Virtual Mission Operations of Remote Sensors With Rapid Access To and From Space

William D. Ivancic and Phillip Paulsen
Glenn Research Center, Cleveland, Ohio

Dave Stewart
Verizon Business Federal Network Systems, Cleveland, Ohio

Jon Walke, Larry Dikeman, Steven Sage, and Eric Miller
General Dynamics Advanced Information Systems, Vandenberg Air Force Base, California

James Northam and Chris Jackson
Surrey Satellite Technology Ltd., Guildford, United Kingdom

Lloyd Wood
University of Surrey, Guildford, United Kingdom

John Taylor, Scott Lynch, and Jay Heberle
Universal Space Network, Horsham, Pennsylvania

July 2010
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI Help Desk at 443–757–5803
- Telephone the NASA STI Help Desk at 443–757–5802
- Write to: NASA Center for AeroSpace Information (CASI) 7115 Standard Drive Hanover, MD 21076–1320
Virtual Mission Operations of Remote Sensors With Rapid Access To and From Space

William D. Ivancic and Phillip Paulsen
Glenn Research Center, Cleveland, Ohio

Dave Stewart
Verizon Business Federal Network Systems, Cleveland, Ohio

Jon Walke, Larry Dikeman, Steven Sage, and Eric Miller
General Dynamics Advanced Information Systems, Vandenberg Air Force Base, California

James Northam and Chris Jackson
Surrey Satellite Technology Ltd., Guildford, United Kingdom

Lloyd Wood
University of Surrey, Guildford, United Kingdom

John Taylor, Scott Lynch, and Jay Heberle
Universal Space Network, Horsham, Pennsylvania

Prepared for the
SpaceOps 2010 Conference
sponsored by the American Institute of Aeronautics and Astronautics
Huntsville, Alabama, April 25–30, 2010

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

July 2010
Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Available electronically at http://gltrs.grc.nasa.gov
Virtual Mission Operations of Remote Sensors
With Rapid Access To and From Space

William D. Ivancic and Phillip Paulsen
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Dave Stewart
Verizon Business Federal Network Systems
Cleveland, Ohio 44135

Jon Walke, Larry Dikeman, Steven Sage, and Eric Miller
General Dynamics Advanced Information Systems
Vandenberg Air Force Base, California 93437

James Northam and Chris Jackson
Surrey Satellite Technology Ltd.
Guildford, United Kingdom

Lloyd Wood
University of Surrey
Guildford, United Kingdom

John Taylor, Scott Lynch, and Jay Heberle
Universal Space Network
Horsham, Pennsylvania 19044

Abstract

This paper describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the United Kingdom Disaster Monitoring Constellation (UK-DMC), is used as the space-based sensor. The UK-DMC’s availability is determined via machine-to-machine communications using SSTL’s mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL’s and Universal Space Network’s (USN) ground assets. The availability and scheduling of USN’s assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards.
I. Introduction

One of NASA’s strategic objectives is to develop new space-based and related capabilities for advancement of the study of the Earth’s climate and ecological systems from space. In particular, the work described in this paper advances Earth observation from space via time-critical sensor control, improves scientific understanding via distributed sensor web interactions and data mining techniques, and demonstrates new technologies with the potential to improve future operational systems.

In support of NASA’s Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) programs, NASA Glenn Research Center (GRC) developed information delivery protocols, and secure, autonomous, machine-to-machine communication and control technologies to enable integration of distributed Earth system sensors and processing components into sensor webs. GRC’s research efforts concentrated on the architecture and development of system building blocks leading to autonomous sensor webs. GRC leveraged its relationships with Cisco Systems, General Dynamics, USN, the Army and Air Force Battle Labs, and SSTL to develop a ground and space-based network and relevant protocols to demonstrate time-critical interoperability between integrated, intelligent sensor webs consisting of space-based, fixed, and mobile terrestrial-based assets.

GRC developed the necessary infrastructure and protocols to enable near real-time commanding and access to space-based assets. Protocol development culminated with a space-flight demonstration of large file transfers distributed across multiple satellite ground stations.

GRC worked with General Dynamics, Surrey Satellite Technology Limited, and USN to integrate General Dynamics’ Virtual Mission Operation Center (VMOC) technology and open architecture interfaces with selected terrestrial and space-based sensor webs able to demonstrate time-critical interoperability and intelligent integration. This paper concentrates on the use of the VMOC to autonomously schedule and obtain services from multiple independent parties in order to task a space-based sensor and obtain sensor data in the shortest time.

This research also fulfilled NASA’s goal to promote commercial participation in exploration to further U.S. scientific, security, and economic interests and to involve the U.S. private sector in the design and development of space systems. GRC utilized U.S. and, when necessary, foreign commercial space capabilities and services to accomplish this. The commercial companies participating in this research effort include:

- General Dynamics—Virtual Mission Operations Center technology
- Universal Space Network—ground station development and ground station network
- Surrey Satellite Technology Limited, a United Kingdom company—commercial imagery satellite

II. Secure, Autonomous, Integrated Space/Ground Sensor Webs

A. Concept of Operations (CONOPS)

The overall goal of the secure autonomous integrated space/ground sensor web was to demonstrate secure network centric operations of space/ground assets owned and operated by multiple parties. In order to accomplish this, a network consisting of terrestrial sensors (seismic sensors), a VMOC, multiple ground stations and a spacecraft were used with the flow of information shown in Figure 1. A seismic sensor update was received by the VMOC that indicated some exceptional event of interest. The VMOC then decided what other sensors or sensor network could be brought to bear in order to gain more information on that event. In this situation, the terrestrial sensor web is the Global Seismic Network (Ref. 1) with the trigger information obtained from the United States Geological Survey (USGS). A limited demonstration, Phase I, of the overall concept occurred in July 2009 (see Section III, Automated Service Agreements).
Figure 1.—Secure, autonomous, integrated space/ground sensor web.

Figure 1 illustrates the overall CONOPS as a series of events labeled 1 through 7.

1. The VMOC receives a trigger of a seismic event from the USGS notification system. The trigger level can be set to some threshold. That trigger sets the autonomous sensor web into motion.
2. The VMOC’s job is to task other sensors and reserve and/or configure whatever infrastructure is necessary to obtain the requested data. In this instance, the other sensor is SSTL’s UK-DMC satellite. The supporting infrastructure includes Internet-enabled ground stations: one in Guildford, England owned and operated by SSTL, and three ground stations in North Pole, Alaska, South Point, Hawaii and Mingeneu, Australia, owned and operated by USN.
3. Once the VMOC coordinates all facilities for availability and requests reservation of those assets, the individual entities cooperate to configure and operate their facilities and infrastructure, rather than the VMOC assuming complete system control. This is accomplished by machine-to-machine communication and negotiation. For example, USN may get a request to take a pass of the UK-DMC satellite over its Australian ground station at a given date and time. USN will accommodate the request, set up USN’s infrastructure and ensure the data paths are in place to enable data to get back to the VMOC. Likewise, SSTL schedules the UK-DMC to turn on and begin transmitting over the ground station in Australia.
4. The commands are sent to the spacecraft regarding when to capture sensor data and when to transmit that data to the ground. Those commands are currently passed to the satellite via SSTL’s ‘home’ ground station; however, they could conceivably be passed to the satellite via a third-party ground station such as one of the other international DMC ground stations, or USN’s Australian site as illustrated in Figure 1.
5. The image is taken over the area of interest corresponding to the seismic event.
6. The image is then downloaded. As illustrated, this image is downloaded to a third party ground station in Japan.
7. If an image is too large to be transmitted in its entirety during a single pass, the remaining portion of the file can be transmitted via a second ground terminal. In Figure 1, the second ground station is in Alaska. A limited demonstration of large-file transfer over multiple ground stations was successfully performed using this network in September and October 2009 (Ref. 2).
B. Space Infrastructure

The spacecraft used for all networking experiments is UK-DMC satellite. The UK-DMC satellite is one of seven on-orbit Internet-enabled imaging satellites, of which six are currently operational, including the later UK-DMC-2 satellite (so the UK-DMC is now also known as UK-DMC-1). Two more DMC satellites are expected to join the constellation with launch in 2010. The DMCs are operational satellites, providing imagery both under the International Charter for Space and Major Disasters (the “Disasters Charter”) and as part of a commercial, money-making venture selling imagery (DMC International Imaging Ltd). Individuals can request an image of an area of the Earth (and may need to pay). These satellites are in a sun-synchronous polar orbit with an altitude of 680 km and a period of approximately one revolution every 100 min. A reasonably usable pass will have the satellite in view of any one ground station for 8 to 14 min. Disruption occurs when the satellite cannot communicate with a ground station. The round-trip-time delay from ground station to the spacecraft is under 10 ms, thus propagation delay is not the issue here (unlike for deep space).

The UK-DMC-1 satellite carries three solid-state data recorders (SSDRs): one with a StrongARM Processor and two using the Motorola MPC8260 PowerPC processor. For our tests we use one of the MPC8260 SSDRs. The SSDR has a Real-Time Executive for Multiprocessor Systems (RTEMS) operating system including Portable Operating System Interface for Unix (POSIX) application program interface (API). The storage capacity on the PowerPC SSDRs consists of 1 or 0.5 Gbyte of Random-access memory (RAM) while the bootable operating system image is limited to 0.5 Mbytes.

The communication systems consist of a slow 9600 bits-per-second (bps) uplink for commanding and the much faster 8.134 Mbps downlink for transmitting high-resolution imagery. The data link is commercial off-the-shelf standard Frame Relay/High-Level Data Link Control (HDLC). The UK-DMC-1 satellite uses Internet Protocol (IP) packets to move data to and from the satellite. The network protocol is IPv4 but could easily be changed to IPv6. The DMC satellites have uplink/downlink asymmetries of up to 850:1 for S-Band transmitters and 8333:1 for X-Band transmitters on later DMC satellites, leading to an unusual network environment which many protocols are unable to cope with efficiently, e.g., TCP acknowledgement would congest the uplink, while TCP segments would be unable to fill the downlink to capacity due to TCP’s backoff algorithms. Higher link asymmetries are planned for future DMC satellites, which will have faster downlinks for higher-resolution imagery. The file transport protocol used is Saratoga (Ref. 3), a simple, high-rate, rate-based, negative-acknowledgement UDP/IP-based file transfer protocol that can operate over extremely asymmetric links and tolerate loss. Saratoga is specified in a public internet-draft.

The UK-DMC-1 satellite is the only DMC satellite to have an onboard experimental networking payload, the Cisco router in Low Earth Orbit (CLEO). From 2004 through 2008, CLEO was used for the advanced IP network testing and demonstrations (Ref. 4). The UK-DMC-1 satellite was the first satellite to source IPv6 traffic and the first to demonstrate IP security protocols (Refs. 5 to 7). Because of these successful tests, SSTL allowed the UK-DMC-1 to be used for large-file transfer demonstrations over multiple ground stations. For large-file transfer tests, the Delay Tolerant Networking (DTN) Bundle Protocol (Ref. 8) was used with DTN-conformant bundles constructed directly in the SSDR (Ref. 9).

C. Ground Infrastructure

The ground infrastructure, shown in Figure 2, consists of a number of ground stations scattered throughout the Earth and a VMOC located at NASA’s Glenn Research Center in Cleveland, Ohio. Each ground station router has a serial link to the RF system, a LAN Ethernet connection to a workstation that is used to upload and download files, and a WAN Ethernet link that eventually leads to the open Internet. An additional workstation (Bundle Agent) has been placed on the LAN Ethernet link to perform store-and-forward operations using the experimental store-and-forward Bundle Protocol, which was developed by the Internet Research Task Force (IRTF) DTN Research Group. Here, store-and-forward technology is used to break transport protocol control loops and handle rate mismatch problems between the Space-Ground
link and the terrestrial link between ground stations and data combining location. In this case, the data combining location is a DTN bundle agent co-located with the VMOC. The ground station, network architecture and details for the UK-DMC-1 onboard system are described in “Secure, Network-Centric Operations of a Space-Based Asset: CLEO and VMOC (Ref. 4).”

1. **SSTL Ground Station**

SSTL’s ground station is located in Guildford, United Kingdom. SSTL’s ground station is a stable operational system. Therefore, this ground station is used to execute each new test prior to attempting to duplicate the test on any other station, to allow separation of debugging the tests and debugging newer ground stations.

2. **Universal Space Network**

NASA GRC and USN entered into a contract for USN to provide three ground stations configured to communicate with the UK-DMC-1 satellite and to be capable of providing IP and DTN connectivity between the ground stations and the GRC local network. NASA provided the routers and DTN bundle agents to USN.

The USN ground stations are located in Alaska, Hawaii, and Australia. All three ground stations are operational. All ground stations were tested and can now receive both low-rate (38.4 kbps) IP-based operations telemetry and high-rate (8.134 Mbps) IP-based remote sensing imagery transmissions, multiplexed with telemetry, from the UK-DMC satellite.

![Space/ground network diagram](image-url)

Figure 2.—Space/ground network.
III. Automated Service Agreements

The concept of operations for the secure, autonomous, integrated space/ground sensor webs, illustrated in Figure 1, requires access to space-based assets using multiple ground stations. Furthermore, the nature of the system development requires secure autonomous machine-to-machine scheduling of such assets. These autonomous, automated service agreements enable NASA to obtain near real-time access to space-based assets. To demonstrate secure autonomous machine-to-machine scheduling, General Dynamics, under contract to NASA, developed and implemented algorithms and code necessary to perform secure, autonomous, automatic scheduling of SSTL’s UK-DMC-1, SSTL, and USN’s ground assets within its VMOC software.

The basic operations flow is shown in Figure 3. Some event, such as a volcano eruption, earthquake, tsunami, or flood, is sensed by a remote sensor web. The remote sensor web sends an event trigger to the VMOC. The VMOC notes the location of the event and determines what space-based resources are available. In our example, only one space-based asset is available, the UK-DMC-1 satellite. The VMOC then negotiates with SSTL for availability of that asset. Once availability is determined, the VMOC determines what ground support infrastructure is available for both commanding and data retrieval. The VMOC then attempts to schedule these ground assets. If a conflict exists, the process is re-initiated, otherwise, the assets are scheduled and commanding and data retrieval is performed. Once the space-based sensor data has been downloaded and delivered and is made available via the VMOC, the VMOC will notify the end users as to the availability and location of such data.

General Dynamics’ implementation of the Secure Autonomous Automated Scheduling (SAAS) project consisted of monitoring the USGS earthquake notification system for sensor triggers, automatically scheduling an image acquisition of the target area via SSTL’s UK-DMC-1 satellite and downloading the acquired image to the General-Dynamics-developed VMOC at GRC, for access by SAAS VMOC users. The aim was to reduce the time between notification and availability of the image, by using multiple ground stations with both scheduled upload and payload download capability, as well as to demonstrate the ability to perform SAAS of on-orbit assets, triggered by available sensor webs. The system is documented in NASA Contractor Report NASA/CR—2010-216097 (Ref. 10).

![Figure 3.—Machine-to-machine autonomous scheduling.](image-url)
The SAAS project was developed in a phased approach, initially utilizing the SSTL ground station and Mission Planning System (MPS) web services interface and escalating to the utilization of additional USN ground stations located in Alaska, Hawaii, and Australia for both scheduled upload and image download. The SAAS Project phases are:

- **Phase 1**: VMOC requests imaging opportunities from a simulated SSTL MPS via the web service. The result is a valid schedule that is not acted upon. Tasking is simulated and a substitute raw image file will be made available via FTP for retrieval by the GRC VMOC. A further service will be made available for the VMOC to process the raw image to a single co-registered Tagged Image File Format (TIFF) image. This processing service will apply across all four Phases. Phase I was completed in July of 2009.

- **Phase 2**: VMOC requests imaging opportunities from the live SSTL MPS via the web service, subject to availability, tasking the UK-DMC-1 through SSTL’s ground station to acquire the raw image file which will be downloaded to SSTL and made available via FTP.

- **Phase 3**: VMOC requests imaging opportunities from SSTL MPS via the web service identifying the ground station to receive the download image, subject to availability. VMOC will task UK-DMC-1 through SSTL’s ground station to acquire the raw image file. This will be broadcast from UK-DMC-1 to the identified ground station and made available via FTP.

- **Phase 4**: VMOC requests imaging opportunities from SSTL MPS via the web service identifying the individual ground station to upload the schedule and potentially a different ground station to receive the broadcast download image, subject to availability. VMOC will upload the schedule file to UK-DMC-1 through the previously identified U/L ground station to acquire the raw image file. This will be transmitted from UKDMC-1 to the identified D/L ground station and made available via FTP.

For all phases of the SAAS project, the GRC VMOC provides the interface with the USGS earthquake website for triggering of SAAS of the UKDMC-1 satellite. The VMOC also provides the SAAS user interface for accessing the resultant imagery from the satellite.

IV. Glenn Research Center VMOC Overview

The GRC SAAS VMOC consists of five Adobe ColdFusion applications (Admin, Tactical, Mission, USN Ground and SSTL Ground Apps) contained within a website container (Fig. 4). Each application interfaces with all other apps and the outside world via Application Program Interfaces (API’s) and each appropriate application provides a User Interface (UI) via the web site container to the SAAS VMOC user (not all UI’s shown for clarity). The Tactical and Mission Applications also interface with Analytical Graphics, Incorporated (AGI) Satellite Tool Kit (STK) models for necessary satellite, sensor, target and ground station contact information.

The main GRC SAAS VMOC page (Fig. 5) provides the user with a hierarchical menu structure to access each of the SAAS VMOC applications (that have User Interfaces). The main page also provides a status of the VMOC applications and VMOC connections and a list of current users online.
Figure 4.—GRC SAAS VMOC structure.

Figure 5.—GRC SAAS VMOC main page.
V. SAAS-Phase 1 Demonstrated

The GRC SAAS VMOC Administration, Tactical, Mission and SSTL applications were all exercised during a SAAS Phase 1 demonstration in July 2009. Selected earthquake events (as defined in the Earthquake Admin Interface) were successfully collected and presented to the user via the Earthquake Tasks interface. Imaging task requests were automatically created by the Mission Application, including ground station up/down link contact availability information. The Mission Application successfully negotiated with the SSTL MPS and determined possible up/down link contact tasking and imaging collection times. These collection opportunities were presented to the user via the “UK-DMC Collection Management” interface, allowing the SAAS user to “authorize” collections for execution. During the Phase 1 demonstration, actual uplink load contacts, image collections and downlink contacts were not performed. All other user interfaces were also successfully demonstrated.

Figures 6 and 7 are from the GRC SAAS VMOC that performs automated tasking. The VMOC is currently administratively set to record all seismic activity above 2.5 on the Richter scale and task anything above 4.0 (Fig. 6). These are settable parameters with low values being used in order to obtain a large dataset for demonstration and debug. When a user highlights one of the locations, it will be shown on the mapping function (Fig. 7).

Figure 6.—General dynamics VMOC tasking page.
Figure 8 shows the pending task requests. Notice that the operator is given the opportunity to select which ground stations one may wish to use to download the imagery. For the particular example selected, the Bay of California 6.9 earthquake, if one were to use the USN-Australia station, one could obtain the imagery approximately 90 min. sooner. This data was obtained on August 5, 2009. Note, the next following available opportunity for the UK-DMC-1 to take an image of the Bay of California was Saturday, August 8th at 17:10 UTC. This availability is a combination of when the UN-DMC1 will pass over the Bay of California and when the UK-DMC-1 is available as it may have been tasked for other imagery prior to our request.

Figure 9 shows detailed information of the selected event. Furthermore, Figure 9 is the screen used to actually submit the request (and to eventually get charged for the request). Note, there is a field available to provide an estimated cost for executing the request in order to ensure the user is aware of the cost.
Pending Task Requests from Earthquakes

<table>
<thead>
<tr>
<th>Mission Opportunities</th>
<th>Collect Time</th>
<th>LTIOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gulf of California</td>
<td>Sat Aug 8 17:10:25 GMT-04:00 2009</td>
<td>Sat Aug 8 21:36:01 GMT-04:00 2009</td>
</tr>
<tr>
<td>UK-DMC</td>
<td>Sat Aug 8 17:10:25 GMT-04:00 2009</td>
<td>Sat Aug 8 21:04:17 GMT-04:00 2009</td>
</tr>
<tr>
<td>SSTL</td>
<td>Sat Aug 8 17:10:25 GMT-04:00 2009</td>
<td>Sat Aug 8 21:04:17 GMT-04:00 2009</td>
</tr>
<tr>
<td>JSS</td>
<td>Fri Aug 7 00:11:56 GMT-04:00 2009</td>
<td>Fri Aug 7 00:11:56 GMT-04:00 2009</td>
</tr>
<tr>
<td>SSSL</td>
<td>Fri Aug 7 00:11:56 GMT-04:00 2009</td>
<td>Fri Aug 7 00:11:56 GMT-04:00 2009</td>
</tr>
<tr>
<td>Hokkaido, Japan region</td>
<td>Fri Aug 7 00:11:56 GMT-04:00 2009</td>
<td>Fri Aug 7 00:11:56 GMT-04:00 2009</td>
</tr>
<tr>
<td>CEB66F1F-D56B-ASFF-4CD127D22D33118E</td>
<td>Fri Aug 7 00:11:56 GMT-04:00 2009</td>
<td>Fri Aug 7 00:11:56 GMT-04:00 2009</td>
</tr>
<tr>
<td>UK-DMC</td>
<td>Fri Aug 7 00:11:56 GMT-04:00 2009</td>
<td>Fri Aug 7 00:11:56 GMT-04:00 2009</td>
</tr>
</tbody>
</table>

Figure 8. Pending task requests.

Task Request Details

- **Task Title:** Gulf of California
- **Task UUID:** E181F4C5-D56B-ASFF-400D9A617AA11184
- **Category:** Imagery
- **Subcategory:** Visual
- **Vehicle Used:** UK-DMC
- **Ground Station Used:** SSTL
- **Collection Start:** Sat Aug 8 17:10:25 GMT-04:00 2009
- **Collection Stop:** Sat Aug 8 17:11:07 GMT-04:00 2009
- **LTIOV:** Sat Aug 8 22:36:01 GMT-04:00 2009
- **Estimated Cost:** TBD
- **Derived From:**
 - **Eq ID:** 00032240
 - **Time of Earthquakes:** Mon Aug 3 02:08:01 GMT-04:00 2009
 - **Magnitude:** 6.9

Figure 9. Task request details and submission.
VI. Utilizing Other VMOC Capabilities

VMOC capabilities were utilized to support USN Ground station troubleshooting as illustrated in Figure 10. The original GRC VMOC was utilized to both provide UK-DMC to Ground station contact information and also to verify successful telemetry downlinks. Since the VMOC access is via the Internet, multiple users with account access to the VMOC could simultaneously view telemetry and tune ground station equipment parameters in real-time (e.g., transmit power, Doppler compensation).

VII. Future Work

The core technology has been demonstrated in Phase I and is in place for automated scheduling of ground and space-based assets. In order to show complete automation of event trigger to sensor collection and data distribution, it is highly desirable to complete all aspects of this work including: development and demonstration of collection and downlink of images via the SSTL ground station (Phase II); automated downlink of data via USN ground stations; and both uplink load and downlink via any available ground stations (Phases III and IV).

Additional space assets could be brought into the network. Currently only the UK-DMC-1 satellite is utilized. This is primarily due to SSTL’s willingness to experiment with new protocols and techniques as well as the ease of interconnecting DMC-capable ground stations to the Internet, as all aspects of the DMC satellites and ground stations are Internet-Protocol-compliant.
VIII. Department of Defense Use of the VMOC

The Department of Defense (DOD) expanded VMOC for scheduling and tasking various sensor platforms and handling requests via its Space Apportionment for Effect (SAFE) project. In SAFE, the VMOC automated the Joint Space Tasking Order (JSTO) process, and issued the test JSTO to the Spacecraft Operations Center for implementation—all through a standard secure web environment (Ref. 11).

IX. Summary

Since 2004, NASA has been utilizing General Dynamics’ Virtual Mission Operations Center as a secure portal for access to spacecraft telemetry and real-time control of a space-based asset using Internet technologies. We have continued expanding the functionality of the VMOC to include full autonomous machine-to-machine automated scheduling of third party assets. Major aspects of the concept of fully automating sensing an event-trigger, scheduling a space-based sensor to collect data, and data distribution have been successfully demonstrated. Use of multiple ground stations to increase contact times was also demonstrated, albeit, currently via a manually-initiated process. The space and ground network infrastructure was developed using commercially available assets. All communications were performed using commercial-off-the-shelf Internet Protocols with store-and-forward accomplished using the DTN experimental bundling protocol. This infrastructure remains in place for future development.

References

Title and Subtitle
Virtual Mission Operations of Remote Sensors With Rapid Access To and From Space

Abstract
This paper describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the United Kingdom Disaster Monitoring Constellation (UK-DMC), is used as the space-based sensor. The UK-DMC’s availability is determined via machine-to-machine communications using SSTL’s mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL’s and Universal Space Network’s (USN) ground assets. The availability and scheduling of USN’s assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards.

Subject Terms
Network; Security; Communications; Satellite

Security Classification
- **16a. Report:** U
- **16b. Abstract:** U
- **16c. This Page:** U

Limitation of Abstract
UU

Number of Pages
20

Telephone Number
443-757-5802