
The Role and Quality of Software Safety in the NASA Constellation Program

Lucas Layman

Fraunhofer CESE

College Park, MD

e-mail: llayman@fc-md.umd.edu

Victor R. Basili, Marvin V. Zelkowitz

U. of Maryland and Fraunhofer CESE

College Park, MD

e-mail: {basili,mvz}@cs.umd.edu

Abstract— In this study, we examine software safety risk in the

early design phase of the NASA Constellation spaceflight

program. Obtaining an accurate, program-wide picture of

software safety risk is difficult across multiple, independently-

developing systems. We leverage one source of safety

information, hazard analysis, to provide NASA quality

assurance managers with information regarding the ongoing

state of software safety across the program. The goal of this

research is two-fold: 1) to quantify the relative importance of

software with respect to system safety; and 2) to quantify the

level of risk presented by software in the hazard analysis.

 We examined 154 hazard reports created during the

preliminary design phase of three major flight hardware

systems within the Constellation program. To quantify the

importance of software, we collected metrics based on the

number of software-related causes and controls of hazardous

conditions. To quantify the level of risk presented by software,

we created a metric scheme to measure the specificity of these

software causes.

 We found that from 49-70% of hazardous conditions in the

three systems could be caused by software or software was

involved in the prevention of the hazardous condition. We also

found that 12-17% of the 2013 hazard causes involved

software, and that 23-29% of all causes had a software control.

Furthermore, 10-12% of all controls were software-based.

There is potential for inaccuracy in these counts, however, as

software causes are not consistently scoped, and the presence

of software in a cause or control is not always clear. The

application of our software specificity metrics also identified

risks in the hazard reporting process. In particular, we found

a number of traceability risks in the hazard reports may

impede verification of software and system safety.

Keywords-Constellation program; hazard reports;

measurement; safety; empirical software engineering

I. INTRODUCTION

Development of large complex systems in the aerospace,
defense, energy and travel industries requires constant
attention to safety risks. A safety risk is a risk whose effect
can be injury or the loss of life either directly or through a
chain of events. The task of controlling safety risk is further
complicated when developing complex systems due to the
amount of planning, assessment and communication required
to manage multiple projects. The issue of controlling
software safety risk has become a leading area of concern in
systems development as many traditionally hardware-centric
systems become more reliant on software.

 In this paper, we examine issues of measuring
software safety in one such system – the multi-year, multi-

billion dollar Constellation spaceflight program at NASA.
Software plays a significant role in many Constellation
systems. Analysis, planning, and mitigation of safety risks
pervade every phase of development. The multitude of
systems that comprise the Constellation program are
developed by contracting organizations using a form of
concurrent engineering [5] wherein multiple development
activities (i.e. design, implementation, testing) occur in
parallel. For NASA quality assurance managers, obtaining
an accurate, program-wide picture of software safety risk is
difficult across these multiple, independently-developing
systems for a number of reasons:

 There are many development groups, each with their
own reporting style for safety risks. Even though
program-wide standards exist, each group has their own
interpretation of how to address those standards.

 The NASA panel charged with overseeing system safety
has limited resources and technical knowledge to fully
understand all the implications of software safety.
Although these experts have significant experience
managing the mostly non-software development of
rockets and spacecraft at NASA, applying the NASA
safety process to software is relatively new.

 The safety engineers responsible for the systems
sometimes have limited understanding of how to
describe software safety risk to meet the requirements of
NASA safety reviews.

 The rules for recording software risk in the safety
tracking systems were only recently developed, resulting
in no clear delineation between software-based risks and
non-software-based risks.

NASA Safety Reliability and Quality Assurance

personnel (SR&QA) have undertaken a number of initiatives
to address these challenges. As part of these initiatives, we
have participated in the development of a software safety
measurement program to provide a program-wide overview
of software safety risk. The goal of our study was to
leverage one source of safety information, hazard analysis, to
provide NASA quality assurance managers with information
on the ongoing state of software safety. We collected data to
demonstrate the increased role of software as a control
mechanism for safety risks, suggesting that increased
emphasis on software safety analysis is warranted. The
software safety metrics also yielded new guidelines for

safety engineers to use when describing software safety
risks.

The remainder of this paper is organized as follows. In
Section II we describe the research context and provide an
overview of the hazard analysis process on the Constellation
program. In Section III we describe the measures we capture
on software risk described in hazard reports. In Section IV
we present the data findings of this study and in Section V
we discuss these results and a several risks uncovered in the
software safety reporting process. Finally, in Section VI we
give our conclusions on how such measures can best be used
in this environment.

II. RESEARCH CONTEXT

The Constellation program is a complex system of
systems (see Figure 1 for the Constellation program
hierarchy). Each system contains multiple elements, each
with numerous, complex hardware and software subsystems.
Our research focuses on the hazard analysis of three projects
(A, B, C), one at the system level and two at the element
level. The names of the projects are kept anonymous for
confidentiality purposes. The scale and complexity of the
Constellation program presents many challenges to NASA
personnel in assessing the state of system safety and, in
particular, software safety.

A. The safety review process in the Constellation program

Systems development is overseen by NASA and follows
a government acquisition V-model where individual system
development is performed by multiple contract companies.
The multiple Constellation systems are being developed in
parallel over a period of several years. The development

groups use various databases for coordinating information
among the groups. These include databases containing
project requirements, safety hazards, defects, designs and
other project management information.

At various times, checkpoint meetings are held by the
Constellation Safety & Engineering Review Panel (CSERP),
which acts as gatekeeper for development milestones. There
are several milestones in the development process (e.g.
system requirements review, preliminary design review,
critical design review) with different requirements for the
type of system and software safety analysis that must be
performed. At each milestone, the development groups
identify safety risks in system operation and design and
create strategies (controls) for mitigating those risks. The
CSERP reviews the risks and the operational or design
strategies for mitigating these risks. The CSERP panel then
approves the current design or requests changes to provide
for better risk mitigation. As development progresses and
the system matures, the analyses and designs become more
specific and concrete. The primary responsibility of the
CSERP is to ensure that all safety risks which could result in
loss of life, loss of the vehicle, or loss of mission are
identified and handled properly.

Analyzing and designing to mitigate software risk is
supported by SR&QA personnel. SR&QA is a division
within the Constellation program that provides guidance to
safety engineers on the specific projects and participates in
CSERP safety reviews. This division is comprised of NASA
employees and contractors with expertise in hardware,
software and mission assurance.

B. Hazard analysis in the Constellation program

Our study thus far focused on the hazard analysis
methodology used in the program. Hazard analysis is a top-
down approach to system safety analysis. In the

Constellation program, hazard analysis is complemented by
other safety analysis methods, including failure modes and
effects analysis (FMEA), fault-tree analysis (FTA),
probabilistic risk assessment (PRA), quality audits, process
and project metrics, and many more.

Figure 1. Constellation program hierarchy (abbreviated example)

Constellation

Orion
(Crew vehicle)

Mission

Operations

Ground

Operations

Ares I
(Crew launch vehicle)

First
Stage

Upper Stage

Engine

Upper
Stage

Avionics Propulsion Structures

Service
Module

… Mission

Control

Training

facility
…

…

…

Subsystem

(Level 5)

Element

(Level 4)

System
(Level 3)

Program

(Level 2)

A hazard is any real or potential condition that can cause:
injury, illness, or death to personnel; damage to or loss of a
system, equipment, or property; or damage to the
environment. An example of a hazard might be “Avionics
hardware failure leads to loss of mission.” The hazard is
accompanied by a list of systems, elements and subsystems
that cause or are affected by the hazard, a detailed
description of the hazardous condition, and information
regarding the likelihood of the hazardous condition
occurring.

Hazards are described with several important properties:

 Causes – The root or symptomatic reason for the
occurrence of a hazardous condition;

 Controls – An attribute of the design or operational
constraint of the hardware/software that prevents a
hazard or reduces the residual risk to an acceptable
level;

 Verifications – A method for assuring that the hazard
control has been implemented and is adequate
through test, analysis, inspection, simulation or
demonstration.

Figure 2 illustrates the conceptual organization of a
hazard. Each hazard (e.g., engine failure) has one or more
causes (e.g., failure with fuel line, software turns off the
engine, or physical failure of engine). Each cause has one or
more controls that reduces the likelihood that a cause will
occur or mitigates the impact should the cause be realized
(e.g., backup computers to account for software failures).
Each control has one or more verifications (e.g. test,
inspection, simulation or demonstration) to ensure that the
control is appropriately implemented. In the Constellation
program, all hazards and their associated causes, controls and
verifications are stored in a database called the Hazard
Tracking System (HTS). Each such hazard is stored as a
Hazard Report (HR) in the HTS.

Figure 2. Hazard structure

Controls often represent new requirements for the
system. For example, if a buffer overflow causes a software
component to overflow (e.g., the inertial guidance computer
overflow in the Ariane 5 rocket failure in 1996 [1]), a
possible control could be to monitor the values of the

appropriate register and provide some mitigating action if it
overflowed. This would represent a new requirement that
the developers would have to implement in the flight
software.

Causes and controls can also be transferred to another
cause or control in a different hazard reports. Transfers
imply that the cause or control is fully described in the other
hazard report. For example, a structural collapse will impact
nearly every system in a hazard. Rather than list causes and
controls for structural collapse in every hazard report, it is
handled in its own report that is referred to by the other
hazards. During system implementation, all transferred
causes and controls must be verified for a hazard reports to
be considered “closed.” Verifying transfers is a manual,
labor intensive process and is at risk when transfer references
are not kept up to date.

It is important to note that, in this environment, software
is never a hazard; hazards all represent physical events that
may harm the mission. Component failure (e.g., degraded
thruster performance) or outside events (e.g., hitting space
debris, impact of weather, cosmic ray impact) may impact a
mission, but software itself is not a hazard. However,
software, as well as human error or component failure, can
certainly cause a hazard (e.g., the software shutting a fuel
valve at the incorrect time). Therefore, the HTS describes
physical events, some of which are caused by software and
some of which are not.

We define a software hazard as a hazard that contains
one or more software causes. A software-related hazard is a
hazard where software is either one of the causes or software
is in one or more of the controls. We are interested in
software-related hazards because, even though software may
not be a direct cause of a hazard, software that is part of the
control can be faulty and cause a subsequent hazard (e.g.,
Therac-25 radiation errors [4]). Software hazards are a
proper subset of the software-related hazards. Both software
hazards and software-related hazards may include hardware
causes and controls as well.

III. RESEARCH METHOD

We examine the Constellation hazard reports to assess
the state of software safety risk and provide feedback into the
software safety process. Our approach [3] is based on the
premise that there is a relationship between the processes
used during software development and the product's
characteristics. Not achieving the anticipated product
characteristics (e.g. safe software) may be the result of not
adhering to the process, or the process itself may be flawed.
By analyzing the execution of the software safety process in
the Constellation program, we hope to gain insight into
whether appropriate software safety processes are being
performed and performed appropriately.

Process artifacts available during development can
provide insight into process execution. Hazard reports,
produced throughout system development, are one artifact
that can provide insight into the state of software safety and
can be used to evaluate the software safety process. We
describe our goals for evaluating software safety risk using
the Goals Questions Metrics (GQM) model [2]:

Hazard

Cause

Cause

Cause

Control

Control

Control

Control

Control

Control

Control

Verification

Verification

Verification

Verification

Verification

Verification

Verification

1. Analyze a sample of the hazards reported for
Projects A, B and C in order to characterize them
with respect to the prevalence of software in
hazards, causes, and controls from the point of view
of NASA quality assurance personnel in the context
of the Constellation program.

2. Analyze the software causes in a sample set of
hazard reports for Projects A, B and C in order to
evaluate them with respect to the specificity of those
software causes and hazards from the point of view
of NASA quality assurance personnel in the context
of the Constellation program.

Specificity in hazard causes is important for
understanding concrete, verifiable controls. A lack of
specificity in the definition of causes indicates a risk that the
cause has not been adequately identified and evaluated so as
to be controlled. Each system we analyzed had 1-2
“generic” software hazard reports, which describe only the
procedures for how software should be developed, but do not
describe specific design or behavior. Often, software causes
had a single control referring only to these “generic” reports
rather than a specific design attribute. These controls
represent risk in that there is no objective verification that a
software cause has been controlled by adhering to the
software process.

An important note: our evaluation focuses on software
safety risk. Safety, in the Constellation program, does not
include software security. Software security on the
Constellation program is handled a by separate organization
charged with hardening the software systems against
malicious attack and assisting in secure software design.

A. Goal 1: Quantify the prevalence of software in hazards,

causes and controls

Goal 1 is useful to SR&QA personnel in understanding
the risk analysis effort required to adequately control
software risk and also to identify systems and subsystems
that involved more software risk than others. We first
analyzed the hazard reports to classify causes of a hazard and
controls for these causes as either software or non-software.
These data can then be used to answer a number of questions
(see below). Tables I and II show the categories of causes.

1. What percentage of the hazard causes are software

causes? This is represented by entries B and C of Table

I. The percentage is given by (B+C)/(A+B+C+D).

2. What percentage of the hazards is software–related?

Does software play a role in either causing or

mitigating a hazard? Those hazards are represented by

the entries in boxes X, Y and Z of Table II. The

percentage is given by (X+Y+Z)/(W+X+Y+Z).

3. What percentage of hazard causes are non-software

(e.g., hardware, operational error, procedural error)

causes with software controls, i.e., Z in Table II? These

are potentially “hidden” software risks. For example, if

software, as a control, is monitoring a condition, if the

monitoring software fails, even though the hardware is

functioning correctly, there is a risk that the monitor

will fail to detect an actual subsequent problem or the

software may send erroneous status messages. Thus,

the software can again be the cause of a hazardous

condition. The percentage is given by D/(A+B+C+D).

4. What percentage of non-software causes contains

software controls? D/(A+D)

5. What percentage of the causes contains software

controls? (C+D)/(A+B+C+D)

6. What percentage of causes is transferred, i.e., another

HR contains the control for this cause? Transferred

causes can incur risk when traceability is not

maintained.

7. What percentage of controls is transferred? Transferred

controls also introduce traceability risks.

8. What percentage of the non-transferred hazard controls

is specific software controls, i.e. describe software

behavior or design? This may be a simple measure of

the number of software related requirements that deal

with safety critical software.

9. What percentage of non-transferred controls are

references to “generic” software controls?

TABLE I. CAUSE CATEGORIES

Cause Table Causes

Controls

 Non-software Software

Non-software (A) Non-software causes with no software controls (B) Software causes with no software controls.

Software (D) Non-software causes with at least one software control
(C) Software causes with at least one software

control

TABLE II. HAZARD CATEGORIES

Hazard Table Causes

Controls

 Non-software Software

Non-software (W) Hazards with no software causes or controls
(X) Hazards with at least one software cause
and no software controls

Software
(Z) Hazards with no software causes and at least one

software control

(Y) Hazards with at least one software cause

and one software control

B. Goal 2: Evaluate the specificity of software causes

Goal 2 assists SR&QA personnel by identifying software
hazards and software causes that require additional work on
the part of the safety engineers. Furthermore, hazard reports
mature over time, and the evaluation of Goal 2 enables
SR&QA personnel to track the maturation of software causes
as the systems approach their quality milestones. Goal 2 is
in some respects a proxy for SR&QA and CSERP personnel,
who must understand the origin of a hazardous condition (the
cause) as described in the hazard reports. Software causes
are evaluated according to their specificity.

As nearly all projects are in preliminary design, we focus
on evaluating causes since only causes, which should be
well-defined for a Phase I safety review prior to Preliminary
Design Review (PDR). Based on the preliminary analysis of
software-related hazards, we have derived an initial set of
software safety metrics that can be applied to hazard reports.
These metrics were developed using feedback from SR&QA
personnel and using existing hazard reports as examples.

By PDR, the software is defined to the level of Computer
Software Configuration Item (CSCI). We judge the minimal
specificity of software causes based upon the existence of
three attributes in the cause description: (1) which software
component may fail its intended operation (origin), (2) what
is the erroneous behavior for this software component
(erratum), and (3) what impact does this erroneous behavior
have on the system (impact)? We then define a metric to
evaluate the specificity of a cause.

CSCIs (e.g. Guidance Navigation & Control, Vehicle
Management) are more specific than sub-systems (e.g.
avionics, propulsion) and would represent Level 6 and below
in Figure 1, enabling the analysis of more specific causes and
corresponding controls. Furthermore, CSCIs can be used in
the analysis of relationships between components and
specifying the safety-critical events, commands and data.
Describing software causes at the CSCI level enables the
hazard analyst to identify specific design elements that
satisfy the requirement for controls.

Software-related causes and sub-causes may be described
in a single cause in a hazard report or they may appear as
multiple separate causes. From the software cause and sub-
cause metrics for a given hazard, an overall hazard rating for
each hazard report for software causes can be created.
1. For each hazard report, what are the number and

percentages of L1, L2 and L3 causes where L1, L2 and
L3 are defined as:

 L1: a specific software cause or sub-cause for a
hazard, where a specific software cause must
include all of the following:

o Origin – the CSCI that fails to perform its
operation correctly

o Erratum – a description of the erroneous
command, command sequence or failed
operation of the CSCI

o Impact – the effect of the erratum where failure
to control results in the hazardous condition,

and if known, the specific CSCI(s) or hardware
subsystem(s) affected

 L2: a partially-specified software cause or sub-
cause for a hazard, where a partially-specified
software cause specifies one or two of the origin,
erratum or receiver at the CSCI/hardware
subsystem level.

 L3: a generically defined software cause or sub-
cause for a hazard, where a generically-defined
software cause does not specify the origin, erratum
or receiver at the CSCI/hardware subsystem level.

2. For each system, what are the number and percentages
of La, Lb, Lc, Ld and Le hazards where La-Le are
defined as:

 La: All software causes and sub-causes in a hazard
are L1

 Lb: all software causes and sub-causes in a hazard
are L1 except for a single L3

 Lc: Software causes and sub-causes are a mix of
L1, L2 and L3 with at least one L1

 Ld: All software causes and sub-causes are either
L2 or L3 with at least one L2

 Le: All software causes are L3

 A low hazard rating (e.g., Ld and Le) may indicate there
is a risk of not being able to mitigate the software risk
associated with these hazards. A high rating (e.g., La and Lb)
more likely indicates that the development team fully
understands the risk and has addressed it appropriately. The
overall hazard ratings provide a top level view of the
maturity of software cause specificity in a subsystem or
mission element.

 We note that these ratings do not measure the quality or
the completeness of the software cause and control analysis;
these ratings only reflect the specificity of the information
captured in the hazard reports. We believe that these ratings
likely indicate risk where insufficient specificity has been
provided to identify the software-based cause of a hazardous
condition within the hazard report. Insufficient specificity
probably indicates that the problem is not well understood,
unless further details are included in supporting
documentation. However, unless such supporting
information (and the necessary context and expertise to
interpret it) are maintained with the hazard report, there is
risk that information will be lost.

C. Data sources and context

A total of 154 hazard reports were analyzed for three
Constellation systems: 77 in the Project A, 57 in the Project
B, and 20 in Project C. Project A is developed by NASA
while Projects B and C are being developed by contractor
organizations. The three projects are developing large, flight
hardware systems. Software is a critical element in
controlling the function of these systems, and the amount of
software varies significantly in each project.

Each project performed their hazard analyses according
to Constellation program guidelines. During the Preliminary
Design Phase, the safety engineers for each project met with
the CSERP to evaluate, discuss, and mature the hazard
reports. Additional description of the three elements is
presented with the study findings below. Our analysis
includes all available hazard reports available from the
Preliminary Design Phase of these systems with the
exception of four hazard reports from Project A that were in
an incomplete, preliminary state.

D. Analysis procedure

We first identified software and non-software causes and
controls in the hazards reports. An analysis of the text of
each hazard report was performed manually as follows:
1) Each cause from a hazard report was entered in a

separate row of an Excel spreadsheet (see Table III).

2) For each cause, each relevant control description was
marked as either a software control (green), a non-
software control (blue), a control that transferred to
another hazard report (orange), a transfer to another
hazard report detailing exclusively with software
(yellow), or controls with multiple sub-controls (grey).
A control was determined to be a software control if it
described the behavior or design of FCSW (flight
computer software), FC (flight computer), specific
CSCIs, or used the word “software.”

a) Each control in the hazard report corresponds to a
column in the spreadsheet.

b) Some software controls contained enumerated “sub-
controls” that described separate software design
and behavior. The parent control was marked as

grey, and the sub-controls were separately listed in
the spreadsheet in the order of appearance in the
hazard report. These sub-controls were classified
using the same scheme as in step 2.

3) The cause description for each cause was read and was
marked as either a software cause (green) or a non-
software cause (white). Causes for which all controls
were transferred were marked red and excluded from
further analysis under the assumption that the cause was
controlled by the transferred hazard report(s). A cause
was determined to be a software cause when software,
FCSW (flight computer software), FC (flight computer)
or specific CSCIs were mentioned in the cause
description. Table III provides an example of the cause-
control matrix for a hazard report.

The classifications of causes and controls were then
counted for each hazard report and recorded in a separate
worksheet (see Table IV for an example). These data were
then used to compute summary statistics across all hazard
reports and to answer the questions posed in Section 2.A.
The “causes” column is the total number of causes listed in
the hazard report, and the “active causes” column is the
number of non-red causes in the cause-control matrix.
Transferred controls were counted only when other non-
transferred controls existed for the same cause. For example,
Cause 6 in Table III was counted as having two controls
since the transferred control appears with a non-transferred
control, whereas Cause 4 was counted as having no controls.
When transferred generic software controls (yellows) were
counted, they were counted as software controls (e.g. Cause
2 in Table III was counted as having three software controls).

TABLE III. CAUSE-CONTROL MATRIX EXAMPLE

Hazard

Report
Cause

Controls

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

HR1 1

 2

 3

 4

 5

 6

 7

 8

 9

TABLE IV. EXAMPLE TABULATION OF CAUSES AND CONTROLS

Hazard

Report Causes

Active

causes

Software

causes

Non-SW causes

with SW controls Controls

SW

controls

HR is SW

related?

HR1 9 5 4 1 12 4 TRUE

HR2 14 10 0 6 33 7 TRUE

 SW Non-SW transferred Transferred to generic SW HR

IV. FINDINGS

These data were calculated for all of the hazard reports
available for each element. The team reviewed a total of 154
hazard reports, 2013 causes, and 4916 controls. Tables V-
VII are the results for Project A, Tables VIII-X are the
results for Project B and Tables XI-XII are the results for
Project C.

TABLE V. PROJECT A HAZARD TABLE

 Non-software

cause

At least 1 software

cause

no software control W 39 51% X 0 0

at least 1 software

control
Z 10 13% Y 28 36%

Total 77

TABLE VI. PROJECT A CAUSE TABLE

 Non-software cause Software cause

no software control A 393 71% B 0 0%

at least 1 software control D 76 14% C 85 15%

Transferred causes 252

Total 806

TABLE VII. PROJECT A CONTROL TABLE

N % of

total

% of non-

transferred

Non-software 1603 64% 82%

Software 243 10% 12%

Generic software controls 105 4% 5%

Transferred controls 566 22% -

Total 2517 100%

TABLE VIII. PROJECT B HAZARD TABLE

 Non-software

cause

At least 1 software

cause

no software control W 19 33% X 0 0%

at least 1 software

control
Z 1 2% Y 37 65%

Total 57

TABLE IX. PROJECT B CAUSE TABLE

 Non-software cause Software cause

no software control A 398 77% B 0 0%

at least 1 software control D 57 11% C 62 12%

Transferred causes 155

Total causes 672

TABLE X. PROJECT B CONTROL TABLE

 N
% of

total

% of non-

transferred

Non-software 1799 75% 84%

Software 298 12% 14%

Generic software controls 37 2% 2%

Transferred controls 265 11% -

Total 2399 100%

TABLE XI. PROJECT C HAZARD TABLE

 Non-software

cause

At least 1 software

cause

no software control W 6 30% X 0 0%

at least 1 software

control
Z 0 0% Y 14 70%

Total 20

TABLE XII. PROJECT C CAUSE TABLE

 Non-software cause Software cause

no software control A 275 81% B 0 0%

at least 1 software control D 9 3% C 57 17%

Transferred causes 194

Total 535

A. Metrics summary

From these data, we calculate the metrics necessary to
help answer the questions from Section III that help quantify
the importance of software with respect to system safety (see
Table XIII). These data demonstrate that although a small
percentage (12-17%) of hazard causes are software causes,
the percentage of hazardous conditions that are either caused
by software or are controlled by software in much higher
(49-70%). This indicates that software is a safety-critical
aspect of the overall system and over half of all hazard
reports are software-related.

Note that while 49% of Project A’s hazard reports are
software-related, 67% of Project B hazard reports and 70%
of Project C hazards are software related. This disparity can
be a consequence of the characteristics of the three systems,
an indication of how the three development organizations
arrange the subjects of the hazard reports differently, or a
combination of these. The lack of a uniform structure for
reporting software-related hazards inhibits a consistent,
general methodology for software risk assessment based on
the hazard reports. In all three systems, the importance of
software clearly demonstrates the need for a strong software
development process with adequate control and verification.

TABLE XIII. SUMMARY METRICS QUANTIFYING THE IMPORTANCE OF SOFTWARE WITH RESPECT TO SYSTEM SAFETY

 Question Project A Project B Project C

1 What percentage of the hazard causes are software causes? 15% 12% 17%

2 What percentage of the hazards is software-related? 49% 67% 70%

3 What percentage of hazard causes are hardware causes with software controls? 14% 11% -

4 What percentage of hardware causes has software controls? 16% 13% -

5 What percentage of the causes has software controls? 29% 23% -

6 What percentage of causes is transferred? 31% 23% 36%

7 What percentage of controls is transferred? 22% 11% -

8 What percentage of the non-transferred hazard controls are specific software controls? 12% 14%

9 What percentage of the non-transferred hazard controls are references to “generic” software controls? 5% 2% -

B. Software hazard and software cause specificity ratings

To quantify the level of risk presented by software, we
applied the software cause and software hazard metrics
described in Section III to the causes in the hazard reports.
The L-metrics are applied to software causes and hazards
with at least one software cause only (Tables XIV-XVI).

 Using the current software cause metric definitions,
there are noticeable differences between elements. Project A
had a greater proportion of well-specified software causes
than Projects B and C at the time of analysis. Project B had
a large portion of software-causes that could be considered
“in work,” and thus one would expect the distribution to shift
to the higher end of the scale as work progresses. Project C,
however, was non-specific in terms of software causes. In
general, the software causes in Project C had very specific
descriptions of the impact of a software failure on the non-
software, but little was described in terms of what caused the
software to malfunction or how the software error
manifested beyond stating that “the software fails.”

TABLE XIV. PROJECT A SOFTWARE SPECIFICITY RATINGS

Hazard ratings Cause ratings

La 5 18% L1 65 50%

Lb 7 25% L2 26 20%

Lc 7 25% L3 38 29%

Ld 3 11%

Le 6 21%

TABLE XV. PROJECT B SOFTWARE SPECIFICITY RATINGS

Hazard ratings Cause ratings

La 3 8% L1 64 38%

Lb 1 3% L2 68 40%

Lc 14 38% L3 37 22%

Ld 13 35%

Le 6 16%

TABLE XVI. PROJECT C SOFTWARE SPECIFICITY RATINGS

Hazard ratings Cause ratings

La 0 0% L1 0 0%

Lb 0 0% L2 41 71%

Lc 0 0% L3 16 29%

Ld 12 86%

Le 2 14%

Once again, we note that these ratings do not measure
the quality or the completeness of the software cause and
control analysis; these ratings only reflect the specificity of
the information captured in the hazard reports. We believe
that what these ratings reflect may indicate risk where
insufficient specificity has been provided to identify the
software-based cause of a hazardous condition within the
hazard report. Insufficient specificity may indicate that the
problem is not well understood.

V. RESULTS

In Section III we presented our two GQM goals for this
study. We describe our conclusions for each goal in Section
V. A. We describe and discuss a number of risks observed
in the hazard reports and their implications for software
safety in Section V.B.

A. Conclusions of GQM evaluation

GQM Goal 1: Analyze a sample of the hazards reported

for projects A, B and C in order to characterize them with
respect to the prevalence of software in hazards, causes, and
controls from the point of view of NASA quality assurance
personnel in the context of the Constellation program.

It is clear from Section IV.A and Table XIII that software
plays a significant role in the safety of the Constellation
program. However, there is variable precision in the
counting of software hazards, causes and controls; the
guidelines for reporting hazards are open to interpretation
and each group reported and scoped hazards differently.
Furthermore, the number of software and software-related
hazards is likely greater than shown as there may have been
software causes and controls that were not identified as such.

From the point of view of the quality assurance
personnel, it is difficult to track each hazard cause and
control to its source, and overall traceability becomes more
difficult. In Section B below, we present our lessons learned
about the nature of software in hazard reports, which directly
addresses the issue of traceability and proposes some
modifications to the development process to take this into
account.

GQM Goal 2: Analyze the software causes in a sample

set of hazard reports for projects A, B and C in order to
evaluate them with respect to the specificity of those software

causes and hazards from the point of view of NASA quality
assurance personnel in the context of the Constellation
program.

Section IV.B and Tables XIV-XVI provide the summary
data for this goal. For all 3 projects, the causes were rated at
least Level L2 for 70-78% of all causes. However, project C
had 0% with the highest rating of L1, whereas the other two
projects had L1 ratings of 38% and 50%. Although this data
is only from PDR, project C has significantly less specificity
that the other two. Part of the CSERP review process is to
further refine the specificity of hazard reports over time,
particularly in subsequent development phases. These
current figures provide an important baseline for CSERP and
SR&QA personnel to monitor the progress of hazard report
specificity over time.

Because this data was collected during the time for PDR,
the process used by the Constellation Program did not
require that controls and verifications be fully developed. For
this reason, we were unable to fully characterize controls and
their verifications for this study and it will have to wait for a
later time.

B. Informing the software safety process: risks observed in

software hazard reports

In the process of developing this data, we have
uncovered a number of potential risks for the program with
regard to how software-related hazards are reported. A lack
of completeness and uniformity in the information describing
software risk (i.e. software causes and controls) creates a risk
in itself. That is, software causes may not be thoroughly
described and understood, and controls that involve software
may be difficult to verify.

 Maintaining traceability between causes, controls and
verifications is essential for ensuring that all causes of
hazardous conditions have a control in place and that this
control has been verified. Our analysis was conducted on
hazard reports that had passed or were in the Phase I CSERP
review where complete description of controls and
verifications were not yet required. However, traceability
needs to be maintained between causes, controls and
verifications during Phase I. We observed a number of risks
associated with incomplete traceability in the hazard reports.

1) Risk 1 – Lack of consistency in structuring hazard

report content, causes and control descriptions impairs

understanding.
All hazard reports in the Constellation program follow a

standard template, but the content of the hazard reports,
cause descriptions, and control descriptions differed
substantially between the three programs and between hazard
report authors within the same program. In some cases, the
unstructured text creates risk that the CSERP may not be
able to fully understand the risks detailed in the hazard even
with supporting materials.

During preliminary design, safety engineers are still
developing first versions of hazard reports and becoming
familiar with the expectations of CSERP and the
requirements of the software safety process. This risk has
abated over time as CSERP and SR&QA personnel have

worked closely with safety engineers to form a uniform
expectation for hazard report content. These experiences are
also being used to recommend improvements to NASA
process documentation and training materials.

2) Risk 2 – Lack of consistent scope in causes and

controls impairs risk assessment.
Related to Risk 1, there is a lack of uniformity in scoping

software causes and controls between programs or between
hazard reports within programs in some cases. A cause
reading “Generic avionics failure or software flaw causes
improper operation of control thruster” certainly involves
software, but it is not scoped to a particular software
component as required by NASA procedure.

Much of this risk can be attributed to unfamiliarity with
describing software risk in hazards and misunderstanding the
expectations of the CSERP board. This risk has also abated
over time, yet remains present in some hazard reports.
SR&QA personnel are conducting workshops with project
safety engineers to educate them further on describing
software risk. We have also provided a two-page “user
guide” with examples of how safety engineers can specify
software causes of hazards that has been well-received by
SR&QA personnel. Furthermore, NASA technicians are
considering changes to the hazard tracking system to enable
safety engineers to mark software causes, controls and
verifications as involving software.

3) Risk 3 – “Lumped” software causes and controls

impede verification.
Many hazard reports placed all software causes and most

software controls under a single cause labeled “Software-
based error.” In many cases, this cause had a single control
with multiple pages of software design and operational
information. This large control then had a single
verification. This single control, while highly detailed,
presents risk in that software design and behaviors will not
be individually verified.

As with the previous risk, CSERP and SR&QA
personnel are working closely with project safety engineers
to “modularize” the description of software causes controls
instead of treating software as a single black-box entity. A
constant challenge faced by CSERP, SR&QA and safety
engineers is determining when differentiating complex
hardware and software functionalities into multiple causes
and controls is appropriate. Complex causes and controls
introduce risk that some individual risks may not be well
understood. However, creating controls also entails
significant additional verification effort that may yield little
return if the cause/control was largely covered elsewhere.

4) Risk 4 – Incorrect references to hazard reports,

causes and controls impair traceability.
A number of references to missing or incorrect hazard

reports, causes or controls were observed. The most
substantial risk is that a cause may not be adequately
controlled when one or more of its controls are transferred to
an incorrect or missing hazard report, cause, or control.
NASA technicians are currently deploying improved
functionality in the HTS to allow safety engineers to create

explicit references to other hazards, causes, controls and
verifications in the hazard reports. This functionality will be
backed by automated verification and bookkeeping.

5) Risk 5 – Sub-controls dissuade independent

verification and add overhead.
Many HRs have controls that contain enumerated “sub-

controls.” Greater confidence in the control may be gained
by verifying the sub-controls independently. Furthermore,
additional risk is introduced in that references to sub-controls
may become lost or incorrect as these references must
necessarily be manual instead of taking advantage of the
technology available in the hazard tracking system. As in
Risk 3, CSERP and SR&QA personnel are working closely
with safety engineers to determine the best methods for
separating out and managing the overhead associated with
complex controls.

6) Risk 6 – Ubiquity of transferred causes and controls

may mask software risk.
Across the projects, 23-31% of causes and 11-22% of

controls were transferred. While necessary and appropriate
in documenting hazards, transferred causes and controls
represent added risk. The applicability of transferred causes
and the adequacy of transferred controls must be re-
evaluated in their original context whenever any changes are
made to the causes or controls. Furthermore, additional
bookkeeping is necessary to ensure that the references to
hazard reports, causes and controls are up to date (see Risk
4). Transferred causes and controls also make it difficult to
understand the impact of software.

Stronger tool support (as described in Risk 4) enables
better traceability and bookkeeping, but also enables analysis
that can be used to quantify software risk. Coupled with
marking causes and controls as software (as described in
Risk 2), the HTS tool could then report comprehensively the
number of software causes and controls by automatically
resolving dependencies between hazards.

VI. SUMMARY AND FUTURE WORK

We analyzed 154 hazard reports from the preliminary
design phases of three flight hardware projects in the NASA
Constellation program. Our goals were to: 1) quantify the
prevalence of software in hazards, causes and controls; and
3) to evaluate software causes of hazardous conditions
according to their specificity. We found that 49-70% of
hazardous conditions in the three systems could be caused by
software or software was involved in the prevention of the
hazardous condition. We also found that 12-17% of the
2013 hazard causes involved software, and that 23-29% of
all causes had a software control. Furthermore, 10-12% of
all controls were software-based.

By analyzing hazard reports, we gained insight into risk
areas within the software safety analysis process by

analyzing its process artifacts. We identified six risks in
software safety analysis reporting. We are working with
NASA SR&QA personnel in an ongoing effort to educate
NASA safety engineers on describing software safety risk, to
improve NASA process documents and training materials,
and to provide tool support to the software safety process.

In the future, we are planning to compare the various
systems in an attempt to build baselines for the various
software measures. This will allow us to interpret the data
more effectively. For example, if the three systems are
similar, then we might expect software to play a similar role
in the causes and controls. If not, how might we characterize
the differences? Analysis of the data shows that the software
related hazards, causes, and controls for project B are much
lower than those for project A. Why might this be true? The
two systems may be sufficiently different with respect to
their use of software, or the incompleteness of the data and
the numerous transfers may be masking their similarities.

A longer term goal is to evaluate multi-system,
“integrated” hazards. It may be difficult to consistently
measure the software scope in hazard reports among
subsystems because of difference in reporting software
causes and controls (software’s role), i.e., a sufficient
software risk assessment across the program is difficult,
expensive, or maybe even impossible. Finally, we plan to
continue our evaluation to hazard reports on other NASA
systems and extend our evaluations to include controls and
verifications.

ACKNOWLEDGMENT

This research was supported by NASA OSMA SARP
grant NNX08AZ60G to the Fraunhofer CESE. We would
like to acknowledge the help of Karen Fisher and Risha
George at NASA Goddard Space Flight Center for providing
us support and access to people and artifacts of the
Constellation Program.

REFERENCES

[1] ARIANE 5 Flight 501 Failure, Report by the Inquiry Board,
Paris, July 19, 1996,. http://esamultimedia.esa.int/docs/esa-x-
1819eng.pdf.

[2] V. Basili and D. Weiss, “A Methodology for Collecting Valid
Software Engineering Data,” IEEE Transactions on Software
Engineering, vol.10(3), Nov. 1984, pp. 728-738.

[3] V. Basili, F. Marotta, K. Dangle, L. Esker, and I. Rus,
“Measures and Risk Indicators for Early Insights Into
Software Safety,” Crosstalk, Oct. 2008, pp. 4-8.

[4] N. G. Leveson and C. S. Turner, “An investigation of the
Therac-25 accidents,” IEEE Computer, 26(7), July 1993,
pp.18-41, doi:10.1109/MC.1993.274940.

[5] B. Prasad, Concurrent Engineering Fundamentals – Integrated
Product and Process Organization, Prentice Hall, Upper
Saddle River NJ, 1996.

