Nickel-Titanium Alloys: Corrosion “Proof” Alloys for Space Bearing, Components and Mechanism Applications

Christopher DellaCorte
Glenn Research Center, Cleveland, Ohio
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA STI Help Desk at 443–757–5803

- Telephone the NASA STI Help Desk at 443–757–5802

- Write to:
 NASA Center for AeroSpace Information (CASI)
 7115 Standard Drive
 Hanover, MD 21076–1320
Nickel-Titanium Alloys: Corrosion “Proof” Alloys for Space Bearing, Components and Mechanism Applications

Christopher DellaCorte
Glenn Research Center, Cleveland, Ohio

Prepared for the
40th Aerospace Mechanisms Symposium
cosponsored by the NASA Kennedy Space Center and Lockheed Martin Space Systems Company
Cocoa Beach, Florida, May 12–14, 2010

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135
Nickel-Titanium Alloys: Corrosion “Proof” Alloys for Space Bearing, Components and Mechanism Applications

Christopher DellaCorte
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

An intermetallic nickel-titanium alloy, 60NiTi (60 wt% Ni, 40 wt% Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high Ti content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of Ti and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of Ti alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is presented.

Introduction

Binary nickel-titanium (Ni-Ti) alloys are in widespread use in the medical and dental industries in applications where their biocompatibility and unique superelastic or shape memory effect (SME) characteristics are readily exploited (Ref. 1). The Ni-Ti family of alloys traces their origins to pioneering work of William J. Buehler and his colleagues at the Naval Ordinance Laboratory during the late 1950s (Refs. 2 and 3). The designation NITINOL often used for these alloys is an abbreviation for Nickel-Titanium Naval Ordinance Laboratory. Buehler’s early efforts identified both the NITINOL 55 and NITINOL 60 alloys, which contained 55 and 60 wt% Ni, respectively. NITINOL 55 is soft and was found to be easier to mechanically work and form than NITINOL 60 that was prone to excessive work hardening. Several hand tools were fabricated from NITINOL 60 to take advantage of its high hardness, electrical conductivity, non-magnetic behavior and corrosion resistance (Ref. 4).

Materials for high-performance bearings, gears and other mechanical components require a number of specific properties and characteristics. Among these key attributes are high strength and hardness, high thermal conductivity, and the ability to be manufactured to very high levels of precision with regards to final dimensions and surface finish. In addition, excellent corrosion resistance and good tribological properties are often of importance especially for applications in extreme environments. Spaceflight hardware destined to operate in the vacuum of space, beyond the realm of atmospheric corrosion, often must be stored for extended periods before launch, and are subject to bearing and gear corrosion problems. In select applications involving electric machines and sensitive instrumentation, good electrical conductivity and non-magnetic properties can also be highly desirable. Unfortunately, no currently deployed material possesses all of these properties.

Traditional tool steel-based bearing materials, such as M50 and 52100 enjoy widespread application due to their high hardness, ease of manufacture and good tribological properties. However, these alloys suffer from corrosion attack if not protected and though electrically conductive they are also highly magnetic. In addition, when used as bearing rolling elements, their high density leads to high centrifugal forces and limited fatigue life. These considerations have driven the search and development of alternate bearing and mechanical component alloys, namely stainless steels and ceramics.

Stainless steels such as 440C are widely used in the bearing and gear industry where corrosion resistance and high hardness are required. These martensitic stainless steels are reasonably low cost, easy
to machine prior to heat treatment and are dimensionally stable. When prepared through vacuum melting processes, they achieve very uniform, fully dense microstructures which lead to fine surface finishes and good fatigue behavior. Despite being referred to as “stainless”, however, the 400 series martensitic steels are prone to corrosion and are more accurately referred to as “corrosion-resistant” alloys rather than stainless. They are also highly magnetic.

Silicon nitride ceramics, on the other hand, are essentially corrosion proof. They can be polished to very fine surface roughness and are quite wear resistant. Silicon nitride’s low density compared to steels also makes it ideal for ultra high-speed applications because lower centrifugal stresses result. These attributes make silicon nitride the material of choice for high stiffness, high load, and high-speed bearings and for applications that include corrosive conditions and aggressive sliding environments. Such applications include bearings for gas turbine hot sections, cryogenic oxidizer turbopumps and components for diesel engine fuel injection systems. Though non-magnetic, silicon nitride is an electrical insulator. It is also more expensive to manufacture than steels owing to the complexity and cost of the high-temperature, high-pressure powder metallurgy processing required. Another shortcoming of silicon nitride is the difficulty of fabrication it into bearing raceways and other complex geometries.

Historically, metallic alloys with high concentrations of Ti are poor tribological materials in that they do not respond well to lubrication by organic fluids (Ref. 5). For instance, alloys such as Ti-6Al-4V exhibit galling behavior in dynamic contacts even under conditions well lubricated by oils and greases. During contact, Ti readily transfers to the counter-face leading to rough surfaces, high friction and wear. In addition, Ti alloys are recognized as being chemically aggressive causing degradation of many lubricants (Ref. 6). When Ti alloys must be used due to other attributes like high specific strength or corrosion resistance, tribological contact is avoided through the use of thick barrier coatings and claddings.

Based upon a wealth of negative experience with Ti alloys in tribological contacts, 60NiTi would appear an unlikely candidate as a bearing material. On the other hand, ceramic materials with high concentrations of Ti can exhibit desirable tribological properties. Titanium carbide (TiC) and titanium dioxide (TiO₂) are good examples. TiC coatings are often used to improve the surface finish and performance of stainless steel rolling elements in bearings and TiO₂, in the form of rutile, has been put forth as a potential solid lubricant under certain conditions (Refs. 6 and 7). These ceramic materials, however, are brittle and cannot be used as structural elements. In this work, we present evidence that hardened NiTi alloys can be produced that are devoid of shape memory or superelastic behavior and that such alloys display excellent tribological properties under oil-lubricated contact conditions.

Materials and Procedures

The 60NiTi balls evaluated here were manufactured via a proprietary high-temperature powder metallurgy process roughly similar to that described in the literature (Ref. 8). Pre-alloyed 60NiTi powder was hot isostatically pressed (HIPed) into rough, spherical ball blanks that were then ground, polished, and lapped to produce high quality (Grade 5) bearing balls 0.5 in. (12.7 mm) in diameter. 60NiTi plates were cut from cast and hot rolled plate stock. A multi-step thermal process (heat treatment) was used to enable rough machining of the plates and grinding of the bearing balls in a softened state followed by lapping to a very fine surface finish in the final hardened condition. The finished 60NiTi ball specimens, shown in the photograph in Figure 1, are bright and shiny in appearance and resemble conventional polished steel balls.

The elemental composition of the bearing material, as measured by atomic emission spectroscopy and energy dispersive, semi-quantitative x-ray analysis, were consistent and showed the specimens are nominally 55 at % Ni with the balance Ti. This translates to 60 wt% Ni, 40 wt% Ti, hence the historical designation of NITINOL 60 or 60NiTi. Density was measured at 6.71 g/cc and is about 15 percent lower than 440C stainless steel. Table I displays known and estimated properties of 60NiTi.
TABLE 1.—NOMINAL COMPARATIVE PROPERTIES FOR CONVENTIONAL BEARING ALLOYS AND NiTi-55 AND 60NiTi NITINOL 60 GRADE 5 TEST BALLS
[Representative thermophysical and mechanical properties of bearing materials.]

<table>
<thead>
<tr>
<th>Property</th>
<th>NiTi-60</th>
<th>NiTi-55</th>
<th>440C</th>
<th>Si₃N₄</th>
<th>M-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cc)</td>
<td>6.7</td>
<td>6.5</td>
<td>7.7</td>
<td>3.2</td>
<td>8.0</td>
</tr>
<tr>
<td>Hardness (Rockwell C)</td>
<td>56 to 62</td>
<td>35 to 40</td>
<td>58</td>
<td>1300 to 1500</td>
<td>60 to 65</td>
</tr>
<tr>
<td>Thermal Conductivity (W/m°C)</td>
<td>18</td>
<td>9</td>
<td>24</td>
<td>33</td>
<td>~36</td>
</tr>
<tr>
<td>Thermal Expansion (~10⁻⁶/°C)</td>
<td>~10⁻⁵</td>
<td>~10⁻⁵</td>
<td>10⁻⁴</td>
<td>2.6⁻⁵</td>
<td>~11⁻⁵</td>
</tr>
<tr>
<td>Magnetic</td>
<td>Non</td>
<td>Non</td>
<td>Magnetic</td>
<td>Non</td>
<td>Magnetic</td>
</tr>
<tr>
<td>Corrosion Resistance</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Marginal</td>
<td>Excellent</td>
<td>Poor</td>
</tr>
<tr>
<td>Tensile/Flexural Strength</td>
<td>~1000 MPa</td>
<td>~900 MPa</td>
<td>1900 MPa</td>
<td>600 to 1200 MPa (Bend Strength)</td>
<td>2500 MPa</td>
</tr>
<tr>
<td>Young’s Modulus</td>
<td>~114 GPa</td>
<td>~100 GPa</td>
<td>200 GPa</td>
<td>310 GPa</td>
<td>210 GPa</td>
</tr>
<tr>
<td>Poisson’s Ratio</td>
<td>TBD</td>
<td>0.3</td>
<td>0.3</td>
<td>0.29</td>
<td>0.30</td>
</tr>
<tr>
<td>Fracture Toughness</td>
<td>TBD</td>
<td>TBD</td>
<td>22 MPa√m</td>
<td>5 to 7 MPa√m</td>
<td>20 to 23 MPa√m</td>
</tr>
<tr>
<td>Maximum Use Temp</td>
<td>~400°C</td>
<td>~400°C</td>
<td>~400°C</td>
<td>~1100°C</td>
<td>~400°C</td>
</tr>
<tr>
<td>Electrical Resistivity (~80⁻⁸ Ω-cm)</td>
<td>~80⁻⁸ Ω-cm</td>
<td>~80⁻⁸ Ω-cm</td>
<td>~36⁻¹⁰ Ω-cm</td>
<td>Insulator</td>
<td>~60⁻⁸ Ω-cm</td>
</tr>
</tbody>
</table>

*TBD means “to be determined”

Figure 2 shows the cross sectional microstructure of the 60NiTi ball specimens in the final hardened and polished condition. Microhardness measurements indicate values in the range of 56 to 62 on the Rockwell C scale in the hardened condition. As with most HIPed or sintered powder compacts, the prior particle boundaries are quite evident and are delineated by oxides and other tramp phases. Despite containing only Ni and Ti, Ni-rich NITINOL microstructures can be very complex due to a series of metastable intermetallic phases that can exist depending on thermal history (Ref. 9). Analysis of the 60NiTi ball specimens reveals multiple discrete phases (NiTi₅) with TiNi dominating at approximately a 77 percent volume fraction. The balance is made up from Ni₅Ti₃ at 11 percent, Ni₃Ti at 10 percent, and NiTi₂ at 2 percent.
Preliminary differential scanning calorimetry (DSC) results for the bearing blanks and finished bearings suggest that the 60NiTi bearing blanks may have a slight amount of martensite that could form if cooled below –15 °C but in the hardened condition are microstructurally stable down to at least –100 °C. This indication is corroborated by our physical measurements of the bearing balls and plates that have been dimensionally stable throughout the processing, handling and research activities undertaken. Buehler also reported excellent stability during the early alloy development (Ref. 3).

To assess its tribological properties, spiral orbit tribometer (SOT) tests were conducted using a single 60NiTi ball loaded between two rotating disks, lubricated with synthetic oil and tested in a vacuum. In this test, the 60NiTi ball is marginally lubricated with a small quantity (~25 μg) of oil and undergoes mostly rolling contact interrupted by a scrubbing/sliding event every disk rotation. The SOT is depicted in Figure 3 and described in detail in References 6 and 10. It is basically a thrust bearing with one ball and flat races (plates). One of the plates is stationary and the other rotates to drive the ball into an orbit that is an opening spiral. The ball contacts a “guide plate” at the end of each orbit, which forces the ball back into its initial orbital radius. A piezoelectric force transducer supporting the guide plate senses the frictional force developed on the ball as it slides on the rotating plate during the contact of the ball with the guide plate. During this contact, the coefficient of friction is obtained from this force and the load imposed on the system. The tribometer is housed in a stainless steel chamber that can be evacuated by a turbomolecular pump to \(\leq 2 \times 10^{-8} \) Torr. It can be operated either in vacuum environment or at atmospheric pressure.

The plate specimens were 440C stainless steel or 60NiTi. They were lapped flat and their final polish resulted in an arithmetic mean surface roughness, Ra, <25 nm (1 μm) determined by optical interferometry. The 60NiTi balls were 12.7 mm (0.5 in.) diameter, Grade 5. The final surface cleaning procedure for all ball and plate specimens was by lightly rubbing with aqueous slurries of silicon carbide polishing powders, followed by sonication in deionized water. This preparation results in a surface on which water exhibits zero contact angle (spreads) and which exhibits an XPS spectrum devoid of impurities other than a small feature due to adventitious carbon.
The plates were initially clean and only the ball was lubricated. For the tests in the boundary regime, the ball was first weighed and then lubricated by dripping a dilute solution of the lubricant, ~1 mg of lubricant per ml of hexane solvent, onto the ball rotating on a small bench lathe. The ball is reweighed after evaporation of the solvent and the lubricant charge is obtained from the weight difference. About 20 mg (24 nl) of lubricant, a multiply alkylated cyclopentane (MAC) designated by the trade name Pennzane 2001A, were used on each ball. Tests were run here at a system load of 30 lb, which resulted in a track width of ~0.4 mm and corresponds to a Hertz pressure of 1.06 GPa. The test conditions result in operation in the boundary-lubrication regime. Considering the small quantity of lubricant present in the tribosystem, test lifetimes on the order of a few tens of thousands of revolutions are typical for good tribological materials like 440C and past experience with the SOT, indicates its relevance in mimicking the tribological conditions typical of a space ball bearing application (Ref. 6).

Results and Discussion

Under these conditions, considered representative of precision bearings, performance (life and friction) was comparable to that observed with 440C bearing balls. Figure 4 shows the friction results for tests of 60NiTi balls running against 440C plates (left graph) and NITINOL 60 plates (right graph) in the SOT. Typical lubricant lifetimes were approximately 30,000 to 60,000 revolutions indicating a slow lubricant consumption rate. In one test using both 60NiTi plates and ball, the rig was permitted to run well beyond the complete consumption of lubricant. The friction climbed to a coefficient of around 0.35 but was stable and no galling tendencies were observed.

In comparison, SOT tests of balls sputter coated with pure, thin Ti films degrade the lubricant, experience high friction and seizure within a few dozen revolutions. Unlike traditional Ti alloys, the 60NiTi alloy performs well indicating it is a good candidate for bearings and mechanical components. Being impervious to the corrosion issues facing traditional bearing materials especially during storage before launching is a major asset.
Summary

This research effort has identified 60NiTi alloy as a promising candidate material for bearing and mechanical component applications. 60NiTi, when appropriately processed and fabricated, is dimensionally stable, hard, wear-resistant, non-galling, and tribochemically benign in the presence of liquid lubricants. Such behavior is in stark contrast to conventional alloys that contain large amounts of the metal Ti. It is believed that the good tribological performance under oil lubrication observed for 60NiTi may extend to the entire NiTi family of alloys since they all share similar phase constituents and basic atomic level bonding. The tribochemistry of 60NiTi and its metallurgical relatives are under further study.

The identification of a viable bearing material that is non-magnetic, electrically conductive, hardenable, displays favorable tribochemistry and is non-corrosive is a major research finding. No other bearing material yet discovered has such a broad combination of properties. While it is clear that near term niche applications such as aerospace bearings and gears exist, many non-obvious applications are also likely to present themselves. These include wear-resistant, corrosion-proof knives and cutters, electric machine structural and dynamic components, high-performance fasteners, valve components and many others.

Clearly, much more research will be required to understand the 60NiTi material and its metallurgical relatives. The relationships between mechanical and physical properties, atomic structure, micro-scale ordering and surface chemical interactions remain to be investigated. Nonetheless, the NiTi metallurgical system clearly has engineering potential well beyond shape memory alloy applications.

References

Nickel-Titanium Alloys: Corrosion “Proof” Alloys for Space Bearing, Components and Mechanism Applications

DellaCorte, Christopher

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135-3191

An intermetallic nickel-titanium alloy, 60NiTi (60 wt% Ni, 40 wt% Ti), is shown to be a promising candidate tribological material for space mechanisms. The 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. The 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high Ti content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of Ti and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of Ti alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is presented.

Intermetallic; Titanium alloys; Nickel alloys; Lubrication; Tribology; Spacecraft lubrication; Gears; Transmissions