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Abstract 

The capabilities of the 3–D unsteady RANS code TURBO have been extended to include heat 
transfer and film cooling applications. The results of simulations performed with the modified code are 
compared to experiment and to theory, where applicable. Wilcox’s k-ω turbulence model has been 
implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and 
(2) flow over an adiabatic flat plate cooled by one hole inclined at 35° to the free stream. For (1) 
agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and 
quite good for momentum, as represented by the local skin friction coefficient. This report compares the 
local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox’s k-ω model 
with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and 
over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to 
accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with 
film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film 
effectiveness is under predicted downstream of the hole.  

Introduction 

TURBO 

TURBO is an unsteady, viscous, 3–D RANS code. A modified high order, upwind Roe scheme is 
employed for spatial discretization with Newton sub-iterations to converge the solution at every time step. 
Due to the upwinding scheme used in this simulation there is no addition of artificial dissipation. The 
code is fully parallelized to use Message Passing Interface (MPI) (Refs. 1 and 2). The code was designed 
to simulate axial flows and therefore had several limitations. In the following list, i, j, and k are the 
indices of the computational coordinates. 
 

 The inlet face must be at imin 
 The exit face must be at imax 
 The inlet and exit should be in the axial (x) direction. 
 Periodic surfaces should be constant k surfaces 
 The j index represents the radial direction with jmin being the hub surface and jmax the casing. In a 

rotating simulation only the jmax surface can be stationary. 
 

These are major limitations when dealing with complicated flows such as flow over a blade with film 
cooling holes and plenums. The plenum inlets are rarely axial. As a result of generating grids from 
GridPro, TURBO would have to deal with grids of arbitrary orientation in both the physical and 
computational coordinates.  
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Film Cooling 

Several computations and experiments have been performed related to film cooling. This paper 
focuses on simulations of flow over a flat plate with one cooling hole at an angle of 35° fed by a plenum. 
The geometry is shown in Figure 1. Lemmon et al. (Ref. 3) studied the formation of counter rotating 
vortices for the case of a 35° hole. They found that the vortices are the result of the interaction between 
the jet and the mainstream and not the boundary layer vorticity of the cooling hole. The counter rotating 
or kidney shaped vortices are responsible for mixing the hot mainstream flow with the coolant. El-Gabry 
et al. (Ref. 4) performed this simulation using the NASA code Glenn-HT with the aim of identifying why 
CFD underestimates film cooling effectiveness. They found that CFD underpredicts the vertical mixing in 
the jet wake. Sinha et al. (Ref. 5) performed an experiment to quantify the film cooling effectiveness for 
the geometry shown in Figure 1. They performed the experiment for blowing ratios ranging from 0.25 to 
1.0 and density ratios of 1.2, 1.6, and 2.0. They found that centerline effectiveness scales with momentum 
ratio while laterally averaged effectiveness is dependent on density ratio and momentum ratio. The results 
of the film cooling simulation in this report are compared to the work of Sinha et al. (Ref. 5) for the 
highest density ratio case (DR = 2.0). This paper does not present a detailed literature review because it 
primarily deals with code validation. A more detailed literature survey can be found in the work of 
El-Gabry et al.  

Nomenclature 

d diameter of film cooling hole 
DR density ratio 

j     

k turbulent kinetic energy 
u axial velocity 
L length of film cooling hole 
M blowing ratio 

j jU U     

T temperature 
Tw isothermal wall temperature 
T mainstream inlet temperature 
Tc coolant temperature 
Taw adiabatic wall temperature 
VR jet to mainstream velocity ratio

jU U  

 film effectiveness    aw cT T T T     

 viscosity 
T turbulent viscosity 
 dimensionless air temperature    cT T T T     

 density 
 turbulent rate of dissipation 
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Modifications to TURBO 

Wilcox’s k-ω Turbulence model 

Wilcox’s k-ω turbulence model (Ref. 6) was incorporated into TURBO by adding the appropriate 
source terms into the general 2–equation turbulence model equation that is already implemented in 
TURBO. The general two-equation model is given by (Ref. 6), 
 

    ijijjit Hqus 
,,psi  

 
  .2,1,  isPrq jiiTij ,/  

 

Here, ks 1 , 2s  and  /* kT . The source terms H are given by, 
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The boundary conditions for a no slip surface are (Ref. 6), 
wall

1000
y

u
k




 , . An upper limit 

(Ref. 6) of  
 2wallmax Re

800

y




 
was imposed at the wall to avoid large eddy viscosities in leading 

edge regions. 

Boundary Conditions 

Several modifications were made to TURBO to allow it to handle not only inlets and exits in different 
physical orientations (x,y,z) but also arbitrary computational (i,j,k) directions. Code was developed to 
study inlet and exit blocks and to determine whether or not the blocks are part of a flow passage with an 
identifiable hub and shroud. In the event of a hub and shroud being identified, the hub to shroud direction 
is specified as the direction for setting up radial profiles. If no hub to shroud direction is located, the code 
assigns uniform conditions at the inlet or exit. A plenum inlet boundary condition was added using 
general characteristic boundary conditions (Ref. 7). Figure 2 shows the stencil used for the plenum 
boundary condition and the symbol, l, refers to an arbitrary computational index (i,j,k). It is assumed that 
the flow will enter the plenum inlet normal to the plenum inlet surface. The unit normal to the surface is 
given by (Ref. 8) 
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Therefore the velocity component normal to the surface, just inside the computational domain is given by 
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Now, substituting Equation (1) in Equation (2) leads to  
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This is a quadratic equation in cb that is easily solved (Ref. 8) and substituting back into Equation (1) 
gives ub. The individual velocity components, density and pressure at the phantom cell are then computed 
as  
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It is also possible to specify multiple inlet pressures and temperatures through the input files (for 
cases having more than one inlet and/or exit). This will allow users to specify a plenum temperature and 
pressure that are different from the inlet pressure and temperature of the blade row. For film cooling 
applications where the plenum pressure is close to the main flow pressure and the density ratio is high, it 
is possible for backflow to occur during convergence. This can lead to failure of the simulation. To avoid 

this scenario, the speed of sound, cb, in Equation (3) was modified to bb cc  and ub in Equation (4) was 

replaced with bu to force flow to enter the plenum normal to the plenum inlet face and therefore aid in 

convergence. Inlet and exit mass flux calculations were updated to accurately display mass flux regardless 
of the inlet and exit direction. Slip and no slip boundary conditions were also updated to enable them to 
handle directional generality. In addition, minor modifications in the treatment of viscous fluxes and in 
the calculation of pressure and energy in phantom cells were implemented. To enable the study of heat 
transfer, an isothermal boundary condition has been implemented. The temperature at the phantom cell is 
calculated by assuming that the wall temperature is the average of the phantom cell temperature and the 
inside cell temperature.  
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The wall temperature is specified as user input. 

Simulations and Results 

Flat Plate 

A 2–D channel grid (Ref. 8), shown in Figure 3, was used to model flow over a flat plate by imposing 
a no slip boundary condition on only one of the two channel walls while maintaining a slip boundary on 
the other wall. TURBO, designed to handle internal flows, is currently unable to accommodate multiple 
exit boundaries in one block of the grid. The grid was divided into four blocks, as shown in Figure 3, with 
each block containing 41 points in the i-direction (local x coordinate), 31 points in the k-direction (local 
negative y coordinate) and 2 points in the j-direction (local negative z coordinate).  
Here, the positive x direction is taken to be the downstream direction. 

The leading edge of the flat plate is located at i = 31, k = 31, j = 1 to 2 in block 2 and the trailing edge 
is at i = 41, k = 31, j = 1 to 2 in block 4. The flat plate is 1.46 m long and the channel height is 
approximately 0.021 m. The grid spacing ensures a y+ of approximately 1 at the first grid point away 
from the surface of the flat plate.  

A no-slip boundary condition was imposed on the flat plate. Radial equilibrium was imposed on the 
exit plane while a characteristic variable inlet boundary was established on the inlet plane. The flow was 
initialized uniformly with a Mach number of 0.3 and a back pressure of 98000 Pa with total pressure 
taken to be atmospheric. For the turbulence model, k and ω were specified at the inlet based on the inlet 
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turbulence intensity, Tu, the inlet velocity, ui and the turbulent length scale, l. The turbulent intensity at 
the inlet was specified to be 5 percent. However, the turbulence intensity was initialized to 1 percent to 
ensure stable running of the code. The code was run at a Courant-Friedrichs-Levy (CFL) number of five.  

The solutions obtained by running TURBO were deemed to be fully converged when successive 
iterations varied by less than 0.1 percent in velocity gradient and temperature gradient. For the case of an 
adiabatic flat plate, skin friction coefficients were computed based on wall shear stress and free stream 
dynamic pressure. For the case of an isothermal flat plate local Nusselt numbers were computed based on 
the temperature difference between the local wall temperature and total temperature and the conductivity 
at the wall. For laminar flow, velocity profiles were compared to those of Blasius’ (Ref. 9) solution for 
both an isothermal and an adiabatic flat plate.  

Figure 4 shows that TURBO predicts fairly well, for Reynolds numbers between 105 and 107, the skin 
friction coefficient in both turbulent and laminar flow over a flat plate with no heat transfer at the surface. 
Small deviations can be attributed to compressibility effects that are neglected in the theoretical solution 
of Blasius. These compressibility effects become more obvious when the plate is held at a constant wall 
temperature, Tw, of 0.7 relative to the free stream (see Fig. 5). This is due to the strong dependence of 
kinematic viscosity on temperature. 

Further evidence of this can be seen in Figure 6, where the wall temperature is held at 0.9 relative to 
the free stream. Agreement with theory is clearly much improved for both laminar and turbulent flow. 

Nusselt numbers for the case of Tw = 0.9 matched well with theory, for 5·105< Re <107, showing the 
excellent heat transfer prediction of the k-ω turbulence model at least for the simple case of a flat plate. At 
a wall temperature of Tw = 0.7, compressibility effects cause deviation of TURBO results from theory. 
Figures 7 and 8 show local Nusselt numbers for Tw = 0.7 and Tw = 0.9, respectively. Figures 9 and 10 
show a velocity profile comparison with theory for laminar flow over an isothermal flat plate and over an 

adiabatic flat plate, respectively. Here,   5050 ./. xUy e  , is the Blasius similarity variable (Ref. 9). 
The anomalous spike circled in Figure 5 and seen in the remaining figures occurs at a block interface and 
is a result of calculating derivatives (such as temperature gradient and velocity gradient) using the post 
processor FIELDVIEW (Intelligent Light). 

Film Cooling 

In order to test the modifications made to TURBO, a simulation was run using a fine grid 
representing a flat plate with a cooling hole and plenum. Figure 12 shows the computational grid and 
boundary conditions. The boundaries not explicitly labeled in Figure 12 were assigned slip boundary 
conditions. The cooling hole is inclined at 35° to the freestream as shown in Figure 13. The domain was 
partitioned into 19 blocks and each block was run on a single processor. The flow was initialized as 
laminar with a Mach number of 0.0 and back pressure of approximately 97 percent of the inlet stagnation 
pressure. A converged solution obtained from this laminar flow simulation was then utilized as 
initialization for a turbulent flow simulation. Table 1 shows the cases for which results are shown in this 
paper and the plenum inlet conditions corresponding to them.  

The turbulent flow simulation employed Wilcox’s k-ω turbulence model previously described in this 
report. The results obtained showed qualitative agreement with experiments and quantitative agreement 
with the film cooling work of other researchers such as El-Gabry et al., Figure 14 shows span averaged 
film cooling effectiveness for cases 1-3. The data represented in these figures is that of Sinha et al. 
(Ref. 5). Here, x = 0.0 corresponds to the leading edge of the hole and x = 1.0 is the trailing edge of the 
hole. For the lower density ratio, agreement with experiment is quite good downstream of the hole but not 
near the hole exit. The cooling effectiveness is under-predicted downstream of the hole but agreement 
with data is better closer to the hole exit. This is thought to be a result of the linear turbulence model 
currently being utilized that is unable to account for the swirl at the hole exit. Similar behavior is 
observed in the literature, for example, El-Gabry et al. (Ref. 4). Figure 15 shows contours of non-
dimensional temperature for case 3 along the centerline. this agrees well with the results of El-Gabry et al. 
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Figure 16 shows a cross section of the flow at x/d = 3.0 for case 3 to show the kidney shaped vortex. 
Figure 17 shows streamlines in the vicinity of the hole exit. While mixing occurs in the near hole region, 
the streamlines from the hole can be seen to lift off downstream of the hole thereby reducing 
effectiveness.  

Conclusions 

Modifications to TURBO have been successfully validated by running simulations for flow over an 
isothermal and an adiabatic flat plate as well as flow over a flat plate cooled by a 35° film cooling hole. 
For the flat plate, heat transfer results matched well with theory. For the film cooling simulation, good 
qualitative agreement with experiment was observed. The quantitative differences between film 
effectiveness computed from the simulation and that from experiment are consistent with current 
literature and are thought to be a result of the turbulence model. The heat transfer capability of TURBO as 
well as its ability to simulate film cooling have been demonstrated to be at par with modern simulation 
capabilities. 
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TABLE 1.—TEST CASES AND PLENUM INLET CONDITIONS 
Case Plenum inlet 

Stagnation pressure 
Plenum inlet 
Stagnation 
temperature 

Density ratio Blowing ratio 

1 0.966 0.516 2.0 0.5 
2 0.986 0.516 2.0 0.8 
3 1.009 0.52 2.0 1.0 
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Figure 1.—Computational domain. 

 
 
 

 
Figure 2.—Boundary condition stencil. 

 
 
 
 
 

 
Figure 3.—Mesh for 2–D flow over flat plate. 
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Figure 4.—Block structure and extent of flat plate. 

 
 
 
 
 

 
Figure 5.—Logarithmic plot of local skin friction coefficient versus Reynolds number for an adiabatic flat plate. 
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Figure 6.—Logarithmic plot of local skin friction coefficient versus Reynolds number for Tw = 0.7. 

 
Figure 7.—Logarithmic plot of local skin friction coefficient versus Reynolds number for Tw = 0.9. 
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Figure 8.—Logarithmic plot of local Nusselt number versus Reynolds number for Tw = 0.7. 

 

 
Figure 9.—Logarithmic plot of local Nusselt number versus Reynolds number for Tw = 0.9. 
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Figure 10.—Velocity profile for laminar flow over an isothermal flat plate with Tw = 0.7. 

 

 
Figure 11.—Velocity profile for laminar flow over an adiabatic flat plate. 
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Figure 12.—Mesh for 35° cooling hole. 
 
 
 
 
 
 
 
 

 
 

Figure 13.—Grid in cooling hole region. 
 
 

Free stream 
inlet 

Plenum inlet 

Exit 

35° 

No slip 



NASA/TM—2010-216738 14 

 
Figure 14.—Span averaged film effectiveness at density ratio of 2.0. 

 
 
 

 
Figure 15.—Contours of non-dimensional temperature at centerline for case 3. 

 
 

 
Figure 16.—Kidney shaped vortex at x/d = 3.0 for case 3. 
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Figure 17.—Streamlines in the vicinity of the hole exit. 
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