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Introduction and background

A digital image: An array of scalars or vectors.

Scalar: Reflectance, temperature, range
Vector: RGB, multispectral, hyperspectral
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Image registration and
image fusion

Image registration is the process of spatially aligning
two or more 1mages of a scene. This spatial alignment
is needed to fuse information in the images.
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Applications of image registration
and image fusion

Change detection
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Fusion of multimodal data
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Image mosaicking

Mosaicked image

Two aerial images of Honolulu, HI.
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Preprocessing operations

All operations performed on 1mages that
improve the registration performance. These
include:

— Noise filtering

— Deblurring

— Region extraction

— Edge detection

A. Goshtasby



Noise smoothing

Given image f(x,y) and smoothing filter 4(i,j), noise
smoothing 1s defined by:

k [
fla,y) =Y Y flx+iy+5)h(,))

1=—k j=—1

The intensity of pixel (x,y) in the output is obtained
from a weighted sum of intensities of pixels at and
around (x,y) in the mput. A(i,j) is the weight of pixel
(x+1,y+j) in the neighborhood of (x,y), and the sum of
the weights over all i and j 1s1.
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Mean filtering

When the weights defined by the filter are all the same, the
operation 1s known as mean filtering.

Intensities of all pixels at and around a point in input have the same
effect on the intensity at the same point in output.

This operation is not rotationally invariant if the filter kernel is not
circular.

Image containing  Filter-radius 2 pixels Filter-radius 4 pixels
Zero-mean noise Computed using FFT algorithm
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Gaussian filtering

If the weights 1n filter kernel represent
Gaussian coefficients, a Gaussian filter is
obtained.

Gaussian filtering 1s effective when image noise 1s
Zero-mean.

Gaussian filtering 1s rotationally invariant.

A 2-D Gaussian can be decomposed into 2 1-D
Gaussians: G(x,y) = G(x) * G(y); therefore, filtering
can be carried in 1-D rather than in 2-D

A. Goshtasby 5



Computation of mean and
Gaussian filtering

Although filtering is a convolution operation and can be computed using
the FFT algorithm, since FFT considers an image is a periodic signal, if left
and right image borders, or top and bottom image borders are not the same,
artifacts will appear near the image borders. To avoid this, carry out the
computations directly.

Image containing Computed with FFT  Computed directly
Zero-mean noise Gaussian filter of o = 2 pixels
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Image segmentation

This 1s the process of partitioning an image
into meaningful parts. There are two main
approaches to image segmentation.

— Methods that use information within regions

— Methods that use information on the boundary
between regions

A. Goshtasby



Intensity thresholding

e Assuming an image that contains objects with intensities that
represent a Gaussian distribution and a background with
intensities that represent a different Gaussian distribution, the
objects can be separated from the background using the
intensity at the valley between the two histogram modes.

e This method works well when an image contains
homogeneous objects and a homogeneous background and the
properties of the objects and the background are different.

Original Smoothed Histogram Thresholded image
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Intensity thresholding

Threshold
value

M

A Landsat image Histogram of the image

Thresholding at the Threhoing at the
valley between the average intensity of
first two peaks. highest-gradient pixels.
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Threshold selection

* The threshold value i1s computed by:

— Finding the valley between the modes of the
histogram of the image.

— Finding the intensity that represents the average of
intensities of high-gradient pixels.

— Finding the intensity at which a change 1n the
intensity will minimally change the segmentation
result.

A. Goshtasby 10



Edge detection

« Edge detection methods can be categorized into those
that search for locally maximum image gradient
magnitudes and those that search for zero-crossings
of the Laplacian of an image.

» Methods that search for gradient peaks do not pick
false edges but the ones picked could be
disconnected.

* Methods that search of the zero-crossings of the
Laplacian image find closed boundaries, but parts of
the boundaries could be false.

A. Goshtasby 11



LoG edge detector

Determination of the LoG of an image

involves computation of:
[ f(x,y)» G(x,y)] N O[f(x,y) x G(x.y)]

LoG|f(x.1 = — —
f(z,y)] 012 dy?
O?G(x,y) 0?G(x,v)
= fle,y)x —F5— + [z, y)x ——5—
dx oY=
of,
‘ D?G(r) ‘ 0*G(y)
LoGf(z,y]) = —5—=* Gy) » fla,y) + Gla) 00 * fx,y)
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o Zero-crossing edges can be

Edge detection by intensity ratio

LoG
operator in
2-D

determined by convolving
the negative and positive
parts of the LoG with an
1mage separately and
subtracting the convolved
images and locating the zero-
crossings.

If instead of subtracting
corresponding values in the
convolved 1mages, we divide
the values and locate the
one-crossings, intensity-ratio
edges will be obtained.

Positive
part

Negative
part

A. Goshtasby
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Edges in color images

Edge detection in a color image can be considered edge
detection in a 2-D vector field.

If u(x,y) and v(x,y) represent color gradients in x and y
directions, edges can be considered points where color
gradients are locally maximum in the gradient direction.

If R(x,y), G(x,y), and B(x,y) represent red, green, and blue

color components at (x,y), respectively, color gradients are:

IR (x. G (x, 1B(x.:
( (ﬂ'.._u)r+ OG(x,y) _ (f.._u)b

u(;r_?, y) - ox ox ox
OR(x.1 DG (1.1 OB(x.1
v(r.y) = (r,9), , 9Gy) 9By)
dy dy dy

r, g, and b are unit vectors along red, green, and blue axes,
respectively, 1n the color space.

A. Goshtasby
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Color edges

* Gradient direction at (x,y) 1s the direction
maximizing

F(x,y) = [u(z.,y)cosO(x.y) + v(x,y)sin0(x, y)]°

and 1s obtained from

(. y) = 0.5 tan ™" ( 2u(a,y) - v(r,y) )

u(r,y)-u(r,y) —v(z,y) - viz,y)
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Edge detection in color ima

A color image

A. Goshtasby
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Image features
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Landmark detection

* They are 1) locally unique and 2) rotationally
invariant.

Corners detected at different resolutions.



Corners as landmarks

Given 1mage [:

1.
2.

Compute image gradients in x and y directions: I, Iy
Compute square gradient matrix at each pixel (x,y):
1111 y)

1,1, Iyly\_

where overbar implies average 1n a small neighborhood of

(x.).

Compute eigenvalues of C(x,y) and if the smaller eigenvalue
is locally maximum, take (x,y) as a corner.

C(x,y)=




Examples

Stable corners: Corners that persist over a wide
range of scales/resolutions.

R = 8 e,
T
— E

Corners detected at two different scales.




Spot centers as landmarks

* Find points where
Laplacian of Gaussian
(LoG) of image 1s locally
extremum.

* Scale-invariant feature
transform (SIFT): LoG
points that are locally
extremum in scale and
space.




Locally unique and highly
informative points as landmarks

Given an image and a threshold distance d:
1. Find edges in the image.

2. At each edge point compute entropy within a circular window
centered at it.

3. Remove edge points that have produced the lowest p% entropies.

4.  Compute the auto-correlation at the remaining edge points and
save an edge point in list L, which i1s initially empty, if the largest
auto-correlations there is locally minimum.

Sort list L from the smallest to the largest auto-correlation.
Consider the edge point on top of the list the next corner.

7. Remove all edge points that are within distance d of the selected
edge point from L.

8.  If there are still edge points in L, go to Step 6. Otherwise stop.

o



An Example




Line intersections as landmarks

Line detection
* [east-squares
* Hough transform

* Image gradients



Least-squares line fitting

Given a set of points {(x;yi): i=1,...,n}! find p and O of
line p = xcos@ + ysinf such that

E = Z (p—x,cos@ -y, sinf)’
i=1

1S minimum.

»
y -..-. y <
* #» [
» I.
2

X X
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An example

4
|I .J| l
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Canny edges Det.cte.d Ihés
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Hough transform

A point (x,y) 1n the xy-space represents a unique
line y = mx + b in the mb-space, and a point
(m,b ) 1n the mb-space represents to a unique line
in the xy-space.

r-1 r-1

12



Hough transform

Parameter m cannot be accurately determined for
nearly vertical lines. So, instead of y=mx+b, the
polar form of line p = xcos0 + ysin0 1s used.

Algorithm: Given an edge image:

. For each edge point (x,y), draw p = xcos0 + ysin0
in a pO array. As each sinusoidal is drawn,
increment pO entries 1n the array that fall on the
sinusoid by 1.

2. Locate locally peak entries in the array. Each such
entry in the array pO detects a line in the image.

13



1.

Line detection
using image gradients

Determine the gradient magnitude and gradient
direction of each pixel in the image.

Group the pixels into regions with gradient
directions in [—o, o] [a,3a].. , whereav1s a
small angle, such as 5 degrees.

Remove regions that contain fewer than a
required number of pixels.

Fit a line to each remaining region by the
weighted least-squares method, with the weights

being the gradient magnitudes at the pixels.
14



An example

L|nes detected at two different values of a. -

15



Region centers as landmarks

For some 1mage types, regions are the best
features to use 1n 1mage registration.

Centers of gravity of regions are not sensitive to
Zero-mean noise.

Centers of gravity of regions can be determined
with subpixel accuracy.

Centers of gravity of regions are affine invariant.

Regions can be obtained by various image
segmentation methods.

16



An example

Landsat MSS image

Smoothed and thresholded image

17



Template centers as landmarks

Templates are 1mage regions that are locally
unique and informative.

They can be considered circular windows that
are centered at detected landmarks.

Circular windows make the selected features
independent of an image’s orientation.

18



Corners

An example

Templates

19
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Definitions

A measure to quantify how well two patterns
or two 1mage windows match.

Dissimilarity measure 1s also known as
distance measure.

A similarity/dissimilarity measure may or may
not represent a metric.

If SD 1s a metric similarity/dissimilarity, then
SD(X,Y) = SD(Y,X), for windows X and Y.



Pearson correlation coefficient

Given intensities X = {xi - i= 1,...,n} and
Y={yi:ri=1,..,n},

Ly ((:c —:c>) ((yi —y>)

=1

r varies between +1 and -1. +1 shows perfect
positive correlation and -1 shows perfect
negative correlation.



Computation of correlation

* Using Fourier transform

C=F[FU)-F (V)]

* Phase component of

Cross-power spectrum

Cp=F""

FU)-F(V)]




Spearman’s rho

* Suppose replacing intensities xi and y: with their ranks
R(xi) and R(yi)and then calculating the Pearson
correlation coefficient between the ranks. This is
equivalent to finding:

- 6370 [R(2;) — R(?J@)]Q
n(n? —1)

p=1

 This measure 1s invariant to monotone P

intensity differences between images.



Shannon’s mutual information

Assuming pj; 1s the probability that
corresponding pixels in X and Y have

intensities i and j, mutual information 1s
defined by:

55 255
SMT = L Lpag logy 4

=) 9—1) p@pJ




L.1 and L2 norms

e .1 norm 1s also known as sum of absolute

intensity differences. r .
T
Ly =) |z —yil A
1=1 Li

e I >norm 1s also known as the sum

of squared intensity differences.

1

= Z(If — -y.ﬂg

1—1

a1 L4

L

|l




Joint entropy

e Having the joint probability density p; of
intensities i and j in X and Y, joint entropy 1s
defined by:

255 255

Dp = — y: S:pij log? Pij
i=0 j=0

* De should be minimized to find correspondence.

8



Exclusive f~information

* Information exclusively contained in X and Y when
observed jointly 1s known as f~information.

» Exclusive f~information is related to joint entropy Dk
and mutual information Swm by:

Df(X:'Y) :DE(X'J Y) _ Sﬂ[I(XvY)




Properties

Sensitivity to noise: Spearman’s p and L1 norm.

Sensitivity to intensity differences: Mutual
information, joint entropy, and Spearman’s p.

Sensitivity to blurring: Pearson’s correlation
coefficient, L1 norm, and L2 norm.

Sensitivity to geometric difference: Pearson’s
correlation coefficient and L1 norm.

Speed: L1 norm, L2 norm, Pearson’s correlation
coefficient.

10
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Types of image features

* Statistical * Filter response

* Geometric « Differential

* Algebraic » Fractal

* Frequency dimension

domain e Information

theoretic



Statistical features

Assuming p(i) 1s the probability that intensity i
appears 1n 1mage:

Mean: Variance:
255
255 9 . 9 .,
B o° = Z(s — 1)~ p(i)
[L= ;} ip(7) car-
i
Skewness: Kurtosis:
1 255 1 255
Y=3 Z (i —p)’p(i) k= g Z (2 — ) p(i) — 3
7 =0 7 =0

3



Examples

Variance

Feature obtained when using
windows of radius 8 pixels.

Skewness Kurtosis



Geometric features

Invariant moments:

Central moments: Assuming (xo,y0) is center of gravity of image f(x,y)
m—1n—1

Hpg = Y Y (2 —w0)"(y — y0)? f (2, y)

=) g=i)

Invariant moments: (order 2)
It = (p20 + po2),
. P
D= (p20 — po2)” + 4p1;



Examples

Invariant moment /; Invariant moment /2



Algebraic features

* Given image f, if U 1s the column eigenvector
system of f and V 1s the row eigenvector
system of f, we can write:

>, 0
UtV =
( JO \0‘ )
>, = diag(o1,09,...,0,), where
\1/2

o; = A;'  1sthe ith largest singular value.



Singular values

» Rather than ci, use 6i/c1; 1t1s invariant to 1mage
contrast.

Example:




Frequency domain features

Power spectrum features: If F(u,v) 1s the
Fourier transform of image f(x,y), then

o(u,v) = F(u,v)F*(u,v) = || F(u,v) ‘2

are the power spectrum features of the image.

Total power spectrum:

> I




Filter responses

 Consider 1-D filters:

By = | Il 4 6 4 1
Bt = [ -1 =2 0 2 1
Ba = —1 0 2 0 —1
By = | —1 2 0 =2 1
By = | 1 -4 6 —4 1

and suppose creating 2-D filter B;=B:*B;, then
response of image to Bi can be used as a
feature.

10



An example

* Response to Bi::

11



Differential features

» Rotationally invariant differential operators:

Smoothed: f ( T,y ) ,

bo| =

Gradient Magnitude: { f 12 ( T, -y) . f;f (;'1’.-, -y) }

Laplacian: ﬁm (:1‘.',, -y) -+ fyy(a; -y_)._

Smoothed Lalcian

12



Spatial domain features

 Absolute center contrast:

1 M—-1N-1

MN —1 > D @) — f

r=0 y=0

13



Fractal dimension

* It 1s a measure of roughness when considering
intensities as height values. Change 1n surface
area as a function of change in resolution is
used as fractal dimension.

b

. ol J
Intensities Surfaces at different resolutions

14



An example

Fractal dimensions

15



Information theoretic features

* Entropy: It measures information content in an
image or window.

v "ﬁ-’;"
NI ¢ A
— ZP(z) logo P(i1) T l
1=0) ) - i

16



Properties of features

Invariance under blurring: Invariant moments,
smoothed intensity

Invariance under noise: Smoothed intensity,
invariant moments, fractal dimension

Invariance to change in contrast: Gradient
filter response

Invariance to rotation and scale: Smoothed
intensity, invariant moments, Laplacian

17
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What is an image descriptor?

It 1s a feature vector. Traditionally, all
features are taken to be of the same type,
but this 1s a self-imposed restriction.

* Histogram-based <+ Shape context
e SIFT * Spin image
« GLOH  RIFT



Histogram-based descriptors

* A feature vector with components representing
the histogram bin counts.

* Assuming H: and H: histograms of two
windows, and the ith bin count 1n the
histograms are H:(i) and H:(i), distance
between the two histograms 1s determined

from D(H1,H2)=2.i mini{H(i),H:(i)}



Scale-invariant feature transform
(SIKT)

* Find SIFT points.

» Estimate scale and orientation of neighborhood
of each point.

* Normalize a local neighborhood and subdivide
into 4x4 blocks.

* Create a gradient histogram for each block.

* Concatenate the local histograms to create the
descriptor.



Finding SIFT points

Convolve image with Gaussians of standard
deviations V2. 2. 2+/2. 4..., creating a stack of
Gaussian smoothed 1mages.

Find difference of Gaussian (DoG) smoothed images

in the stack to create another stack, approximating the
LoG of the image at different resolutions.

Consider the stack of the DoG images a volumetric
images and find extremum points in the volume.

Slice number of an extremum determines the scale of
neighborhood of the point.



Estimating orientation

Knowing the slice number, n, of a point in the DoG
stack, find the gradient magnitude and gradient
direction of slice n in the Gaussian smoothed stack.

Weigh gradient magnitudes by a Gaussian with
standard deviation proportional to n.

Find histogram of gradient directions within a square
neighborhood of width proportional to n, using
weighted gradient magnitudes as increments.

Take the direction representing the histogram peak as
the orientation of the point.



Normalizing and subdividing
neighborhood

Gradient directions 1n each block are normalized with
respect to the peak orientation and grouped into a
Histogram with 8 bins.



Gradient location and orientation
histogram (GLOH)

» Subdivide the neighborhood
into a log-polar grid with
radii 5, 11, 16, and 90-

degree angular spacing. /
* Group gradient directions //
within each block 1nto a \\\

histogram with 16 bins.

N

* QOverall, producing 272
numbers, but reducing to
128 by PCA.




Shape context

e Same as GLOH, but spacing

the rings uniformly spaced in
log space. This emphasizes
the center part of a window.

 Five circular blocks are used
and pixels between
consecutive rings are
grouped 1nto 12 directions,

producing overall 60
numbers.



Spin image

» Consider grouping intensities within each circular block
into a histogram with 8 bins, and mapping the bin
counts to column entries in a matrix. This will produce
a rotation-invariant matrix known as spin image.

Image Spin image 10




Rotation-invariant feature
transform (RIFT)

 If instead of image intensities, gradient
directions that are measured radially are used,
the obtained spin 1mage has been named RIFT.

* Note that gradient direction measured radially
1s independent of the orientation of the images,
thus creating a rotation invariant descriptor.

11



How reliable are SIFT rotation
and scale parameters?

12



SIFT rotation parameters

Find MST of SIFT points before and after rotation.
Consider points with the same degree in the two MSTs.
Find difference in SIFT rotations at such points.

Find histogram of the rotational differences.

Peak 1n the histogram shows rotational difference between
1mages.

SIFT rotation parameters

appears useful in the
absence of scale
difference.

0 30 359 43



SIFT rotation parameters

 When the images have scale difference,
rotation parameters are not very useful.

0 30 359

14



SIFT scale parameters

 When the images are 1n the same scale, scale
parameters are useful. Show below is the
histogram of the scale ratio of MST points with
the same degree 1n the original and rotated
1mages.

15



SIFT scale parameters

 When the images have different scales, scale
parameters are not useful. Shown below 1s the
histogram of the scale ratios of original and
scaled 1mages.

0.67 1.0
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Correspondence methods

Point pattern matching:

1) scene coherence

2) clustering

3) invariance

Line matching
Region matching:
1) shape matching
2) relaxation labeling
3) chamfer matching
Template matching:

1) Similarity measures
2) Coarse-to-fine methods

| I_f
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Point pattern matching

Problem: Given two sets of points,

determine the correspondence between them.

— Information about only the locations of the
points is available.

— The points may contain positional error.

— Some points may exist in only one of the sets.

We will only consider the case where the two
point sets are related by the affine
transformation.




Point pattern matching using

scene coherence

If three points in the two sets are aligned, because of the
scene coherence, the remaining points in the two sets will
also align.

RANSAC Algorithm: Find three corresponding points.

1. Take 3 points from set 1 and 3 points from set 2
and find the affine transformation that aligns them.

2.  Count the number of other points in the two sets
that also align with the obtained transformation.

3. If the count is sufficiently high, stop the process.
Otherwise, go to step 1.

To speed up the search, limit the point combinations to
those falling on the convex-hulls or the minimum-spanning
trees of the two sets.




Point pattern matching using

clustering
Algorithm:
1.  Create accumulators a] | — 1] ] and initialize the
entries to 0.
2.  From point triples in the two sets calculate
parameters a — f of
X=ax+by+tc,
Y=dx+teytf.
3. Increment entries a — f of accumulators a[ | — ] ],
respectively, by 1.
4. Repeat Steps 2 and 3 a sufficiently large number of
times.
5.  Locate the entry with the highest countsin af | ...

f] ]. They show parameters a — f of the registration.

A

JASV




Point pattern matching using
affine invariance

If two point sets are related by an affine

transformation, knowing three corresponding P! p3
points in the two sets (p1,q1), (p2.q2), (p3.943), |/°P
the relation between corresponding points p2

(p,q) 1n the sets can be written as

p=pit ai(p2—p1)+ a2(p3 —pi)

q=q:+ ai(q2—q1) + a2(q3—qi1) o <q(:

q2




Point pattern matching using

affine invariance

Algorithm:

1. Create two 2-D accumulator arrays Hi[ ]
and Ho|[ ].

2. Select three points in set 1 and for each
additional point in set 1 calculate az and az
and increment entry [a,a2] of Hi[ ] by 1.

3. Select three points in set 2 and for each
additional point in set 2 calculate ar and a2
and increment entry [a,a2] of H2[ ] by 1.

4. Find the similarity between Hi and Hoz. If

the similarity is sufficiently high, take the
point triples selected in Steps 2 and 3 as
corresponding points and stop. Otherwise,
go to Step 2.

Hi

H2




Line matching

Assumption: Images are related by a

rigid transformation (unknown
translation and rotation).

Algorithm:

1. Find the rotational difference
between the line sets.

2. Correct the orientation of set 2 with
respect to set 1.

3. Find the translational difference

between the line sets.




Region matching

e Shape matching
— Fourier descriptors
— Invariant moments
— Shape matrices
— Relaxation labeling
— Chamfer matching

e Distance transform
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Fourier descriptors

Given pixels on the boundary of a region
{(xi,yi): i=0,...,N-1}, the xy coordinates of the
pixels along the boundary can be considered
samples from a periodic signal. Letting
z=xi+jyi, where j=./—1, Fourier descriptor is
computed from

1 N-1 . .
¢, = FZ z, exp(—j27ki/ N), k=0,... N-I
=0

10



Invariant moments

e Given boundary pixels {(xiyi): i=0,...,N-1}, the (p+g)th
order moment is defined by

N-1
— P ,,q9
mpq _z :xi yz-fz
i=0

The (p+g)th order central moment of the boundary is

defined by N
Uy, =D (%= x)"(y,—y)" f
i=0

e Invariant moments:
A: = U T U

a, — (3u21 — uos)

11



Shape matrix

* Resampling a shape into a representation that
1s independent of 1ts position, orientation, and
scale.

01234

— A A (O —

—_— i i b b
O - —4a A
OO0 OO0 0 —

AP w0
—% % _a A _a oA

12



Relaxation labeling

Denote regions in the reference image by
{ai;i=1,...,m} and regions 1n the sensed image by
{bi:i=1,...,n}

If ai’s denote objects and b:’s denote labels, the
correspondence problem becomes that of finding
labels for the objects such that a compatibility
condition is satisfied.

Initially assign labels to the objects with probabilities -

proportional to their similarities.
Pi(bj): similarity between regions ai and b;.

[teratively revise the label probabilities until they
converge to either O or 1.

Set of objects

[1+qg )}

Set of labels

P (b)) =

Z bj) U + (]z (b; )}

13




Chamfer matching

Given two binary images with translational
differences:

.

Initially position the sensed image within
the reference image at (i,j) based on some
available information.

Determine the similarity between the two
images using distances of closest object
points.

Reposition the sensed image within the
reference image at the eight neighbors of
(i,j) and determine the image similarities at
these eight positions.

If highest similarity is obtained when sensed
image is at (i,j), stop. Otherwise, move the
sensed image to the neighbor of (i,j) that
produces the highest similarity and go to
Step 2.

O

AN

Reference Sensed

O
/N

Initialization of
sensed in reference

14



Distance transform

e Given a binary image, assign to a
background pixel a value proportional
to 1ts distance to the object point closest
to it.

* To speed up the computations, integer
distances may be used, but note that
integer distances involve errors and
make distances dependent on the
orientation of the image.

Distance transtorm of a
single point

Isovalued distances

15



Distance transform

To make distances
rotationally invariant, use
actual Euclidean distances.

Euclidean distance transform of a single point and the
isovalued distances.

Distance transform 1n its
current form 1s very
sensitive to noise.

Euclidean distance transform Eulidean distance transform
of a circle of a circle and 5 noisy points

16



 Instead of saving a
single distance at a pixel,
save a weighted sum of
distances.

Circle Circle + 5 points

* This can be implemented
by smoothing the binary
image with a Gaussian
and inverting the values.

New DT of circle + 5 Traditional DT of circle +
points 5 points




Template matching

This 1s same as chamfer matching except that
the 1images are no longer binary.

Similarity measures

— Sum of absolute differences
— Cross-correlation coefficient
— Mutual information

Gaussian weighted templates
Coarse-to-fine approaches

18



Similarity measures

* (Given two gray scale images with translational
differences, shift one image over the other and at each
shift position determine the similarity between the two.

 Sum of absolute differences

m—1n—1

(y) = > S (feliod] — fuli+ 2.5 +y)

=0 7=0
» Cross-correlation coefficient (9 = f— fmean)
S S0 el dlgwli + 2.5 + )

1/2
m—1 n—1 m—1 n— /
{Er S0 a2l d) S S5 g2l + .+ 0l

19
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Mutual information

Template Window

* (Create a 2-D histogram with entry [a,b]
showing the number of pixels in the template  »p——e  |pp—p

with intensity a that align with intensity b in the > >
window.
* Divide the counts by the number of pixels in 2D
S S0 o histogram
template to obtain joint probabilities. b ¢
* Then, compute: ;

I(t,w) 2T ZT P (a,b)l Fiw(a,9)
W) — wla, 0)10g
| a :_6 f;:ﬁ § | - Pt ((I")P“-U (b)

20



Gaussian weighted templates

» Instead of treating all pixels in a

template similarly, give higher weights
to pixels that are closer to the template @

center.

» This makes the process less dependent
on image orientation when using rectangular templates.
It also reduces the effect of geometric difference between

1mages.

21



On template shape and size

* Always take circular templates.

Tl

h1s will make the process less

dependent on image orientation.

» Set template size proportional to the
information content in the template.
A smaller template size 1s sufficient
when the template 1s highly detailed
compared to when it covers a rather
homogeneous area.

22



Coarse-to-fine matching

e Atimage level: Reduce the size of images,

find the correspondences, and determine
the transformation parameters. Use the
transformation to resample the images at
one level higher resolution. Repeat the
process until images at the highest
resolution are registered.

At template level: Either use smaller
templates or cheaper similarity measures to

. o, ! N ":{"‘Jwg
find candidate match positions. Then find Image pyramid

the best match position from among the
candidates using a larger template and/or a
more expensive similarity measure.

23



* During search: Use large steps to find
possible match positions. Then use finer
steps 1n the neighborhood of the likely
matches to refine the final match position.

e Use partial information: If a large set of
landmarks 1s given, first use a subset of
the landmarks to find approximate
registration parameters and then verify the
correctness of the registration and refine
the parameters using all landmarks.

24
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Transformation Functions
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Problem description

(Given the coordinates of a set of
corresponding points in the images:

{(xiyi) (Xi,Yi): i=1,...,N}
we want to determine function f{x,y)
with components fx(x,y) and fy(x,y)
such that

Xi = fo(xiyi),

Yi= f(xiyi), i= 1,...,N.




Approach

e Rearrange the coordinates of corresponding
points into two sets of 3-D points:

{(xiy,Xi): i=1,...,N},
{(xiy,Yi): i=1,...,N},
then, fx and fy can be considered two single-

valued surfaces fitting to two sets of 3-D
points.

* We will consider the problem of finding
function f(x,y) that approximates/interpolates

{(xiyifi): i=1,...,N}.

N




Transformation functions

* Translation e Thin-plate spline

* Rigid * Multiquadric

* Similarity « Weighted mean
 Affine * Piecewise methods

* Projective * Weighted linear



Translation

e Corresponding image
points are related by

X=x+h
Y=y+k

* One pair of corresponding
points is sufficient to
determine the registration
parameters.



Rigid transformation

X=xcos(0)—ysin®O)+h
Y= xsin(0)+ycos0) +k
* 0O and (A,k) are the rotational and translational
differences between the images.

e Knowing minimum of two corresponding points Reference
in the images these parameters can be
determined.

e This transformation is useful when registering
images as rigid bodies.

e Under rigid transformation shape and size are Sensed
unchanged.



Similarity transformation

X=sxcos(@)—sysm®)+h

Y= sxsin0)+sycos®)+k
s, 0, and (A,k) are the scaling, rotational, and
translational differences between the images.

Minimum two corresponding points in the
images are required to determine s, 6, 4, and «.

Angles are preserved under the similarity
transformation.

This transformation is useful when registering
distant orthographic images of flat scenes.

Reference

Sensed



Rigid registration example




Affine transformation

X=ax+by+c

Y=dxtey+f
This transformation is a combination of shearing and
similarity transformations.

The components of an affine transformation depend on
each other.

Under the affine transformation parallel lines remain
parallel.

When the components are made independent, the
transformation becomes a linear transformation.

Knowing the coordinates of three non-colinear
corresponding points in the images the six parameters of
the transformation can be determined.

This transformation is useful when registering images
taken from a distant platform of a flat scene.

=

Reference

AN

Sensed




Affine registration example

Lunar Lunar
image 1. mage 2.

. Subtracted
Registered registered
lunar lunar

images.

images.

10



Projective transformation

X = (ax+by+c)/(dx+ey+1)
Y= (fxtgyt+h)/(dxteyt+])

Knowing the coordinates of four non-colinear
corresponding points in the images, parameters
a — h can be determined.

This transformation is useful when registering

images obtained from different views of a flat Reference
scene.

Under the projective transformation straight lines D
remain straight.

If images are from camera very far from a flat —

scene, projective transformation can be replaced by
the affine transformation when registering the
1mages.

11



Thin-plate spline (TPS)

N
f(x,y)=4+4,x+ A3y+ZEJ’iZ ln”iz
i=1

where 7° = (x—x,)>+(y—y,)° +d’ /
e Parameters A1, A2, A3, and Fi: i=1,...N are
determined using {(X:yifi): i=1,...,N} and the Reference
following three constraints: /
fi=0
ZZIZ 1 xi F: _ O Sensed
N
Zi=1 Y iE' =0



Properties of TPS

* Logarithmic functions are radially symmetric, so if
the control point are not uniformly spaced, large
errors may be obtained away from the control points.

e TPS 1s useful when
— the local geometric difference between images is not large
— the control points are rather uniformly spaced
— the density of the control points does not change

— the number of corresponding control points is not very
high.

13



Reference
image.
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Multiquadric

N
Radial basis functions: f(x,y)= Z FR.(x,y)

i=1
When multiquadrics: R(x,y)=[(x- x, )’ + (y-— y-)2 +d? ]2
When inverse multiquadrics: R(x,y)=[(x— xi)Z +(y- yi)z + d2]—1/2

2 2
Note that whenGaussian: R.(x,y)=exp{— (x—x;) + gy - ) 3
l 20

Multiquadric basis functions are also radially symmetric, therefore, their

properties are similar to those of TPS.

15
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Weighted mean methods

f(x,p) :Zfibi(XJ’)

where p (x,y)= R.(x, y)/Zj\; R, (x,y)

and Ri(x,y) 1s a monotonically decreasing radial
function.

 This 1s an approximation method; therefore, there 1s
no need to solve a system of equations.

17



Problem with weighted mean

 When the weight functions are narrow, the functions produce
flat spots at and in the neighborhood of the data points.

 Flat spots imply that many points in the sensed image map to
the same point in the reference image, resulting in large
registration errors.

e Consider points: (0,0,0); (0,1,0); (1,1,0); (1,0,0); (0.5, 0.5, 0.5)

5 1 e
e |
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S
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] R T T
il B g LA AR NN A e
menns sy R Ly auny Nay Sananaan AR
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Narrow width e widin Density of points Density of points

(narrow width) (wider width) 18



Remedy

e To produce a uniform density, use parametric
surfaces as components of the

transformation.
X= fi(u,v) (1)
X = f2(u,v) (2)
y=f3(uv) 3)

* For a given (x,y), find corresponding (u,v)
from (2) and (3). Then, use (»,v) in (1) to
find X.

19



Resampled
using
single-valued
surfaces.

Resampled ' 0
using i

prmmein R
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Examples
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Registered using the weighted mean method.
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Piecewise linear and
piecewise cubic functions

Algorithm:
1. Triangulate the points 1n the reference
1mage.

2. From the point correspondences, find

corresponding triangles in the sensed
1mage. |

3. Map triangular regions in the sensed
image one by one to the corresponding

triangular regions in the sensed image =
using linear or cubic functions. X

22



Examples

MAX: 0.0; RMS: 0.0 MAX: 16.1; RMS: 4.0
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Weighted linear method

e Note that weighted mean is a weighted sum of constants.

* Instead of using a weighted sum of constants, use a weighted
sum of linear functions, each representing the geometric
difference between the images locally.

f(x,y)= Z f:(x, ¥)b,(x, )
where  f(x,y)=ax+by+c,

* The local functions at (x;yi) 1s determined by fitting a plane
to (xi,y;fi) and at least two other points in vicinity of (xi,yi).

24



Properties of weighted linear
functions

The weighted mean method produces horizontal

spots because a surface i1s obtained from a . —
weighted sum of constants (horizontal planes). \_ /
In weighted linear, since the planes can have any Weighted mean
orientation, horizontal spots are not obtained.

This implies parametric surfaces are not needed 7

to find the components of a transformation.

If rational weights are used, because the weights
stretch toward the gaps, the functions can adjust
themselves to the irregular spacing of the points.

If the width of the weight functions are set
proportional to the local density of points, the
functions can adjust themselves to the local
density of the points also.

Weighted linear

25



Examples
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Computational complexity

Type of Transformation

Computational Complexity

Similarity O(N) + O(n?)
Affine and Projective O(N) + O(n?)
Thin-Plate Splines (TPS) O(N’) + O(n?)
Multiquadrics (MQ) O(N’) + O(n?)
Piecewise Methods O(NlogN) + O(n’)
Weighted Mean O(n’N)
Weighted Linear O(n°’N)
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What do transformation functions
tell us about the images?

» They contain information about
geometric difference between
1mages.

fx(x,y) = x — 8sin(y/16)
ﬁ’ (x’y) -y +4cos (X/ 3 2) Plot of fi(x,y) — x.

Il

* They predict the geometry of
the scene.

Plot of fy(x,y) — y.

28



Detecting the mismatches

 Transformation functions contain information about the
mismatches.

Plot of fx(x,y) — x, using 5 Plot of f(x,y) — y, using 5
incorrect correspondences incorrect correspondences

29



Generating image flow

« Transformation functions can be used to generate flow diagrams,
depicting the local motion or deformation of the scene
from one 1mage to the next.

Volumetric registration

30
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