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Abstract. This work investigates the possibility of particle-based algorithms for the Navier-Stokes equations and higher order
continuum approximations of the Boltzmann equation; such algorithms would generalize the well-known Pullin scheme for
the Euler equations. One such method is proposed in the context of a discrete velocity model of the Boltzmann equation.
Preliminary results on shock structure are consistent withthe expectation that the shock should be much broader than the
near discontinuity predicted by the Pullin scheme, yet narrower than the prediction of the Boltzmann equation. We discuss the
extension of this essentially deterministic method to a stochastic particle method that, like DSMC, samples the distribution
function rather than resolving it completely.
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INTRODUCTION

In computing flows containing both rarefied and continuum regions [1], information transfer between regions is
simplified if both are computed by a comparable algorithm. Hybrid particle-based Euler-DSMC has been demonstrated
[2] using the Pullin scheme for the Euler region. However, a smooth transition between the solution schemes is best
effected if an overlap region exists in which both methods are valid [3]; since the Euler equations are the zero Knudsen
number limit of the Boltzmann equation, the existence of such an overlap region for hybrid Euler-DSMC in general
might seem problematic. This observation motivates developing particle methods for Navier-Stokes, and possibly for
higher order continuum approximations as well [4]. This paper has the restricted goal of obtaining Navier-Stokes
dynamics using a discrete velocity model (DVM) [5] of the Boltzmann equation. We outline how the method might
be applied to a stochastic particle implementation closer in spirit to DSMC, in which the distribution is sampled by a
small number of particles rather than resolved completely,and briefly consider some aspects of the numerical diffusion
in such particle methods for continuum flows.

DISCRETE VELOCITY MODEL

As in the formulation of Gatignol [5], we consider a finite discrete velocity set{ci}, which has the form{ci} =
⋃

{(±n1,±n2,±n3)} where theni are integers; invariance under the 24 symmetries of the cubeis assumed. All discrete
velocities such thatε(n1,n2,n3) = n2

1 + n2
2 + n2

3 ≤ εmax are chosen, so that the velocities form a ‘lumpy sphere.’ In a
model withεmax = 4, there are 33 discrete velocities; in a model withεmax = 9, there are 123. But unlike the models
discussed in [5], our DVM is implemented on a lattice consistent with the discrete velocity space, so thatci∆t is an
integer multiple of the lattice spacing∆x. Therefore, ‘molecular’ motion always carries particles from one lattice site
to another. This imposes a key property of the Boltzmann equation, that collisions occur at a point, and eliminates
numerical diffusion. LetNi denote the number of particles with velocityci , so that the distribution functionf (x,c)
takes the discrete form∑Ni(x)δ (c− ci); then the discrete Boltzmann equation is taken to be

Ni(x + ci∆t,t + ∆t)−Ni(x,t) = ∆t ∑
j ,p,q

Ωi jpq{−Ni(x)Nj(x)+Np(x)Nq(x)} (1)

where all collisions consistent with momentum and energy conservation are performed. This number is very large:
for 33 velocities, 3,288 collisions are possible, and for 123 velocities, 96,027 collisions are possible. The factorΩ is
defined with a discrete version of hard-sphere collisions, but no effort is made to model realistic collision dynamics.
It might be appropriate to call this model a ‘lattice discrete velocity model.’ While it does represent a possible particle
dynamics and can therefore mimic many properties of the Boltzmann equation, the finite velocity space imposes some
special requirements which will be noted subsequently.



In what follows, it will be convenient to use notation appropriate for the continuous case when the extension
to the discrete case is trivial, and to describe changes required in the discrete setting only when necessary. Thus,
given the distribution functionf , considerf MB, the equilibrium distribution with the same hydrodynamic moments

as f . We have the usual conserved hydrodynamic momentsρ =

∫

f dc =

∫

f MBdc, ρu =

∫

v f dv =

∫

v f MBdv,

ε =

∫

f c2dc =

∫

f MBc2dc; here,v is the particle velocity,u is the hydrodynamic velocity, andc = v−u is the peculiar

velocity. A property of this DVM is that the equilibrium is formally Maxwellian; however, because of the finite velocity
space, the parameters in the Maxwellian need not coincide with the conserved moments. This fact forces us to evaluate
f MB by relaxing f to equilibrium by multiple collision steps, even if this process is time-consuming.

DISCRETE FORMULATION OF THE CHAPMAN-ENSKOG EXPANSION

The discrete Boltzmann equation, Eq. (1), is solved by the usual advection-collision operator splitting. Beginning

with an approximate distribution functionfn, let fn+ 1
2

= fn + (∆t)c ·
∂ fn
∂x

(the advection step), andfn+1 = fn+ 1
2
+

(∆t)J[ fn+ 1
2
, fn+ 1

2
] whereJ denotes the collision integral defined in Eq. (1) (the collision step). If fn+1− fn = O(∆t2)

then fn+1− fn = fn +(∆t)J[ fn+ 1
2
, fn+ 1

2
]− f0 = (∆t)

(

c ·
∂ f0
∂x

+J[ f0, f0]

)

and we are done; otherwise, these steps are

repeated.
The Pullin scheme is a simple modification in whichfn+1 = f MB

n+ 1
2
. Thus, the collision step is replaced by instanta-

neous relaxation to a Maxwellian. But as noted before, in theDVM used here,fn+1 is evaluated by repeated collisions:
in the problem discussed later, four iterations led to an equilibrium distribution, but no general statement can be made
about the number of iterations necessary. As before, we iterate until fn+1 = fn to order∆t2. If this actually happens,
then fn+1 satisfies the steady Boltzmann equation; but sincefn+1 is Maxwellian, the hydrodynamic moments satisfy
the Euler equations.

As stated above, our problem is to go beyond Euler, to higher order continuum approximations. We begin by consid-
ering the Grad 13-moment expansion [6]f = f (0) + f (2)+ f (3) wheref (0) = f MB. (Recall thatf (1), the projection along
c, vanishes.) Grad’s resultsf (2) = 1

2 f (0)
a
(2) : H

(2) and f (3) = 1
10 f (0)b(3) : H(3) both apply in the DVM (we distinguish

tensors and vectors by font and use index notation only wherenecessary to avoid ambiguity), whereH(2)(c) = 3
ρ
ε

cc− I

(c is the peculiar velocity defined above, andI is the identity), andH(3)(c) =

(

3ρ
ε

)3/2(

c2−5
ε

3ρ

)

c. However, as

noted previously, the finite velocity space imposes some modifications: one is that in the second-order Hermite poly-

nomial,I =
3
e

∫

dc f (0)cc: the continuous resultIi j = δi j is not exactly true in the DVM. One reason is that the discrete

velocity space is at most invariant under the finite group of rotations of a cube, not the continuous group of rotations
of space. Therefore, invariant tensors of second rank can exist other than the unit tensor; some of the implications are
developed in detail in the context of lattice Boltzmann models in [7]. Another modification imposed by the discrete

velocity space comes about because the definitiona
(2) =

1
ρ

∫

dc fH(2) from the continuous Grad expansion cannot be

used. The reason is that the crucial property
∫

dc{1,c,c2} f (p) = 0 for p≥ 1 which insures that the hydrodynamic

moments are carried by the lowest order approximationf (0), is not satified in the discrete setting. This fact forces a
modification for the DVM, namely thatf (2) = f (0)b(2) : H(2) where

b
(2) = a

(2)−
a(2) : H(2)

H(2) : H(2)
H

(2) (2)

Note however, that the magnitude of such corrections decreases if the number of discrete velocities is increased. The
third order term pertaining to the heat flux vector is treatedsimilarly, but for brevity, explicit expressions are not given
here.

We propose to implement the 13-moment approximation in thisDVM following the Pullin scheme, by defining

fn+1 = f (0)

n+ 1
2
+ f (2)

n+ 1
2
+ f (3)

n+ 1
2

at each collision step. Thus, the distributionfn+ 1
2

resulting from the advection step is



first relaxed to equilibrium, to givef (0)

n+ 1
2

as in the Pullin scheme. Next, this distribution function isprojected onto

the relevant Hermite polynomials of the Grad expansion to give f (2)

n+ 1
2

and f (3)

n+ 1
2
. Because the Grad expansion is purely

local, these steps are all straightforward. If iteration ofthese steps converges, the result will be an approximate solution
of the Boltzmann equation by a Grad 13-moment distribution.It is perhaps more precise to say that if the scheme
converges, it solves the Boltzmann equation to the order of the Grad 13-moment equations: because the distribution
function evolves freely between collision steps, its evolution may not be determined entirely by the evolution of its
moments (compare [4]).

This procedure was tested by applying it to the one-dimensional problem of particles with a constant hydrodynamic
velocity impinging on a specular wall, here modeled by the ‘bounce-back’ boundary condition of the lattice Boltzmann
equation. The particles are confined to a finite interval, andtherefore separate from the left hand boundary, forming
a rarefaction wave, and are reflected from the right hand boundary, forming a shock wave. Figure 1 compares the
unmodified DVM to the Pullin and Grad schemes just described.The most important feature is that the reflected shock
moves at the same speed in all three cases; the use of Eq. (2) iscrucial to this property, otherwise,f (2) incorrectly
contributes to the total energy and makes the shock move faster. At this point, we only assert qualitative agreement
with the expectation that the Grad scheme shock is less steepthan the shock predicted by the Pullin scheme, but steeper
than the very broad shock predicted by the unmodified model.

In principle, the transition from Grad to Navier-Stokes only requires introducing the approximationsa(2)
i j =

µ
p

(

∂ui

∂x j
+

∂u j

∂xi
−

1
3

∂up

∂xp
δi j

)

anda(3)
i =

κ
ρ

√

3ρ
ε

1
T

∂T
∂xi

in the definitions off (2) and f (3), but this is disadvantageous

because it requires arbitrary choices in the evaluation of partial derivatives of the hydrodynamic variables; it is prefer-
able to express everything in terms of particle operations.To this end, we recall that [8]

D f (0) = f (0)

{

1
2

(

3ρ
ε

c2−5

)

c ·
1
T

∂T
∂x

+
3ρ
ε

C
o :

∂u
∂x

}

(3)

whereD =
∂
∂ t

+ v ·
∂

∂x
is the advection operator, andCo

i j is the trace-free part ofcic j , and similarly

J[D f (0), f (0)] =

{

J

[

1
2

(

3ρ
ε

c2−5

)

c f (0), f (0)

]

·
1
T

∂T
∂x

+
3ρ
ε

J
[

C
o f (0), f (0)

]

:
∂u
∂x

}

(4)

But we obviously have [8]

J

[(

3ρ
2ε

c2−
5
2

)

c f (0), f (0)

]

= α(c,ε)c

and
J
[

C
o f (0), f (0)

]

= β (c,ε)Co

whereα andβ depend on the collision model. These functions could be evaluated for any given model, including the
DVM; in the continuous case of Maxwell molecules, we have, inthe notation of Waldmann [9]

JM

[(

3ρc2

ε
−

5
2

)

c f (0), f (0)

]

= ω20c
(

3ρc2

ε
−

5
2

)

f (0)

and
JM

[

C
o f (0), f (0)

]

= ω11C
o f (0)

where the subscriptM denotes the linearized collision operator for Maxwell molecules, andω11 = (p/µ)ω̃11 with
ω̃11 = 2/3 andω20 = (p/µ)ω̃20 with ω̃20 = 1. It follows from Eqs. (3) and (4) that for Maxwell molecules,

f (2) =
µ
p

ω̃11

ω̃11− ω̃20
D f (0) −

(

µ
p

)2 1
ω̃11− ω̃20

J[D f (0), f (0)] (5)

with a similar result forf (3); for any molecular model, the corresponding result is foundby solving a trivial system
of linear equations. We therefore have the required result:an expression for a Chapman-Enskog distribution in terms
of advection and collision operations alone. Replacingf (2) in the discrete Grad scheme by Eq. (5) andf (3) by the
easily derived analog, leads to a method which, if it converges, converges to a solution of the Boltzmann equation to
Navier-Stokes order.



PARTICLE IMPLEMENTATION AND NUMERICAL DIFFUSION

The Grad and Navier-Stokes particle schemes just describedare deterministic. An implementation closer in spirit
to DSMC is obtained by locating a finite number of particles ateach lattice site, advecting them by their discrete
velocities between lattice sites, and colliding them by stochastic sampling of the possible collision outcomes. As in
DSMC, this procedure evolves a stochastically sampled distribution function, rather than the distribution function
itself. The moments of the sample can be used to evaluate an approximate Maxwellianf MB at every point as in the
original Pullin scheme; since it is expressed in terms of theadvection and collision operations, it should be possible
to evalute an approximate Chapman-Enskog distribution as well and thus to construct a solution of the Navier-Stokes
equations entirely by a particle method.

This type of continuum flow solution will be useful only if it can be applied to regions larger than the mean free path,
but this raises the problem of numerical diffusion. The problem can be illustrated in the DVM by applying collisions
to neighboring lattice sites, so that the term

∑
j ,p,q

Ωi jpq{−Ni(x + ∆x)Nj(x)+Np(x + ∆x)Nq(x)−Ni(x)Nj (x + ∆x)+Np(x)Nq(x + ∆x)} (6)

and the same term with−∆x replacing∆x, are added to the collision term in Eq. (1). The results are illustrated in
Figure 2. The graph on the left shows the shock region in the problem treated in Figure 1 computed by the unmodified
DVM. This result was compared to the result of following eachcollision step with collisions between adjacent lattice
sites following Eq. (6).

The perhaps surprising result is that the shock front steepens, but this was due to the effect of additional collisions.
A better comparison is with the result of performing two collision steps at each lattice site for each advection step. This
comparison shows that collisions with adjacent sites produces a small but noticeable broadening of the shock front,
which can be considered the result of diffusion due to collisional (in additional to advective) coupling between different
sites. The graph on the right makes the same comparison for the Pullin scheme: the Pullin scheme is compared to a
scheme with collisional coupling between adjacent sites with the same number (8 in this case) of collision steps per
advection step. In this case, the diffusion effect is extremely small, perhaps even surprisingly small, but it is definitely
nonvanishing. It is hoped that the DVM can provide a useful way to test ideas for mitigating this numerical diffusion.

A possible model for collisional coupling between distribution functions at different points is the diffusive Boltz-
mann equation

D f = J[ f , f ]+
∂

∂x
ν

∂ f
∂x

whereν is an empirical diffusivity. Under this model, the hydrodynamic equations including the continuity equation,
all acquire diffusion terms. But in the Chapman-Enskog expansion, the added terms appear in a different way from the
standard ones, because in effect, one factor ofc is replaced byν∂/∂x. The result is coupling between the velocity and
temperature diffusion.

CONCLUDING REMARKS

It appears to be possible to generalize the Pullin scheme so that it computes a solution of the Navier-Stokes equations.
This is accomplished by adding suitable higher order moments to the Maxwellian after each advection step and
modifying the moments so that they are proportional to gradients of the hydrodynamic variables. The important fact is
that these gradients can be computed in terms of the particleoperations of advection and collision; it is not necessary to
introduce explicit numerical differentiation. It remainsto be shown that these steps do not require complete resolution
of the distribution function, but that they remain consistent with stochastic sampling of the distribution function, as in
particle methods like DSMC. The effective diffusion causedby particle collisions over distances larger than the mean
free path remains an important limitation.
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FIGURE 1. Particles are moving at constant hydrodynamic velocity toward the specular right-hand wall. LEFT: the complete
density field, comparing the ‘Boltzmann’ (red solid line), ‘Euler’ (dashed green line), and ‘Grad’ (blue dot-dash line)solutions as
described in the text. RIGHT: Same key as on the left, the reflected ‘shock’ region alone is shown at two different times, toverify
agreement of the front velocity in all three models.
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FIGURE 2. LEFT: shock region, unmodified DVM (red solid line), collisions with nearest neighbor lattice site added (dashed
green line), and DVM with two collision steps per advection step (blue dot-dash line) RIGHT: shock region, Pullin scheme(blue
dot-dash line) and Pullin scheme with collisions with nearest neighbor lattice site added (dashed green line) - note that thex scale
is much finer than on the other graphs

REFERENCES

1. J. M. Burt and I. D. Boyd,J. Comput. Phys.227 4653 (2008).
2. M. N. Macrossan, inRarefied Gas Dynamics, 22nd International Symposium, 2001.
3. S. Ohsawa and T. Ohwada, inRarefied Gas Dynamics, 23rd International Symposium, 2003.
4. K. Xu, M. Mao, and L. Tang,J. Comput. Phys.203 405 (2005).
5. R. Gatignol,Théorie cinétique des gaz à répartition discrète de vitesses,Springer-Verlag, Heidelberg, 1975.
6. H. Grad,Commun. on Pure and Appl. Math.2 331 (1949).
7. R. Rubinstein and L. S. Luo,Phys. Rev. E77 036709 (2008).
8. S. Chapman and T. G. Cowling,The mathematical theory of non-uniform gases,Cambridge University Press, 1952.
9. L. Waldmann, inHandbuch der Physikvol 12, Springer-Verlag, Berlin 1958.


