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Abstract. Thiswork investigates the possibility of particle-bas&gbathms for the Navier-Stokes equations and higher order
continuum approximations of the Boltzmann equation; sugbrdhms would generalize the well-known Pullin scheme fo
the Euler equations. One such method is proposed in thextaofte discrete velocity model of the Boltzmann equation.
Preliminary results on shock structure are consistent tighexpectation that the shock should be much broader tlean th
near discontinuity predicted by the Pullin scheme, yetovaer than the prediction of the Boltzmann equation. We dis¢he
extension of this essentially deterministic method to &tsstic particle method that, like DSMC, samples the distidn
function rather than resolving it completely.
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INTRODUCTION

In computing flows containing both rarefied and continuumiaeg [1], information transfer between regions is
simplified if both are computed by a comparable algorithmbikityparticle-based Euler-DSMC has been demonstrated
[2] using the Pullin scheme for the Euler region. Howevenrmath transition between the solution schemes is best
effected if an overlap region exists in which both methodsvatid [3]; since the Euler equations are the zero Knudsen
number limit of the Boltzmann equation, the existence ohsaic overlap region for hybrid Euler-DSMC in general
might seem problematic. This observation motivates dgmetpparticle methods for Navier-Stokes, and possibly for
higher order continuum approximations as well [4]. This @abas the restricted goal of obtaining Navier-Stokes
dynamics using a discrete velocity model (DVM) [5] of the Bahann equation. We outline how the method might
be applied to a stochastic particle implementation clasepirit to DSMC, in which the distribution is sampled by a
small number of particles rather than resolved completelg, briefly consider some aspects of the numerical diffusion
in such particle methods for continuum flows.

DISCRETE VELOCITY MODEL

As in the formulation of Gatignol [5], we consider a finite cliste velocity sefc;}, which has the form{c} =
U{(£n1, £y, £n3)} where then; are integers; invariance under the 24 symmetries of the istdesumed. All discrete
velocities such thag(ng,ny, n3) = n% + ng + n% < &max are chosen, so that the velocities form a ‘lumpy sphere.’ In a
model withemax = 4, there are 33 discrete velocities; in a model vithy = 9, there are 123. But unlike the models
discussed in [5], our DVM is implemented on a lattice comsistvith the discrete velocity space, so thdlt is an
integer multiple of the lattice spacirix. Therefore, ‘molecular’ motion always carries particlesni one lattice site

to another. This imposes a key property of the Boltzmann #guathat collisions occur at a point, and eliminates
numerical diffusion. LefN; denote the number of particles with velocity so that the distribution functiofi(x,c)
takes the discrete forpN; (x)d(c — ¢;); then the discrete Boltzmann equation is taken to be

Ni (X + GAL,t +At) — Nj(x,t) = At Z Qiqu{—Ni (X)Nj (X) + Np(X)Nq(X)} ()
i-p.a

where all collisions consistent with momentum and energyseovation are performed. This number is very large:
for 33 velocities, 3,288 collisions are possible, and foB Y2locities, 96,027 collisions are possible. The fa€dds
defined with a discrete version of hard-sphere collisionsno effort is made to model realistic collision dynamics.
It might be appropriate to call this model a ‘lattice disergelocity model.” While it does represent a possible phtic
dynamics and can therefore mimic many properties of thezZBadinn equation, the finite velocity space imposes some
special requirements which will be noted subsequently.



In what follows, it will be convenient to use notation appriape for the continuous case when the extension
to the discrete case is trivial, and to describe changesremtjin the discrete setting only when necessary. Thus,
given the distribution functiorf, considerfMB, the equilibrium distribution with the same hydrodynamiomrents

as f. We have the usual conserved hydrodynamic mompnis/ fdc = /fMBdc, pu = /vfdv = /vfMde,

€= / fc2dc= [ fMBc?dc; herey is the particle velocity is the hydrodynamic velocity, arm= v — u is the peculiar

velocity. A property of this DVM is that the equilibrium is fimally Maxwellian; however, because of the finite velocity
space, the parameters in the Maxwellian need not coincittetivé conserved moments. This fact forces us to evaluate
fMB by relaxingf to equilibrium by multiple collision steps, even if this jpess is time-consuming.

DISCRETE FORMULATION OF THE CHAPMAN-ENSKOG EXPANSION

The discrete Boltzmann equation, Eq. (1), is solved by thealadvection-collision operator splitting. Beginning

with an approximate distribution functiofy, let fn% = fn+ (At)c- % (the advection step), anth.1 = fn+% +

(At)J[fnJr%, fn+%] whereJ denotes the collision integral defined in Eq. (1) (the ciglisstep). Iff,, 1 — fn = O(At?)
thenf, 1 — fn="Tfh+ (At)J[fM%, fn+%] — fo=(At) (c- % +J[fo, fo]) and we are done; otherwise, these steps are

repeated.
The Pullin scheme is a simple modification in whifh 1 = fr']\iBl. Thus, the collision step is replaced by instanta-

neous relaxation to a Maxwellian. But as noted before, irDt\ Lfsed heref,.1 is evaluated by repeated collisions:
in the problem discussed later, four iterations led to anldgiwm distribution, but no general statement can be made
about the number of iterations necessary. As before, watéemtil f,,; = f, to orderAt?. If this actually happens,
then f, 1 satisfies the steady Boltzmann equation; but sifage is Maxwellian, the hydrodynamic moments satisfy
the Euler equations.

As stated above, our problem is to go beyond Euler, to higrdgraontinuum approximations. We begin by consid-
ering the Grad 13-moment expansion 6k f(© + (2 1 {3 wheref(® = fMB_(Recall thatf (1), the projection along
¢, vanishes.) Grad's resulf$? = (a2 : H@ andf(® = L (@b : H® both apply in the DVM (we distinguish

tensors and vectors by font and use index notation only whecessary to avoid ambiguity), whét€) (c) = 3§cc— I

0 3/2

(cis the peculiar velocity defined above, anig the identity), andH(®) (c) = <?> c?— 53i c. However, as

noted previously, the finite velocity space imposes someifications: one is that in the second-order Hermite poly-

. 3 . . . . .
nomial,l = E/ dcf©@cc: the continuous resulfj = §;j is not exactly true in the DVM. One reason is that the discrete

velocity space is at most invariant under the finite groupotéitions of a cube, not the continuous group of rotations
of space. Therefore, invariant tensors of second rank cish@ther than the unit tensor; some of the implications are
developed in detail in the context of lattice Boltzmann medie [7]. Another modification imposed by the discrete

_ - 1 . _
velocity space comes about because the defini®n= E / dcfH®@ from the continuous Grad expansion cannot be

used. The reason is that the crucial prop(?[tylc{l, C, cz}f(m =0 for p> 1 which insures that the hydrodynamic

moments are carried by the lowest order approximafi®h is not satified in the discrete setting. This fact forces a
modification for the DVM, namely that® = f(©p3 : H@ where

2@ H@

@ _ @2 a7 HY
b =2 - e h®

H®) )
Note however, that the magnitude of such corrections deereiithe number of discrete velocities is increased. The
third order term pertaining to the heat flux vector is treagidilarly, but for brevity, explicit expressions are noten

here.
We propose to implement the 13-moment approximation in ENi§/ following the Pullin scheme, by defining

© + f<2)1 + @ at each collision step. Thus, the distributim% resulting from the advection step is
2

f =f
1= Tl Ty nt3



first relaxed to equilibrium, to givef(o)1 as in the Pullin scheme. Next, this distribution functiorpisjected onto

the relevant Hermite polynomials of the Grad expansionye gn 1 andf ) . Because the Grad expansion is purely

local, these steps are all straightforward. If iteratiothafse steps converges the result will be an approximaiésol

of the Boltzmann equation by a Grad 13-moment distributlbis perhaps more precise to say that if the scheme
converges, it solves the Boltzmann equation to the ordeéh@f3rad 13-moment equations: because the distribution
function evolves freely between collision steps, its etiolumay not be determined entirely by the evolution of its
moments (compare [4]).

This procedure was tested by applying it to the one-dimeradioroblem of particles with a constant hydrodynamic
velocity impinging on a specular wall, here modeled by thauihce-back’ boundary condition of the lattice Boltzmann
equation. The particles are confined to a finite interval, tuedefore separate from the left hand boundary, forming
a rarefaction wave, and are reflected from the right hand 8an forming a shock wave. Figure 1 compares the
unmodified DVM to the Pullin and Grad schemes just describhd.most important feature is that the reflected shock
moves at the same speed in all three cases; the use of Eq.qf®icial to this property, otherwisd (2 incorrectly
contributes to the total energy and makes the shock mowverfastthis point, we only assert qualitative agreement
with the expectation that the Grad scheme shock is less tapphe shock predicted by the Pullin scheme, but steeper
than the very broad shock predicted by the unmodified model.

In principle, the transition from Grad to Navier-Stokes ymequires introducing the approximatior:u%2> =

% (Z—)L:J' + a—l:(: — ;zupd ) anda1 p \/ 3p _Il_ ZT. in the definitions off ' and f(3, but this is disadvantageous

because it requires arbltrary choices in the evaluatloradiai derivatives of the hydrodynamic variables; it isfere
able to express everything in terms of particle operatidoghis end, we recall that [8]

1/3p 10T 3p Jdu
O _fO)=(HF2_ - 0.4
21 f {2<€c 5>CTax+ C'ax} 3)
7] Jd . . . -
where = 2 +v- ax is the advection operator, amg is the trace-free part aficj, and similarly
1/3p 10T 3p du
©) 007 = “(2E2_ 0) 00 0f(0) O . ==
2O £ {JL(gc 5)cf f } ot [c }'dx} (4)
But we obviously have [8]
3P2_5\.0 ;0
J 2_£C -3 cfW %1 =a(ce)c

and
J [c°f<°>, f<°>} = B(c,e)C°

wherea andf depend on the collision model. These functions could beuetedl for any given model, including the
DVM; in the continuous case of Maxwell molecules, we haveh&anotation of Waldmann [9]

3¢ 5) 10 10 3¢ 5) (o)
JM[(?‘E)” AT e T3]

I [Cof(o)’ f<0>} — w,COF©

where the subscrig¥l denotes the linearized collision operator for Maxwell ntolles, andwy1 = (p/ )61 with
@1 =2/3 andapg = (p/ U)o With éypo = 1. It follows from Egs. (3) and (4) that for Maxwell molecujes

~ 2
fa_ K9 g0 (E> 1 3210 10) 5)
P w1 — o P/ i—Gro

with a similar result forf(®; for any molecular model, the corresponding result is fobgasolving a trivial system

of linear equations. We therefore have the required reaanlexpression for a Chapman-Enskog distribution in terms
of advection and collision operations alone. Replaciffg in the discrete Grad scheme by Eq. (5) afitél by the
easily derived analog, leads to a method which, if it congsrgonverges to a solution of the Boltzmann equation to
Navier-Stokes order.

and



PARTICLE IMPLEMENTATION AND NUMERICAL DIFFUSION

The Grad and Navier-Stokes particle schemes just descabedeterministic. An implementation closer in spirit
to DSMC is obtained by locating a finite number of particle®eath lattice site, advecting them by their discrete
velocities between lattice sites, and colliding them byksstic sampling of the possible collision outcomes. As in
DSMC, this procedure evolves a stochastically sampledildigton function, rather than the distribution function
itself. The moments of the sample can be used to evaluatefanxamate MaxwellianfMB at every point as in the
original Pullin scheme; since it is expressed in terms ofdtieection and collision operations, it should be possible
to evalute an approximate Chapman-Enskog distributionedlsamd thus to construct a solution of the Navier-Stokes
equations entirely by a particle method.

This type of continuum flow solution will be useful only if iaa be applied to regions larger than the mean free path,
but this raises the problem of numerical diffusion. The peabcan be illustrated in the DVM by applying collisions
to neighboring lattice sites, so that the term

> Qijpg{ —Ni(x+AX)N; (x) + Np(X + Ax)Ng(x) — Ni (X)Nj (X + Ax) + Np(X)Ng (X + Ax) } (6)
e

and the same term with Ax replacingAx, are added to the collision term in Eq. (1). The results dustilated in
Figure 2. The graph on the left shows the shock region in tbblpm treated in Figure 1 computed by the unmodified
DVM. This result was compared to the result of following eadhiision step with collisions between adjacent lattice
sites following Eq. (6).

The perhaps surprising result is that the shock front steegdmit this was due to the effect of additional collisions.
A better comparison is with the result of performing two @tin steps at each lattice site for each advection steg. Thi
comparison shows that collisions with adjacent sites predwa small but noticeable broadening of the shock front,
which can be considered the result of diffusion due to doltial (in additional to advective) coupling between diffiet
sites. The graph on the right makes the same comparisondd?ullin scheme: the Pullin scheme is compared to a
scheme with collisional coupling between adjacent siteh thie same number (8 in this case) of collision steps per
advection step. In this case, the diffusion effect is exeflgramall, perhaps even surprisingly small, but it is dediyit
nonvanishing. It is hoped that the DVM can provide a usefu wetest ideas for mitigating this numerical diffusion.

A possible model for collisional coupling between disttiba functions at different points is the diffusive Boltz-
mann equation

d of
2f=J[f,f]+ A

wherev is an empirical diffusivity. Under this model, the hydrodynic equations including the continuity equation,
all acquire diffusion terms. But in the Chapman-Enskog esjmn, the added terms appear in a different way from the
standard ones, because in effect, one factari®feplaced byd/dx. The result is coupling between the velocity and
temperature diffusion.

CONCLUDING REMARKS

It appears to be possible to generalize the Pullin schemeasd tomputes a solution of the Navier-Stokes equations.
This is accomplished by adding suitable higher order momémtthe Maxwellian after each advection step and
modifying the moments so that they are proportional to gratdi of the hydrodynamic variables. The important fact is
that these gradients can be computed in terms of the parsfieetions of advection and collision; it is hot necessary t
introduce explicit numerical differentiation. It remaittsbe shown that these steps do not require complete resoluti
of the distribution function, but that they remain consisteith stochastic sampling of the distribution functios,ia
particle methods like DSMC. The effective diffusion caubggarticle collisions over distances larger than the mean
free path remains an important limitation.
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FIGURE 1. Particles are moving at constant hydrodynamic velocityataimthe specular right-hand wall. LEFT: the complete
density field, comparing the ‘Boltzmann’ (red solid lineguler’ (dashed green line), and ‘Grad’ (blue dot-dash Is@tions as
described in the text. RIGHT: Same key as on the left, theatefte'shock’ region alone is shown at two different timesyéoify

agreement of the front velocity in all three models.
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FIGURE 2. LEFT: shock region, unmodified DVM (red solid line), collisis with nearest neighbor lattice site added (dashed
green line), and DVM with two collision steps per advectideps(blue dot-dash line) RIGHT: shock region, Pullin sche¢biee
dot-dash line) and Pullin scheme with collisions with neareighbor lattice site added (dashed green line) - notelba scale

is much finer than on the other graphs
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