Predicting the Size and Timing of Sunspot Maximum for Cycle 24

Robert M. Wilson
Marshall Space Flight Center, Marshall Space Flight Center, Alabama

June 2010
The NASA STI Program...in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results...even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI program home page at <http://www.sti.nasa.gov>
- E-mail your question via the Internet to <help@sti.nasa.gov>
- Fax your question to the NASA STI Help Desk at 443–757–5803
- Phone the NASA STI Help Desk at 443–757–5802
- Write to:
 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076–1320
Predicting the Size and Timing of Sunspot Maximum for Cycle 24

Robert M. Wilson
Marshall Space Flight Center, Marshall Space Flight Center, Alabama

National Aeronautics and Space Administration
Marshall Space Flight Center • MSFC, Alabama 35812

June 2010
LIST OF FIGURES

1. Comparison of cycle 24’s AA values and mean AA values for cycles 12–23 for elapsed time in months relative to $E(Rm)$, $-18 \leq t \leq 18$.. 4

2. Cyclic variation of (a) RM and (b) AAm for cycles 12–24 .. 5

3. Scatter plots of (a) RM versus AAm based on single-cycle values (the method of Ohl) and (b) RM versus AAm based on 2-cma values .. 6

4. Scatter plot of ASC versus RM (the Waldmeier effect) ... 8

LIST OF TABLES

1. Selected solar cycle parametric values for cycles 10–24 ... 9
LIST OF ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-mma</td>
<td>12-month moving average</td>
</tr>
<tr>
<td>2-cma</td>
<td>2-cycle moving average</td>
</tr>
<tr>
<td>AA</td>
<td>12-mma value of the monthly aa-geomagnetic index</td>
</tr>
<tr>
<td>AAm</td>
<td>minimum value of 12-mma value of the monthly aa-geomagnetic index</td>
</tr>
<tr>
<td>ASC</td>
<td>ascent duration (from minimum sunspot amplitude to maximum sunspot amplitude)</td>
</tr>
<tr>
<td>E(AAm)</td>
<td>epoch of minimum value of 12-mma value of the monthly aa-geomagnetic index occurrence</td>
</tr>
<tr>
<td>E(Rm)</td>
<td>epoch of minimum sunspot amplitude occurrence</td>
</tr>
<tr>
<td>PER</td>
<td>period (from minimum sunspot amplitude of cycle n to minimum sunspot amplitude of cycle $n+1$, where n is the sunspot cycle number)</td>
</tr>
<tr>
<td>RM</td>
<td>maximum sunspot amplitude</td>
</tr>
<tr>
<td>Rm</td>
<td>minimum sunspot amplitude</td>
</tr>
<tr>
<td>TP</td>
<td>Technical Publication</td>
</tr>
</tbody>
</table>
NOMENCLATURE

\(cl \) confidence level
\(f \) fast rising cycle
\(n \) sunspot cycle number
\(P \) probability
\(r \) coefficient of correlation
\(r^2 \) coefficient of determination
\(s \) slow rising cycle
\(se \) standard error of estimate
\(t \) elapsed time in months from epoch of minimum sunspot amplitude occurrence
\(x \) independent variable
\(y \) dependent variable
\(\sigma \) standard deviation
1. INTRODUCTION

Accurately predicting in advance the size and timing of sunspot maximum for an ongoing sunspot cycle continues to be one of the long-standing problems in solar physics, one that becomes quite relevant every 11 years or so, especially around the time of sunspot minimum (Rm).1–9 Accurate prediction of the size and timing of sunspot cycles is important for a variety of reasons, in particular as related to climatic change and the effects of solar cycle-related phenomena, like earthward-directed coronal mass ejections and solar flares, on human space flight and on our modern technological systems (satellite orbital dynamics, electrical distribution, airline operations, etc.).10–16

Some 40 years ago, A.I. Ohl noted that the level of geomagnetic activity near Rm provides a reasonable estimate for the expected size of the ongoing sunspot cycle,17 usually about 3 years in advance of maximum amplitude (RM) occurrence. Since Rm has now been ascertained for cycle 24, having occurred in December 2008 on the basis of the 12-month moving average (12-mma) of monthly mean sunspot number and since a minimum in geomagnetic activity in the vicinity of Rm (AAm) occurrence appears to have recently been seen in September 2009, a firm estimate of cycle 24’s RM using the method of Ohl can now be made.

The purpose of this NASA Technical Publication (TP) is to give an estimate for the expected size and timing of the RM for cycle 24, one based on the updated inferred statistically significant relationship found between RM and AAm using 12-mma values (method of Ohl). Also, an alternate method for predicting cycle 24’s RM using a variation of Ohl’s method, one based on using 2-cycle moving averages (2-cmas) of RM and AAm, is given. Finally, the ascent duration (ASC), defined as the elapsed time between Rm and RM, is deduced for cycle 24 from the Waldmeier effect using the expected value of its RM.
2. RESULTS

Figure 1 displays an epoch analysis of the variation of the 12-mma values of the AA-geomagnetic index in the vicinity of sunspot minimum (−18 ≤ t ≤ 18, where t is the elapsed time in months relative to E(Rm), the epoch of Rm), with the solid line representing the mean values of the AA index for cycles 12–23 and the filled circles representing values for cycle 24 (determined by the British Geological Survey). Across the top and to the right are denoted the occurrences (E(AAm)) and values (AAm) of the minimum AA-geomagnetic index for cycles 12–23. The minimum value of the mean occurs at about t = 4–6 months, having a value of 15.5 nT. Cycles 12, 13, 15, 17, 20, 21, and 22 had their AAm occurrences within the interval t = 0–9 months, while cycles 16, 18, 19, and 23 had their AAm occurrences during the interval t = 12–17 months. Only cycle 14 had its AAm occurrence prior to E(Rm). Also, cycles 17–19 and 21–23 had AAm values above the mean, while cycles 12–16 and 20 had AAm values below the mean.

Cycle 24’s AAm appears to have minimized at t = 9 months (i.e., September 2009), having a value of about 8.4 nT. This value is well below the mean and, in fact, is now the smallest value on record, falling below that previously found for cycle 14 (8.9 nT), the smallest sunspot cycle of the modern record (64.2). (The reader should note that all AA values prior to 1957 have been increased by 3 nT to account for changes in the repositioning of the magnetometers used in the determination of the AA index.)

Figure 2(a) shows the variation of RM values for cycles 10–23, where the thin jagged line represents the actual cyclic values and the heavy smoother line represents the 2-cma values of RM (i.e., the trend line). In figure 2a, the filled circles represent longer duration cycles, those of minimum-to-minimum period (PER) 11 years or more in length, while the filled triangles represent shorter duration cycles, those of PER less than 11 years in length. The little f’s and s’s appearing beside each cyclic value denote the ascent duration class for each cycle, where fast-rising (f) cycles have ASC < 48 months and slow-rising (s) cycles have ASC ≥ 48 months. Interestingly, all f cycles tend to lie above the 2-cma trend line except cycle 18, and all s cycles tend to fall below the 2-cma trend line except cycle 15. Also, all even-numbered cycles tend to lie below the 2-cma trend line except cycle 22, and all odd-numbered cycles tend to lie above the 2-cma trend line without exception. The implication is that cycle 24 probably will be a slow-rising cycle with RM below its 2-cma trend line value, once that value becomes known (unknown until cycle 25’s RM is observed).

Figure 2(b) shows the corresponding cyclic AAm and 2-cma values of AAm, where the filled square represents the provisional minimum value of AAm for cycle 24. Comparison of the two curves reveals an unmistakable coupled behavior, especially as described using the 2-cma values. Increasing/decreasing values of AAm are strongly associated with increasing/decreasing values of RM. The suggestion then is that, because AAm for cycle 24 has decreased in value relative to cycle 23’s AAm, RM for cycle 24, likewise, will decrease in value relative to cycle 23’s RM (120.8).
Figure 1. Comparison of cycle 24’s AA values and mean AA values for cycles 12–23 for elapsed time in months relative to E(Rm), $-18 \leq t \leq 18$.
Figure 2. Cyclic variation of (a) RM and (b) AAm for cycles 12–24.

Figure 3(a) displays the scatter plot of RM versus AAm for cycles 12–23 (the method of Ohl). The thin horizontal and vertical lines are the medians for RM and AAm, respectively. The results of statistical testing using Fisher’s exact test for 2×2 contingency tables is shown in the lower-right portion of figure 3(a). The probability \(P \) of obtaining the observed distribution or one more suggestive of a departure from independence (chance) is computed to be \(P = 0.1\% \), based on the sample size of 12 sunspot/geomagnetic cycles, suggesting a very strong association between the two parameters. The diagonal line running from the lower left to the upper right is the inferred regression...
Figure 3. Scatter plots of (a) RM versus AAm based on single-cycle values (the method of Ohl) and (b) RM versus AAm based on 2-cma values.

Based on linear regression analysis with the line given as \(y = -30.492 + 10.134x \), where \(y \) represents the predicted value of RM and \(x \) represents the observed value of AAm. The inferred correlation has a coefficient of correlation (\(r \)) equal to 0.926 and a coefficient of determination (\(r^2 \)) equal to 0.857. The standard error (SE) is 16.6, and the confidence level (CL) is greater than 99.9%. The probability (\(p \)) is 0.1%.

Based on linear regression analysis with the line given as \(y = -35.447 + 10.479x \), where \(y \) represents the predicted value of RM and \(x \) represents the observed value of AAm. The inferred correlation has a coefficient of correlation (\(r \)) equal to 0.972 and a coefficient of determination (\(r^2 \)) equal to 0.944. The standard error (SE) is 8.7, and the confidence level (CL) is greater than 99.9%. The probability (\(p \)) is 0.4%.
to 0.857, suggesting that about 86% of the variance in RM can be explained simply by the variation of AAm alone. The standard error of estimate (se) is estimated to be about 16.6 units of smoothed monthly mean sunspot number and the inferred linear correlation is found to have a confidence level (cl) > 99.9%, meaning that the inferred correlation is considered statistically very important.

Figure 3(b) is similar to figure 3(a), except now it is based on using the 2-cma values of RM and AAm (a variation of the method of Ohl). Although it is based on two fewer cycles, the inferred regression (based on linear regression analysis) is inferred to be slightly stronger, having \(r = 0.972 \), \(r^2 = 0.944 \), and \(se = 8.7 \) units of smoothed monthly mean sunspot number. The inferred regression is \(y = -35.447 + 10.479x \).

Using AAm = 8.4 nT for cycle 24, RM for cycle 24 is expected to lie within the lower-left quadrant of figure 3(a). The inferred regression equation yields RM = 54.6 ± 16.6 (i.e., the ±1 – σ prediction interval). Hence, there is a 75% chance that cycle 24’s RM will measure ≤66.2, a 95% chance that it will measure ≤84.7, and only a 1% chance that it will measure ≥100.5.

On the basis of the observed 2-cma of AAm for cycle 23, equal to \((17.5 + 2(15.8) + 8.4)/4 = 14.4\) nT, one expects the 2-cma of RM for cycle 23 to lie in the lower-left quadrant of figure 3(b). The inferred regression equation yields the 2-cma of RM for cycle 23 to be about 115.5 ± 8.7 (the ±1 – σ prediction interval). Hence, RM for cycle 24 can be crudely estimated to be RM = \(4(115.5 ± 8.7) - 2(120.8) - 158.5 = 61.9 ± 34.8\). Because the average deviation between predicted and observed 2-cma values of RM is about 6.5, cycle 24’s RM, based on the 2-cma correlation, is estimated to be about 62 ± 26.

Together, the two predictions strongly indicate that the RM for cycle 24 will be considerably smaller than was observed for cycle 23 (120.8), measuring probably about 55–62 in terms of smoothed monthly mean sunspot number. Using these values, one can easily estimate the timing of RM occurrence relative to E(Rm) for cycle 24 using the Waldmeier effect, a loose but statistically significant relationship between RM and ASC.22

Figure 4 depicts the Waldmeier effect, plotting ASC versus RM, where the number appearing beside each plotted point is the sunspot cycle number. Statistical testing, using Fisher’s exact test for 2×2 contingency tables, reveals a strong association between the two parameters, having \(P = 0.2\% \), meaning that the \(P \) of obtaining the observed table or one more suggestive of independence is only 0.2%. Thus, smaller RM cycles tend to have ASC ≥48 months (relative to E(Rm)), while larger RM cycles tend to have ASC < 48 months. Of the smaller RM cycles, all have had ASC ≥48 months, except cycle 13, with all smaller RM cycles having ASC ≥47 months. Furthermore, 5 of 7 smaller RM cycles have also been cycles of longer duration (PER > 11 years), the only exceptions being cycles 15 and 16. Because cycle 24 is predicted to be a smaller RM cycle, one infers that it too likely will be a slow riser (ASC ≥48 months) and quite possibly be a cycle of longer duration. This suggests that RM occurrence for cycle 24 very likely will occur after December 2012, since E(Rm) for cycle 24 occurred in December 2008, and that cycle 24 very likely will end sometime in 2020 or later.
Also shown in figure 4 is the inferred regression, ignoring cycles 14 and 19, the extremes in RM and considered here as statistical outliers with respect to the Waldmeier effect. Presuming RM = 55–62 for cycle 24, the ASC for cycle 24 is estimated to be about 58–59±4 months (the ±1 – σ prediction interval). Thus, RM for cycle 24 is, indeed, expected to occur sometime in 2013–14 unless, of course, cycle 24 turns out to be a statistical outlier. Interestingly, cycles 14 and 19, the cycles of extremes in terms of RM, are 5 cycles apart, and cycle 24 follows cycle 19 by exactly 5 cycles. Will cycle 24 also be a statistical outlier with respect to the Waldmeier effect? (The reader should note that cycle 9, which precedes cycle 14 by 5 cycles, also appears to be a statistical outlier with respect to the Waldmeier effect, having RM = 131.6 and ASC = 55 months.)

\[y^* = 70.46 - 0.206x \]
\[r = -0.884, r^2 = 0.781 \]
\[se = 3.5, cl > 99.9\% \]
*ignores cycles 14 and 19

Figure 4. Scatter plot of ASC versus RM (the Waldmeier effect).

For convenience, table 1 is included to provide the reader with the exact values and dates for the selected cyclic parameters associated with the modern era sunspot cycles used in plotting figures 1–4.
Table 1. Selected solar cycle parametric values for cycles 10–24.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>RM</th>
<th>Rm</th>
<th>E(Rm)</th>
<th>ASC</th>
<th>PER</th>
<th>AA(Rm)</th>
<th>AAm*</th>
<th>RM(2-cma)</th>
<th>AAm*(2-cma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>97.9</td>
<td>3.2</td>
<td>12-1855</td>
<td>50</td>
<td>135</td>
<td>–</td>
<td>–</td>
<td>117.0</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>140.5</td>
<td>5.2</td>
<td>03-1867</td>
<td>41</td>
<td>141</td>
<td>–</td>
<td>–</td>
<td>113.4</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>74.6</td>
<td>2.2</td>
<td>12-1878</td>
<td>60</td>
<td>135</td>
<td>9.8</td>
<td>9.7</td>
<td>94.4</td>
<td>–</td>
</tr>
<tr>
<td>13</td>
<td>87.9</td>
<td>5.0</td>
<td>03-1890</td>
<td>46</td>
<td>142</td>
<td>14.2</td>
<td>13.6</td>
<td>78.7</td>
<td>11.5</td>
</tr>
<tr>
<td>14</td>
<td>64.2</td>
<td>2.6</td>
<td>01-1902</td>
<td>49</td>
<td>139</td>
<td>9.1</td>
<td>8.9</td>
<td>80.4</td>
<td>10.7</td>
</tr>
<tr>
<td>15</td>
<td>105.4</td>
<td>1.5</td>
<td>08-1913</td>
<td>48</td>
<td>120</td>
<td>11.2</td>
<td>11.2</td>
<td>88.3</td>
<td>10.9</td>
</tr>
<tr>
<td>16</td>
<td>78.1</td>
<td>5.6</td>
<td>08-1923</td>
<td>56</td>
<td>121</td>
<td>13.4</td>
<td>12.4</td>
<td>95.2</td>
<td>13.1</td>
</tr>
<tr>
<td>17</td>
<td>119.2</td>
<td>3.4</td>
<td>09-1933</td>
<td>43</td>
<td>125</td>
<td>18.6</td>
<td>16.2</td>
<td>117.1</td>
<td>16.0</td>
</tr>
<tr>
<td>18</td>
<td>151.8</td>
<td>7.7</td>
<td>02-1944</td>
<td>39</td>
<td>122</td>
<td>26.2</td>
<td>19.3</td>
<td>156.0</td>
<td>18.7</td>
</tr>
<tr>
<td>19</td>
<td>201.3</td>
<td>3.4</td>
<td>04-1954</td>
<td>47</td>
<td>126</td>
<td>20.9</td>
<td>19.9</td>
<td>166.3</td>
<td>18.2</td>
</tr>
<tr>
<td>20</td>
<td>110.6</td>
<td>9.6</td>
<td>10-1964</td>
<td>49</td>
<td>140</td>
<td>15.2</td>
<td>13.8</td>
<td>146.8</td>
<td>16.8</td>
</tr>
<tr>
<td>21</td>
<td>164.5</td>
<td>12.2</td>
<td>06-1976</td>
<td>42</td>
<td>123</td>
<td>22.3</td>
<td>19.6</td>
<td>149.5</td>
<td>17.6</td>
</tr>
<tr>
<td>22</td>
<td>158.5</td>
<td>12.3</td>
<td>09-1986</td>
<td>34</td>
<td>116</td>
<td>18.3</td>
<td>17.5</td>
<td>150.6</td>
<td>17.6</td>
</tr>
<tr>
<td>23</td>
<td>120.8</td>
<td>8.0</td>
<td>05-1996</td>
<td>47</td>
<td>151</td>
<td>18.8</td>
<td>15.8</td>
<td>–</td>
<td>14.4</td>
</tr>
<tr>
<td>24</td>
<td>–</td>
<td>1.7</td>
<td>12-2008</td>
<td>–</td>
<td>–</td>
<td>10.4</td>
<td>8.4</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

*means in the vicinity of E(Rm). For cycle 21, its true AAm occurred about 46 months after E(Rm), measuring 17.2.
3. DISCUSSION AND SUMMARY

Several years ago during the declining portion of cycle 23, efforts were made to reach a consensus prediction for the size and timing of sunspot cycle 24. The outcome was a split prediction, some favoring a large RM and quick rise and others favoring a more subdued RM and slower rise. Pesnell provides a summary of some of these early attempts at predicting the size and timing of cycle 24, as do Obridko and Shelting. Additionally, a useful Web site for comparing the many predictions that have been made for cycle 24 is readily available for access.

While many methods for predicting the latter-occurring RM of a sunspot cycle have been proffered, the method of Ohl seems to be one of the most reliable, having a $\pm 1 - \sigma$ uncertainty of about 17 units of smoothed monthly mean sunspot number. The difficulty associated with obtaining a singular consensus prediction of RM for cycle 24 was largely caused by its delayed minimum. Early on, because cycle 23 had an RM larger than the mean amplitude, statistically speaking, it could be argued that it was destined to be a cycle of shorter duration. If true, its end (and consequently the conventional onset of cycle 24) was anticipated to occur prior to May 2007.

Because the minimum for cycle 24 appeared most imminent in 2006, because a maximum in geomagnetic activity had occurred in August 2003 (the highest ever recorded for the 12-mma of AA), and because there exists a statistically significant relationship between the maximum of geomagnetic activity during the declining portion of an ongoing sunspot cycle and the size of the following cycle, these observations became the basis for the prediction of a large RM for cycle 24, which was also supportive of a particular flux-transport dynamo model prediction and of evidence for the deep meridional flow setting the sunspot cycle period. It has since become apparent that E(Rm) for cycle 24 would occur later than 2006–2007, inferring that the initial prediction for cycle 24’s RM was premature.

In this NASA TP, it has been shown that AAm for cycle 24 appears likely to have occurred in September 2009, some 9 months past cycle 24’s E(Rm), measuring about 8.4 nT, a value smaller than the smallest previous value on record (8.9 nT for cycle 14, also the smallest sunspot cycle on record). The consequence of this is that, unless cycle 24 proves to be a statistical outlier, its RM is now anticipated to be much smaller in size than previously forecast, possibly becoming the smallest of the modern era. The method of Ohl predicts $RM = 54.6 \pm 16.6$ (the $\pm 1 - \sigma$ prediction interval), while using a variation of the Ohl method (2-cma values), RM for cycle 24 is predicted to be about 62 ± 26. A value of RM equal to 55–62 suggests from the Waldmeier effect that cycle 24 will be a slow-rising cycle, peaking probably about 58–59 ± 4 months (the $\pm 1 - \sigma$ prediction interval) after E(Rm) or sometime in 2013–14. Likewise, because cycle 24 is anticipated to be a slow-rising, small-amplitude sunspot cycle, statistically speaking, it should also be a cycle of longer duration, inferring that the onset of cycle 25 should not be expected until sometime in 2020 or later. Predicting the overall shape of cycle 24, however, will not be particularly reliable for at least another 2–3 years, as will be predicting its effects on the space weather environment.
REFERENCES

Predicting the Size and Timing of Sunspot Maximum for Cycle 24

Robert M. Wilson

George C. Marshall Space Flight Center
Marshall Space Flight Center, AL 35812

National Aeronautics and Space Administration
Washington, DC 20546–0001

Unclassified-Unlimited
Subject Category 92
Availability: NASA CASI (443–757–5802)

Prepared by the Science and Exploration Vehicle Office, Science and Mission Systems Office

For cycle 24, the minimum value of the 12-month moving average (12-mma) of the AA-geomagnetic index in the vicinity of sunspot minimum (AAm) appears to have occurred in September 2009, measuring about 8.4 nT and following sunspot minimum by 9 months. This is the lowest value of AAm ever recorded, falling below that of 8.9 nT, previously attributed to cycle 14, which also is the smallest maximum amplitude (RM) cycle of the modern era (RM = 64.2). Based on the method of Ohl (the preferential association between RM and AAm for an ongoing cycle), one expects cycle 24 to have RM = 55 ± 17 (the ±1 – σ prediction interval). Instead, using a variation of Ohl's method, one based on using 2-cycle moving averages (2-cma), one expects cycle 23's 2-cma of RM to be about 115.5 ± 8.7 (the ±1 – σ prediction interval), inferring an RM of about 62 ± 35 for cycle 24. Hence, it seems clear that cycle 24 will be smaller in size than was seen in cycle 23 (RM = 120.8) and, likely, will be comparable in size to that of cycle 14. From the Waldmeier effect (the preferential association between the ascent duration (ASC) and RM for an ongoing cycle), one expects cycle 24 to be a slow-rising cycle (ASC ≥ 48 months), having RM occurrence after December 2012, unless it turns out to be a statistical outlier.

solar prediction, the sunspot cycle, cycle 24, method of Ohl
The NASA STI Program…in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

• CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

• TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results…even providing videos.

For more information about the NASA STI Program Office, see the following:

• Access the NASA STI program home page at <http://www.sti.nasa.gov>

• E-mail your question via the Internet to <help@sti.nasa.gov>

• Fax your question to the NASA STI Help Desk at 443 –757–5803

• Phone the NASA STI Help Desk at 443 –757–5802

• Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076–1320