Distribution of chromosome breakpoints in human epithelial cells exposed to low- and high-LET radiation

Megumi Hada
Ye Zhang
Francis A. Cucinotta
Alan Feiveson
Honglu Wu

NASA Johnson Space Center
Houston, Texas

COSPAR, Bremen, Germany
July 18, 2010
mBAND Analysis

XCyte 5-labeling scheme

- DEAC (Ex 426 nm / Em 480 nm)
- FITC (Ex 502 nm / Em 530 nm)
- Spectrum Orange (Ex 559 nm / Em 588 nm)
- Texas Red (Ex 595 nm / Em 615 nm)
- Cy5 (Ex 649 nm / Em 670 nm)
Example of chromosome 3 painted with mBAND

Interchromosomal exchange (Complex)

Deletion (Ring)
Intrachromosomal exchange (inversion)

Interchromosomal exchange

Normal

Example of chromosome 3 painted with mBAND
Irradiation

High Dose Rate
- 137Cs γ-ray: 2.0 Gy/min University of Texas, MD Anderson Cancer Center
- Fe ions: 0.5 Gy/min NASA Space Radiation Laboratory / BNL

Low Dose Rate
- 137Cs γ-ray: 1.7 cGy/h NASA/JSC
- Neutron: 2.5 cGy/h Los Alamos Nuclear Science Center (LANSCE) 30L

Neutron energy spectrum on the ISS, measured spectra on Mir and the normalized LANSCE energy spectra.

The LANCE neutron energy spectrum is similar over a wide energy range to expected spectrum inside the International Space Station (ISS).

Badhwar G.D. et al. (2000)
Induction of chromosome 3 aberration in human cells by neutrons, Fe-ions or γ-rays

Relative Biological Effectiveness (RBE)

Fe: 8.4
Neutron: 26.4
Frequency distributions of breaks/chromosome 3

- γ-rays (2 Gy/min)
- Fe-ions (0.5 Gy/min)
- Neutrons (2.5 cGy/h)
Induction of interchromosome exchanges (A) and intra-chromosome exchanges (B) in human chromosome 3 by neutrons, Fe-ions or γ-rays.

The dose responses for interchromosomal exchanges were linear in all four exposures. However, the dose response for intrachromosomal exchanges were none linear. Increasing dose of high dose rate exposure (Fe-ions or γ-rays) increase the fraction of cells with intrachromosome aberrations, whereas increasing dose of low dose rate exposure (neutrons or γ-rays) does not affect the fraction of cells with intrachromosome aberrations.
Interchromosome exchanges broken down as simple and complex types

- **Simple exchange**
- **Complex exchange**

Neutrons (2.5 cGy/h)
- Fraction in damaged chromosome 3

Fe-ions (0.5 Gy/min)
- Fraction in damaged chromosome 3

γ-rays (2 Gy/min)
- Fraction in damaged chromosome 3

γ-rays (1.7 cGy/h)
- Fraction in damaged chromosome 3

Complex exchange: Chromosome interexchanges involving at least 3 breaks in two or more chromosomes
Induction of inversion

![Graph showing induction of inversion](image)

Y-rays (1.7 cGy/h)
Y-rays (2 Gy/min)
Fe-ions (0.5 Gy/min)

Fraction of inversion in cell vs. dose (Gy)
Classification of inversion involved aberrations in chromosome 3

Inversion (simple)

Inter-exchange involved Inversion

Intra-exchange involved Inversion

Inter-exchange and Intra exchange involved Inversion

Fraction of total inversion

- Inv
- Inv + Intra
- Inv + Inter
- Inv + Inter + Intra

y-rays 4Gy Fe Neutron
Chromosome rearrangements in human cancer (Olopade et al.)
Distribution of total breaks

- **A**: Distribution of total breaks at 2 Gy and 4 Gy.
- **B**: Distribution of total breaks at 0.1 Gy and 0.2 Gy.
- **C**: Distribution of total breaks at 1 Gy and 2 Gy.
- **D**: Distribution of total breaks at 0.1 Gy and 0.2 Gy.
- **E**: Expected distribution of total breaks.

Bands: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23
Fragment ends participating in interchromosomal exchanges
Fragment ends participating in intrachromosomal exchanges

![Graphs showing fraction of total fragment ends across different bands.](image)
Interchromosome exchanges

- **Neutron**
- **Gamma low dose rate**
- **Fe**
- **Gamma high dose rate**

Frequency of break end vs Band
Comparison of inter-chromosomal breaks:

- Fe-N
- LG-N
- LG-Fe
- HG-N
- HG-Fe
- HG-LG

Comparison of intra-chromosomal breaks:

- Fe-N
- LG-N
- LG-Fe
- HG-N
- HG-Fe
- HG-LG

Statistical analysis
intrachromosomal exchange events between two fragment ends

Low-LET

High-LET
2-D representation of the locations of different segments of Chromosome 3 inside the cell nucleus.

Interchromosome exchange

Intrachromosome exchange

(A)

(B)

(C)
Comparison between the distributions of the genes and of the breakpoints
Conclusions

• Low- and high-LET radiations produced distinct breakpoint distributions.

• The difference of the breakpoint distributions between low- and high-LET only appeared in break ends involved in interchromosome exchanges.

• The breakpoint distributions for break ends participating in intrachromosome exchanges were similar.

• Gene-rich regions do not necessarily have more chromosome breaks.

• High-LET appeared to produce long live (data not shown) or longer live breaks that can migrate a longer distance before rejoining with other breaks.

• Domains occupied by different segments of the chromosomes may be responsible for the breakpoint distribution.
Acknowledgement

Prairie View A&M UNIVERSITY
 Dr. Prem B. SAGANTI
 Dr. Richard WILKINS
 Brad GERSEY

BNL/NSRL
 Dr. Adam Rusek
 NSRL physics dosimetry group

LANSCE
 Dr. Bruce E. TAKALA

Work supported by the NASA Space Radiation Health Program.

Thank you very much!