasons that the SI C&DH-2 tray/HST interface did not perform as expected may never be fully known, 

however some possible explanations include: 

 

 The topography of the on-orbit door may have produced gaps under high dissipating components since door 

flatness is unknown within a loose specification and due to the poor flatness of the SI C&DH-2 tray. 

 
 

Figure 5. Temperature Gradient as a function of SI C&DH power. 
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 Temperature differences between the SI C&DH-2 tray and HST door during on-orbit installation may have 

resulted in a loss of contact pressure as temperatures equilibrated, although this concern was addressed 

prior to SM-4 and should have been mitigated by fastener design. 

 Creep in the eGraf® material may have reduced contact pressure.  Although eGraf® is very stiff, for a typical 

application the fasteners would be retightened after a period of time to ensure contact pressure was 

maintained.  EVA time constraints during SM-4 did not allow time for the fasteners to be retightened after 

temperature equilibrium and any eGraf relaxation.  

 

 

V. Thermal Model Correlation 

Following HST SM-4, a flight correlation of the SI C&DH-2 

Thermal Math Model (TMM) was performed to determine the 

accuracy of the model.  Several thermally stable HST attitudes 

were chosen as correlation periods and the HST TMM, including 

the detailed SI C&DH-2 model, was configured to reflect these 

attitudes.  Figure 7 shows the detailed SI C&DH-2 geometric 

thermal math model. 

 

Initial results indicated that the SI C&DH-2 TMM did not 

correlate well to flight telemetry with the SI C&DH-2 model 

predictions generally several degrees colder than the on-orbit 

telemetry values.  The predicted CU/SDF temperatures were 

approximately 7°C colder than their corresponding telemetry 

 
 

Figure 6.  SI C&DH-2 Tray Temperature as a function of Bay 19 power. 

 

 
Figure 7.  SI C&DH-2 Thermal Math 

model. 
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value.  Under predicting the CU/SDF temperature was a concern since pre-flight predictions for the CU/SDF 

indicated it would approach its 70°C hot operate limit in the typical hot operate case and would exceed its limit in 

the worst hot design case.  The typical hot operate case assumed worst case seasonal orbit and beta angle 

parameters, as well as the maximum predicted power profile in the SI C&DH-2 split between sides A and B on the 

tray.  In addition to those hot conditions, the hot design case assumed a worst case off nominal roll of the telescope 

towards the SI C&DH-2 bay and the maximum predicted power located on only one side of the tray.  Under these 

conditions, the pre-flight model predicted +64°C and +78°C for the typical and design hot operate cases, 

respectively.  Operational constraints were implemented prior to launch to ensure that all of the hot design case 

parameters will not be realized simultaneously resulting in an over temperature on the CU/SDF.   

To improve the SI C&DH-2 TMM correlation, several refinements were made to reflect the intricacies of the 

flight environment.  The conduction between the SI C&DH-2 tray and the HST bay door was an area of the TMM 

that could be refined.  The flatness of the HST bay door and the torque on the SI C&DH-2 tray fasteners are both 

unknown and could impact the SI C&DH-2 flight correlation significantly.  With this in mind, the conduction value 

from the SI C&DH-2 tray to the HST bay door was reduced to 25% of its initial value based on pressure tests 

conducted during SI C&DH-2 ground testing.  This change resulted in a general increase in predicted SI C&DH-2 

temperatures, with the CU/SDF temperature increasing by 4.7°C.  

In addition, the CU/SDF baseplate nodalization was refined from one node to 36 nodes in an attempt to better 

account for possible gradients in the baseplate.  Also, the CU/SDF box was refined to account for additional 

conduction through a component mounting tray.  It was thought that the flight thermal environment may introduce 

subtleties not captured by the thermal vacuum correlation and that these subtleties may be better captured with a 

refined CU/SDF baseplate and box.  

Unfortunately, the predicted CU/SDF 

temperature change was negligible when 

the CU/SDF baseplate and box were 

refined. 

A careful audit of the detailed SI 

C&DH-2 TMM revealed two offsetting 

errors in the code.  An error around the 

modeling of the CU/SDF thermistor 

increased the predicted temperature at the 

CU/SDF thermistor by 4.2°C.  However, 

an error in the telemetry power 

calculation was also identified which 

reduced the power to the SI C&DH-2 by 

4W causing the CU/SDF temperature to 

decrease by -3.5°C. 

After all the flight correlation 

refinements and corrections had been 

implemented, the SI C&DH-2 TMM 

predicts the CU/SDF temperature within 

1°C of flight telemetry.  Table 1 shows 

the initial and final model correlation 

results for the SI C&DH-2 TMM. 

  

VI. Conclusions and Lessons Learned 

The conclusions of this paper are best demonstrated as Lessons Learned for future hardware development.  

During the process of qualifying the SI C&DH-2 prior to flight and of operating the SI C&DH-2 onboard the HST, 

several Lessons Learned have been identified.  The Lessons Learned include the following:  

 

Lessons Learned 1:  Changes in component dissipation (or equivalently, contact area, finish, etc.) must be 

evaluated at the system level.  In the case of the HST SI C&DH-2, the component power increase caused a bulk 

temperature rise of approximately 5°C at the system level that could not be mitigated by vendor thermal design 

enhancements within the subsystem.  Without the appropriate system level analyses and tests, this temperature 

increase was not accounted for sufficiently. 

Table 1.  SI C&DH-2 Thermal Math Model  

Correlation Results 
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Lessons Learned 2:  Environmental testing at the subsystem level, even for seemingly minor design changes, 

can be critical in catching unforeseen thermal control problems.  In the case of the HST SI C&DH-2, the affect 

of the increased component power for the flight spare would have been seen during subsystem testing as a 

significant increase in CU/SDF chassis temperature from the previous model.  Even without an increase in the tray 

conductive sink driven by system-level analysis, the increase in CU/SDF chassis temperature due to interface 

resistance at the tray may have resulted in CU/SDF internal temperatures 8°C higher than the flight unit.  This would 

have prompted earlier action to make the spare unit flight-worthy. 

 

Lessons Learned 3:  For repeatable dry thermal interfaces between flexible surfaces with few fasteners, 

flatness requirements and/or a known topology of the two surfaces is critical.  If a dry bolted interface is a 

critical thermal path which must be exercised via an EVA or any other application (such as launch pad installation) 

where schedule or logistics do not allow for test and verification, several methods can be used to enhance the 

predictability and repeatability of the interface.  These methods include: (1) specifying the flatness and surface 

roughness of each side of the mating interface to tight tolerances, (2) adding fasteners to force the surfaces to 

conform mechanically, and (3) recording the as-built surface topology of the spacecraft side of the interface using 

contact pressure mapping film and/or laser topology techniques.  In the case of the HST SI C&DH-2, without 

knowledge of the interface contact pressure profile, it is not possible to determine the cause of the reduced thermal 

performance seen on orbit. 

Appendix 

Acronyms used in this report are defined as follows: 

 

CMOS    Complementary metal-oxide-semiconductor 

CPM    Central Processor Module 

CU/SDF   Control Unit/Science Data Formatter 

EVA    Extra Vehicular Activity 

HST    Hubble Space Telescope 

NASA    National Aeronautics and Space Administration 

ORU    Orbital Replacement Unit 

SI C&DH-2   Science Instrument Command and Data Handler-2 

SM-4    Servicing Mission 4 

STINT    Standard Interface for Computer 

TMM    Thermal Math Model 
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