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ABSTRACT
As world-wide air traffic continues to grow even at a mod-
est pace, the overall complexity of the system will increase
significantly. This increased complexity can lead to a larger
number of fatalities per year even if the extremely low fatal-
ity rate that we currently enjoy is maintained. One impor-
tant source of information about the safety of the aviation
system is in Aviation Safety Text Reports which are writ-
ten by members of the flight crew, air traffic controllers,
and other parties involved with the aviation system. These
anonymized narrative reports contain fixed-field contextual
information about the flight but also contain free-form nar-
ratives that describe, in the author’s own words, the nature
of the safety incident and, in many cases, the contributing
factors that led to the safety incident. Several thousand
such reports are filed each month, each of which is read and
analyzed by highly trained experts. However, it is possible
that there are emerging safety issues due to the fact that
they may be reported very infrequently and in different con-
texts with different descriptions. The goal of this research
paper is to develop correlated topic models which uncover
correlations in the subspaces defined by the intersection of
numerous fixed fields and discovered correlated topics. This
task requires the discovery of latent topics in the text reports
and the creation of a topic cube. Furthermore, because the
number of potential cells in the topic cube is very large,
we discuss novel methods of pruning the search space in the
topic cells, thereby making the analysis feasible. We demon-
strate the new algorithms on an analysis of pilot fatigue and
its contributing factors, as well as the safety incidents that
are correlated with this phenomenon.
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1. INTRODUCTION
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Many organizations have large text repositories that con-
tain information that is mission critical to the organiza-
tion. NASA, for example, operates a safety reporting system
known as the Aviation Safety Reporting System (ASRS)
which collects voluntarily submitted aviation safety inci-
dent/situation reports from pilots, controllers, and others
with the purpose to identify system-wide deficiencies and
safety issues[5]. ASRS can receive as many as several thou-
sand reports in a month and contains over 100, 000 reports at
this time. The analysts at ASRS analyze each report in de-
tail and assign reports to potentially several of 60 high-level
anomaly categories and conduct other safety related studies
with the reports. The reports also contain various ’fixed-
field’ pieces of information that identify the context and op-
erating conditions of the flight. The reports are anonymous
by law; thus, the author, his or her organization, and other
identifying pieces of information are removed from the re-
ports. The ASRS analysts also use automated tools to help
them study the reports and compare them with others, but
the vast majority of the work is done by skilled experts.

In the early 1990’s, ASRS personnel issued an alert to the
Federal Aviation Administration (FAA) based on studies
that were made on text reports submitted over the previ-
ous several years. This study concluded that the Boeing
757 generated wake-turbulence, a form of turbulence that
is created behind an aircraft as it passes through the air.
This dangerous phenomenon can lead to catastrophic conse-
quences for smaller aircraft that are following the lead air-
craft and is an important factor in determining the capacity
of an airport [3].

When the B757 was initially put into service it had a wake-
vortex classification that allowed a smaller separation be-
tween it and a trailing aircraft. The alert issued in the late
1980’s and 1990’s was noted by the FAA but, as it turns
out due to unrelated reasons, they took action on reclassi-
fying the 757 aircraft into one that requires a larger aircraft
separation after two fatal accidents. Thus, although the reg-
ulatory agency didn’t take action on this particular alert, it
is an excellent example of the identification of precursors to
catastrophic accidents based on the analysis of text reports.

In principle, to detect and find corroborating evidence of
this problem, the ASRS analysts had to comb through a
huge amount of information in their system to detect and
document this problem. The research discussed in this pa-



per addresses the problem of providing automated methods
to automatically identify potential precursors to safety in-
cidents in large volumes of safety related reports using a
combination of a correlated topic model and a powerful and
scalable multidimensional cube.

Several methods have been developed that can help enable
the automatic classification [19] of text reports into anomaly
categories [18] [15] and significant work has been performed
in the area of correlated topic models [1].

The problem that we focus on in this paper is the generation
of a method to automatically uncover documents that are
correlated with a topic of interest and then analyze the re-
sulting set of reports using a scalable multidimensional cube.
The multidimensional cube could consist of the fixed-fields
already identified in a set of reports, but more interestingly,
other topics that have been discovered in the text reposi-
tory. These reports can offer a significant amount of insight
into the main topic and its contributing factors. We use this
as a running example throughout the paper to illustrate the
performance and output of the system.

For example, consider a study of pilot fatigue, which is
thought to be a contributing factor to aviation safety in-
cidents. The authors may not directly mention the word
fatigue in their writeups. Instead, they may mention other
phrases such as I was on the last leg of a 5 segment trip”
or THIS WAS THE FINAL LEG OF A MULTI-LEG FLT
AND I WAS MORE TIRED THAN I THOUGHT [20]. In
these examples, the author does not directly state the word
fatigue. In the last example, the author indicated that
he/she was tired due to being on the final leg of a trip.
Notice in this excerpt that the author uses abbreviations;
ASRS documents are laden with abbreviations in the narra-
tive sections.

2. PROBLEM FORMULATION

2.1 Preliminaries: The Text Cube Model
A set of documents D is stored in an n-dimensional database
DB = (A1, A2, · · · , An, D). Each row r ∈ DB corresponds
to a document d ∈ D in the form of r = (a1, a2, · · · , an, d),
where ai ∈ Ai means the value of the dimension Ai for r is
ai. We denote r(D) = d and r(Ai) = ai.

The data cube model [8] extended to the above multidimen-
sional text database is called the text cube [13]. Several
important concepts are introduced as follows.

Definition 1. Text Cube: Cell and Measure. In the
text cube built on a set of documents D, a cell is in the form
of c = (a1, a2, · · · , an : D′, f1(D

′), f2(D
′), · · · , fm(D′) ),

where either ai ∈ Ai (i.e., the value of dimension Ai for c is
ai) or ai = ∗ (i.e., the dimension Ai is aggregated in c). D′

is the aggregated document set for c, formally defined as D′

= {r | r ∈ DB, r(Ai) = ai if ai ̸= ∗}. f1(D
′), f2(D

′), · · · ,
fm(D′) are measures on D′ that are computed by aggregate
functions. We denote c(D) = D′ and c(Ai) = ai.

Cells with m non-∗ dimensions are called m-dim cells. An

n-dim cell is said to be a base cell, with no aggregated di-
mension, and a 0-dim cell is the apex cell that aggregates
all dimensions.

Definition 2. Ancestor and Descendant. Cell c′ is an
ancestor of c (or c is a descendant of c′) iff ∀ i : c′(Ai) ̸= ∗
⇒ c(Ai) = c′(Ai). Note a cell is an ancestor (or descendant)
of itself. A base cell has no descendant except itself, and the
apex cell has no ancestor except itself.

Definition 3. Parents and Children are immediate an-
cestors and descendants of a cell, respectively. Cell c′ is a
parent of c (or c is a child of c′) iff (i) c′ is an ancester of
c, and (ii) c′ is an i-dim cell while c is an (i+1)-dim cell.

Measures in a text cube are categorized into distributive,
algebraic, and holistic [10] based on the way of aggregate
functions used.

Distributive: An aggregate function is distributive if the ag-
gregate value of a cell c can be computed by only using the
aggregate values of c’s children, e.g., count() and sum().

Algebraic: An aggregate function is algebraic if it can be
computed by an algebraic function on a limited number of
distributive measures, e.g., avg() and deviation().

Holistic: An aggregate function is holistic if there is no con-
stant bound on the storage size needed to describe a subag-
gregate, e.g., median() and mode().

To make the time and space complexity affordable, in most
cases, we require a measure for a text cube to be either
distributive or algebraic.

Definition 4. Topic. A semantically coherent topic in
a text collection is represented by a topic model θ, which is
a probabilistic distribution of words {p(w|θ)}w∈W . W is the
vocabulary. Clearly, we have

∑
w∈W p(w|θ) = 1.

2.2 Topic Correlation Analysis in Text Cube
2.2.1 Problem
We define the task of topic correlation analysis in text cube
as follows. Given a text cube and k topics, we aim to answer
the following two questions:

Topic Relevance Analysis. Given a keyword query Q =
{q1, q2, · · · , q|Q|}, what is the most relevant topic θ to Q?

Topic Correlation Analysis. Given a cell c, are there
other topics α ̸= θ such that θ and α are correlated in the
scenario of c? The scenario of cell c is a condition, repre-
sented by a selected set of dimensions, with some possibly
instantiated, such as Weather = “Fog”, on which the topic
correlations will be analyzed.

Example 1. k = 3 topics are generated and the word
distributions of topics are shown in Table 1. Notice that



Topic 1 Topic 2 Topic 3

day 0.057 engine 0.230 factor 0.040
hour 0.043 oil 0.004 awareness 0.015
trip 0.027 shutdown 0.013 lack 0.011
time 0.027 pressure 0.012 fail 0.011
rest 0.019 start 0.011 performance 0.009
night 0.019 power 0.007 corrective 0.009
leg 0.017 temperature 0.007 attention 0.007
fatigue 0.012 landing 0.005 error 0.007
morning 0.009 compressor 0.005 action 0.007
long 0.009 viberation 0.004 realize 0.007
early 0.007 restart 0.003 poor 0.006
tired 0.007 fail 0.003 failure 0.006
sleep 0.007 filter 0.003 miss 0.005

Table 1: Word Distributions.

Dimensions Topic Distributions

Doc State Time Weather Topic 1 Topic 2 Topic 3

d1 IL night rain 0.3 0.1 0.6

d2 IL night snow 0.6 0.2 0.2

d3 CA night snow 0.2 0.4 0.4

d4 CA daytime snow 0.4 0.3 0.3

d5 NY night snow 0.1 0.8 0.1

d6 NY daytime rain 0.5 0.4 0.1

d7 NY daytime fog 0.3 0.3 0.4

Table 2: Text Cube and Topic Distributions.

the first topic contains many words that are related to be-
ing tired or fatigued. The second topic contains words that
describe potential issues in an engine, and the third topic
contains words that are related to attention and awareness.
In Table 2, a text cube is built on the document set D =
{d1, d2, · · · , d7} with three dimensions ‘State’, ‘Time of the
Day’ and ‘Weather’ as well as the topic distributions of doc-
uments. Given the keyword query Q = {‘I’,‘am’,‘tired’},
Topic 1 is regarded as the most relevant topic to Q. Given
the cell c1 = (∗,‘night’, ∗), Topic 3 is correlated to Topic 1
in the scenario of c1. Also, given the cell c2 = (∗, ∗,‘snow’),
Topic 2 is correlated to Topic 1 in c2.

2.2.2 Motivation
Topic relevance and correlation analysis in text cube is useful
to aviation safety analysis for several reasons, including:

• Many aviation safety databases such as ASRS 1 con-
sist of both textual (e.g., the pilot report about the ac-
cident) and multi-dimensional (e.g., ‘location’, ‘time’
and ‘weather’ associated with the pilot report) infor-
mation, which can naturally fit in a text cube [13, 23].

• A topic in the aviation safety databases corresponds
to an issue that that may explain what happened dur-
ing the flight that caused the issue. For example, in
Table 1, Topic 1 describes a ‘fatigue’ problem, which
could be caused by ‘long duration trip’ or ‘early awak-
ening from sleep’. Topic 2 contains ‘engine’ issues, and
Topic 3 describes the ‘attention and awareness’ related
issues.

• Users of aviation safety databases may not have com-
plete knowledge about a flight issue (i.e., a topic), but
instead use a set of keywords to express their target
topic. Based on this type of input, Topic Relevance
Analysis could supply a way to match user queries to
underlying topics.

• To analyze correlated topics is to analyze correlated
flight issues. The latter can facilitate or be a funda-
mental component for many aviation safety applica-
tions, such as classification [15], causal analysis [3] and
error source finding [11].

1http://asrs.arc.nasa.gov/

Organization. We organize the rest of this paper as fol-
lows. Section 3 generates topics in the preprocessing step.
Section 4 and Section 5 propose solutions to the Topic Rele-
vance Analysis and the Topic Correlation Analysis problems
respectively. Section 6 performs experimental studies on a
real aviation safety database, and finally, Section 7 concludes
the whole paper.

3. PREPROCESSING
Documents in aviation safety databases contain many abbre-
viations, acronyms and phrases. Abbreviations and antonyms
can be transformed to their original complete formats by
utilizing domain dictionaries, but phrases are much more
difficult to handle because of the large number of potential
combinations.

To overcome this problem, sequential pattern mining tech-
niques are developed in [6], by which each detected pattern
(i.e., a set of keywords that appear together frequently) is re-
garded as a phrase and appearances of phrases in documents
are replaced by special terms that stand for corresponding
phrases.

After phrases are replaced by terms, k topics are generated
by running LDA (Latent Dirichlet Allocation) [2]. For the
rest of this paper, we assume both word distributions over
topics (i.e., Pr(w|θ) for a word w and a topic θ) and topic
distributions over documents (i.e., Pr(θ|d) for a topic θ and
a document d ∈ D) are prior knowledge.

4. TOPIC RELEVANCE ANALYSIS
In this section, we formally define the problem of topic rele-
vance analysis as: given a keyword query Q = {q1, q2, · · · ,
q|Q|}, which topic θ maximizes the relevance score Rel(Q, θ)
based on Q:

Rel(Q, θ) = Pr(θ|Q) =
Pr(Q|θ)Pr(θ)

Pr(Q)
(1)

4.1 Relevance Function
According to the theory of probability, we convert the second
component in the numerator of Equation 1 to be as

Pr(θ) =
∑
d∈D

Pr(θ|d)Pr(d),



where Pr(d) is supposed to conform to uniform distribution,
i.e., Pr(d) = 1

|D| .

Following unigram topic modeling algorithms [17, 12], we as-
sume the independence among words, so that the first com-
ponent in the numerator and the dominator of Equation 1
becomes:

Pr(Q|θ)
Pr(Q)

=
∏
qi∈Q

Pr(qi|θ)
Pr(qi)

,

where Pr(qi) equals the occurence of qi divided by the total
occurence of all words in D, i.e.,

Pr(qi) =
count(qi, D)∑

w∈W

count(w,D)

Recall that W is the vocabulary for any topic.

Finally, Equation 1 turns out to be:

Rel(Q, θ) =

(
1

|D|
∑
d∈D

Pr(θ|d)

) ∏
qi∈Q

Pr(qi|θ)
Pr(qi)

(2)

Example 2. Following Example 1, a keyword query is
given as Q = { ‘tired′, ‘long′, ′trip′}, and we calculate
the relevance scores for each of the three topics. Since only
words with the highest probabilities are listed, we simply as-
sume the probability of an unlisted word in a topic equals to
0.001. Plus, for the prior of keywords, we have Pr(’tired’)
= 0.01256, Pr(‘long’) = 0.06675, and Pr(‘trip’) = 0.05573.
According to Equation 2, we get these relevance scores as
Rel(Q, Topic 1) = 0.01248, Rel(Q, Topic 2) = 7.643e-6,
and Rel(Q, Topic 3) = 6.688e-6, among which Topic 1 is
the most relevance topic to the query Q. Note that the result
is approximate because of the assumption that an unlisted
word has a generative probability 0.001.

4.2 Complexity Analysis

4.2.1 Complexity without Pre-computation

After the keyword query Q arrives, we scan the k topics
one by one. For each topic θ, we use Equation 2 to calcu-
late Rel(Q, θ) and output the best topic that maximizes the
relevance score. The computational cost for the first and
the second parts of Equation 2 are O(|D|) and O(|Q|), re-
spectively. Hence, the overall computational complexity for
exhausting all topics is

O(k(|D|+ |Q|)).

An aviation safety database usually stores a vast amount of
records, e.g., in our ASRS dataset, we have 61, 235 flight
records for 10 years, hence the above time complexity is
unsatisfactorily large for online queries.

4.2.2 Complexity with Pre-computation

It is easy to see that Pr(θ|d) is independent of queries, so
we can pre-compute and store Pr(θ) for each topic θ, which
results in reducing the overall computational cost to

O(k(1 + |Q|)) = O(k|Q|).

Note in this case, we need additional O(k) space to store
the pre-computation results. Usually, both k and |Q| are
small. For example, in our experimental study on the ASRS
dataset, k is 100, and |Q| is no more than 10 words. Hence,
the efficiency is guaranteed to be good, which is generally
fast enough to respond to any online query.

5. TOPIC CORRELATION ANALYSIS
In this section, the formula of topic correlation score is dis-
cussed in Section 5.1, and a dilemma regarding the com-
putational issue is stated in Section 5.2. To overcome the
dilemma, we propose the idea of partially materializing the
text cube. Hence, Section 5.3 explains how to process queries
in a partially materialized text cube, and Section 5.4 intro-
duces how to select cells for pre-computation.

5.1 Correlation Score
In traditional topic correlation analysis [1, 16, 21], two topics
are correlated if they have the same or similar context. The
so-called ‘context’ is usually explained as a corpus. Formally,
a typical way to define the correlation of two topics α and
β over a corpus D = {d1, d2, · · · , d|D|} is to calculate the
angle of two vectors:

Col(α, β) = Cosine(
−→
V (α),

−→
V (β)) =

−→
V (α) · −→V (β)

||
−→
V (α)|| ||

−→
V (β)||

,

where
−→
V (α) is the topic distribution vector of α, i.e.,

−→
V (α) =

(
Pr(α|d1), P r(α|d2), · · · , P r(α|d|D|)

)
. (3)

To consider the above topic correlation problem in the sce-
nario of the text cube, we regard the ‘context’ to be cells.
Concretely, for a cell c, we re-define Equation 3 as

−→
V C(α) =

(
Pr(α|d′1), P r(α|d′2), · · · , P r(α|d′|C(D)|)

)
,

where c(D) = {d′1, d′2, · · · , d′|c(D)|} is the aggregated docu-
ment set for the cell c.

To sum up, the correlation score of two topics α and β in
the cell c equals to

ColC(α, β) =

−→
V C(α) ·

−→
V C(β)

||
−→
V C(α)|| ||

−→
V C(β)||

(4)

Example 3. Following Example 2, consider three cells c1
= (∗, ‘night′, ∗) and c2 = (∗, ∗, ‘snow′). For c1, the topic
distribution of the three topics (0.3, 0.6, 0.2, 0.1), (0.1, 0.2,
0.4, 0.8) and (0.6, 0.2, 0.4, 0.1), respectively. The correlation
score between Topic 1 and Topic 2 is 0.4755, and the one
between topic 1 and topic 3 is 0.7305. For c2, the topic
distribution of the three topics (0.6, 0.2, 0.4, 0.1), (0.2, 0.4,
0.3, 0.8) and (0.2, 0.4, 0.3, 0.1), respectively. The correlation
score between Topic 1 and Topic 2 is 0.5494, and the score
between Topic 1 and Topic 3 is 0.7980. It is observed that
Topic 1 and Topic 3 are correlated in the scenarios of ‘night’
and ‘snow’.



5.2 Full Cube Computation
Since the number of topics (i.e., k) is small, the problem of
finding correlation topics could be split into first calculating
ColC(α, θ) for each topic α (α ̸= θ) and then outputting
the best α that maximizes the correlation score. When the
queried cell c comes, we can simply scan all documents in c
and compute Equation 4 as:

Colc(α, θ) =

∑
d∈c(D)

Pr(α|d)Pr(θ|d)√ ∑
d∈c(D)

Pr2(α|d)
√ ∑

d∈c(D)

Pr2(θ|d)
, (5)

However, the computational cost is O(|c(D)|), i.e., number
of documents in cell c, which is too large to guarantee in time
response to online queries. To reduce the online computa-
tional cost, we can offline compute and store some values, so
that answering online queries can be accelerated by utilizing
stored values. This step is called materialization [8] of the
data cube.

Concretely, we decompose Equation 5 into two parts:

1. SSθ(c) =
∑

d∈c(D)

Pr2(θ|d) for each topic, and

2. DMθ1,θ2(c) =
∑

d∈c(D)

Pr(θ1|d)Pr(θ2|d) for each pair of

topics.

For the convenience of expression, we abbreviate {SSθ(c)}θ
and {DMθ1,θ2(c)}θ1,θ2 as SS(c) and DM(c), respectively.

The simplest algorithm to compute measures in a full n-
dimensional text cube is: first compute all cells in the n-D
cuboid (i.e., base cells); then compute all cells in the (n-1)-
D cuboid; · · · ; finally compute the 0-D cuboid (i.e., the
apex cell). After the full text cube is computed, any topic
correlation scores can be queried by directly retrieving SS()
and DM() and doing some simple computation. However,
the key points of such materialization are: (i) how much the
storage cost is; and (ii) how an r-D cell is aggregated from
some (r-1)-D cells without looking at the original database.
We will discuss the two issues:

Storage cost. In tradition data cube, usually only
O(1) space is required by the measure of each cell; how-
ever, for SS(c) and DM(c), we need as much as O(k2)
storage size. For aviation safety databases, problems
(i.e., topics) that happened during the flight are com-
plex, diverse and variant. For example, in our exper-
iments, there are as many as 100 topics in the ASRS
datasets, whose range covers ‘environmental facts’, ‘hu-
man factors’, ‘engine problem’, etc.. Such special situ-
ations cause the sharp enlargement of the storage size
compared to traditional data cubes. Although storage
is more and more cheap, such space complexity is still
excessive.

Aggregation. Both SS and DM are distributive
measures [8]. Let c = (a1, a2, · · · , an : c(D), SS(c),
DM(c)) be an (r-1)-D cell. W.l.o.g., suppose an = ∗

and An has m distinct values an,1, an,2, · · · , an,m, so
we have c’s children as cj = (a1, a2, · · · , an,j : cj(D),
SS(cj), DM(cj)) for j = 1, 2, · · · , m. It is easy to
prove that SS(c) and DM(c) can be efficiently aggre-
gated from SS(cj) and DM(cj) as

SSθ(c) =
∑
cj

SSθ(cj)

DMθ1,θ2(c) =
∑
cj

DMθ1,θ2(cj)

5.3 Query Processing
in Partially Materialized Cube

Although SS and DM can be efficiently aggregated, un-
like distributive/algebraic measures in traditional data cube,
they consume a huge amount of space if materialized for all
cells, which is not affordable for an aviation safety database.
Therefore, in this subsection, we introduce how to process
the topic correlation queries in a text cube where only a sub-
set of cells are precomputed; and in Section 5.4, we discuss
how to optimize the storage size by appropriately choosing
the subset.

A text cube is said to be partially materialized if a subset of
cells are precomputed while the rest are not. In such a text
cube, a query should be processed as:

1. If the corresponding cell is precomputed, the value
stored can be directly returned;

2. Otherwise, we can obtain this cell by aggregating a set
of precomputed cells.

For a non-materialized cell, there are different ways of choos-
ing the set of precomputed ones to obtain the inquired cell.
So we have the chance to choose the ‘optimal’ set which
incurs the minimum cost in the aggregation process. To for-
mally define the query processing problem, we first need to
introduce the concepts of decision space and cost model.

Decision Space. For a non-materialized queried cell
c = (a1, a2, · · · , an : c(D), SS(c), DM(c)). W.l.o.g,
suppose ai = ∗ for i = 1, 2, · · · , n′, and ai ∈ Ai for
i = n′ + 1, n′ + 2, · · · , n. We furthermore denote
ci,j = (a1, a2, · · · , ai−1, ai,j , ai+1, · · · , an : ci,j(D),
SS(ci,j), DM(ci,j)) for i = 1, 2, · · · , n′ and ai,j ∈ Ai.
We have n′ choices to aggregate c, i.e., the so-called
Ai-based aggregation is to aggregate c from the set of
cells {ci,1, ci,2, · · · , ci,|Ai|}. W.l.o.g., suppose we select
to aggregate c based on A1, then for each c1,j , if it is
pre-computed, it can be directly retrieved; otherwise,
recursively, to obtain SS and DM for this cell, we
have n′-1 choices to aggregating other cells on one of
dimensions A2, A3, · · · , An′ .

Cost Model. Given a queried cell c, the cost of pro-
cessing the query is the number of precomputed cells
we need to access. Particularly, if c corresponds to an
empty cell, the cost defined to be 0. If c corresponds
to a precomputed cell, the cost is 1.



Now the query processing problem turns out to be: what
is the best way to aggregate a queried cell c so that the
cost is minimum? We use the dynamic programming al-
gorithm Aggregate(c) to recursively compute the optimal
cost/decision. Cost(c) denotes the optimal cost of a queried
cell c, and Best(c) denotes the corresponding set of cells
that need to be accessed under the optimal cost. Of course,
|Best(c)| = Cost(c). We compute Cost(c) and Best(c) case
by case:

1. Cost(c) = 0, if c corresponds to an empty cell. In this
case, Best(c) = ∅, and we respond to the query by
returning SSθ(c) = 0 for any topic θ andDMθ1,θ2(c) =
0 for any pair of topics θ1 and θ2.

2. Cost(c) = 1, if c corresponds to a pre-computed cell.
Here, Best(c) = {c}, and we answer the query by di-
rectly retrieving the stored values.

3. Let i′ = argmin
i,c(Ai)=∗

( ∑
ai,j∈Ai

Cost(ci,j)

)
, if c corresponds

to an non-empty, non-materialized cell. In this situa-
tion,

Cost(c) =
∑

ai′,j∈Ai′

Cost(ci′,j)

Best(c) =
∪

ai′,j∈Ai′

Best(ci′,j)

If ci′,j is not materialized, we repeat the same proce-
dure.

Algorithm 1 shows the pseudo code of Aggregate(c).

Algorithm 1 Aggregate(c)

ALGORITHM:
if c is empty then

Cost(c)← 0; Best(c)← ∅;
return ;

end if ;
if c is materialized then

Cost(c)← 1; Best(c)← {c};
end if ;
Cost(c)← +∞;
for each i s.t. c(Ai) = ∗ do

CurCost = 0;
for each ai,j ∈ Ai do

Aggregate(ci,j);
CurCost← CurCost+ Cost(ci,j);

end for
if CurCost < Cost(c) then

Cost(c)← CurCost;
Best(c)←

∪
ai,j∈Ai

Best(ci,j);

end if
end for

5.4 Optimizing Space Cost
with Bounded Query Processing Cost

The remaining question is how to choose a subset of cells to
precompute, s.t.

(i) Any query can be answered successfully.

(ii) For any cell c, Cost(c) is bounded by a user-specified
threshold ϵ.

(iii) The storage cost (i.e., the total number of precomputed
cells) is as small as possible.

Since base cells can not be aggregated from other cells, they
must be precomputed. For non-base cells, we define a topo-
logical order on these cells according to their granularity
levels, i.e., in the order, an r-D cell is put before an (r-1)-D
cell. The intuition of how to select cells for precomputation
is: we scan cells in the topological order one by one; for a
scanned cell, we precompute cells as later as possible in the
topological order. That is to say, we scan non-base cells one
by one. For a cell c, if Cost(c) does not exceed the threshold
ϵ, we delay its computation to the online query processing,
because the query time is still well bounded; otherwise, we
materialize c. Such method is called T − CUBING, de-
scribed in algorithm 2.

Algorithm 2 T-CUBING(c, ϵ)

ALGORITHM:
if c is a base cell then

precompute c; Cost(c)← 1;
else

Aggregate(c) ;
if Cost(c) > ϵ then

precompute c; Cost(c)← 1 ;
end if

end if

The time complexity of T-CUBING for each cell is

O(N max
i

(|Ai|))

6. EXPERIMENTAL STUDY
ASRS (Aviation Safety Reporting System) 2 is a voluntary
system run by NASA, that allows pilots and other airplane
crew members to confidentially report aviation related safety
incidents in the interest of improving air safety. An online
system 3 [22] has built up to test the text cube ideas on
the ASRS dataset. Several algorithms [13, 23, 7] are imple-
mented in the system.

In our experiments, both a case study (Section 6.1) and a
performance study (Section 6.2) are given. All algorithms
are implemented in C++ (Visual Studio 2005) with SQL
(Microsoft SQL Server 2008), conducted in a 0.99GHz CPU
and 1G memory PC.

ASRS Dataset. 60,499 flight accident records that hap-
pened during the past ten years are downloaded from the
ASRS database. Outliers are removed. Each record consists
of a pilot report (i.e., document) and 56 attributes, among

2http://asrs.arc.nasa.gov/
3http://inextcube.cs.uiuc.edu/nasa/



which we use 10 categorical attributes as the dimensions
in our text cube. The 10 dimensions are ‘Date’, ‘State’,
‘Person’, ‘Weather’, ‘Light’, ‘Engine Make Model’, ‘Flight
Phase’, ‘Problem Primary Area’, ‘Event Anomaly Type’ and
‘Resolutory Action’.

Preprocessing. 39,272 words/phrases are extracted from
pilot reports, and 100 topics are generated by Latent Dirich-
let Allocation [2]. A text cube is built on the ASRS dataset,
which contains 16.67 trillion cells, among which 1,677,587
are non-empty cells.

6.1 Case Study
Fatigue is defined as ‘a non-pathologic state resulting in a
decreased ability to maintain function or workload due to
mental or physical stress.’ Fatigue is a threat to aviation
safety because of the impairments to alertness and perfor-
mance it creates, which is a normal response to many condi-
tions common to flight operations because of sleep loss, shift
work, and long duty cycles [4, 14, 9].

6.1.1 Analysis of Relevant Topics

Given the keyword query (‘fatigue’, ‘tired’), we calculate
the relevance score for each topic by Equation 2. Topic
85 is the one with the highest relevance score, whose word
distribution is shown in Table 4.

day 0.0888 hour 0.0619 trip 0.0417
time 0.0416 duty 0.0346 rest 0.0301
night 0.0288 minute 0.0279 leg 0.0258
fatigue 0.0182 late 0.0156 schedule 0.0150
morning 0.0140 long 0.0138 day 0.0133
fly 0.0124 early 0.0115 tired 0.0111
sleep 0.0104 previous 0.0102 hotel 0.0092
crew 0.0088 period 0.0088 arrive 0.0087
home 0.0079 legal 0.0072 block 0.0062
total 0.0041 evening 0.0041 delay 0.0041
work 0.0040 leave 0.0038 break 0.0038
assignment 0.0038 overnight 0.0037 reserve 0.0037
desk 0.0036 sick 0.0036 layover 0.0029
body 0.0029 month 0.0028 reduce 0.0027
show 0.0026 afternoon 0.0026 sequence 0.0024
company 0.0023 pair 0.0022 depart 0.0022
international 0.0022 begin 0.0021 room 0.0021
factor 0.0020 week 0.0020 pick 0.0019
assign 0.0018 deadhead 0.0018 wait 0.0018
bed 0.0018 awake 0.0018 flight 0.0017

Table 3: The Word Distribution of Topic ‘Fatigue’.

Below is an interesting pilot report that talked about ‘fa-
tigue’, which mentioned several words in Table 4 such as
‘fatigue’, ‘sleep’, ‘hour’, ‘rest’, ‘depart’, ‘leg’, ‘break’, ‘duty’,
‘day’, etc.:

Example 4. FATIGUING ASSIGNMENTS. AFTER I
LNDG IN ZZZ I WENT TO SLEEP AT XA00 ZZZ1 TIME.
MY PRE ALL-NIGHTER NAP WAS AT XN00 ZZZ1 TIME.
MY POST ALL-NIGHTER REST WAS AT XD00 ZZZ1
TIME AND MY REST BEFORE AN XA00 LAX DEP

WAS AT XD00 ZZZ1 TIME. THAT IS 4 DIFFERENT
SLEEP TIMES IN LESS THAN 48 HRS. UPON LNDG IN
ZZZ1 I WAS EXPECTED TO DO 2 MORE LEGS WITH
2 HR BREAKS FOR A 12+ HR DUTY DAY ON DAY 5!
THIS WOULD HAVE BECOME UNSAFE AND I CALLED
IN FATIGUED.

6.1.2 Analysis of Correlated Topics

The topic 85 shown in Table 3 describes general terms re-
lated to ‘fatigue’, from which we can clearly infer that ‘long
duty’ and ‘insufficient rest’ are two major factors that cause
‘fatigue’. However, many other reasons that lead to or re-
lated with ‘fatigue’ are not so obvious as topic 85. By min-
ing correlated topics, we are able to discover more detailed,
complex and various reasons for ‘fatigue’.

Concretely, we enumerate all cells whose aggregated dimen-
sions are no more than 2; for each cell, we compute the
correlation score between topic ‘fatigue’ and other topics in
that cell; finally, we rank topics (associated with cells) ac-
cording to their correlation score (see Table 4 4). One row
should be understood as: the topic t (i.e., the 3rd column)
is correlated with topic ‘fatigue’ in the cell c (i.e., the 2nd

column) with the correlation score beng s (i.e., the 1st col-
umn). A sample pilot report is given (i.e., the 4th column)
as the supporting evidence, as well as human interpretation
(i.e., the 5th column).

Table 4 actually shows the effectiveness of our approach, for
example, on row 2, which has a relatively high correlation
score, the most correlated topic has higher probabilities for
the words ‘stress’, etc.. In the representative report, the
pilot first explained he/she forgot something, then later ac-
tually mentioned it may be because of fatigue, and there
was not enough rest between the flights. And the fact that
this correlation is high in cell ‘[Flight Phase]: cruise level’
may indicate pilots are most influenced by fatigue during
that phase. On row 3, the correlated topic contains ‘lack’,
‘focus’, and also ‘fatigue’; and it is also common sense that
in ‘[Weather]: Fog’, the pilots or drivers are easily tired, and
thus lost focus.

6.2 Performance Study

6.2.1 Experiment 1: Storage Size

Figure 1 reports the storage costs while varying (i) the thresh-
old ϵ in the T-CUBING algorithm, and (ii) the number of
dimensions of the text cube. FULL is the cube with full ma-
terialization, and CUBE20, CUBE60 and CUBE100 are the
text cubes with ϵ being 20, 60 and 100, respectively. The
number of dimensions varies from 2 to 10.

We can observe and/or verify two facts: (i) In principle, the
smaller ϵ is, the more cells need to be pre-computed, thus
leading to a larger storage cost. As verified in Figure 1,
FULL always has the largest storage size, since FULL is
equivalent to a text cube with ϵ being 1. To the opposite,

4For the first row, second column, * means the cell that
aggregates all dimensions



Score Discovered Cell Correlated
Topic

Sample Document Human In-
terpretation

1.000 * day, hour, trip,
time, duty, rest,
night, leg, fatigue,
min, late

FLIGHT HAD PREVIOUSLY
BEEN DELAYED AND WE
HAD MINIMUM REST PERIOD
COMING UP, LESS THAN 9
HOURS.

Duty Cycle.

0.6092 [Flight Phase]: cruise level; [Reso-
lutory Action]: equipment problem
dissipated

year, good, time,
month, experi-
ence, fly, past,
stress

ALTHOUGH I AM COM-
PLETELY FAMILIAR WITH THE
AIRSPACE; I COMPLETELY
FORGOT ABOUT THAT SEG-
MENT OF THE CLASS B

Attitude

0.5509 [Weather]: fog ; [Resolutory Action]:
issue new clearance

awareness, fail-
ure, attention,
realize, focus,
fatigue, lack

AS WE FLEW FURTHER OUT
OVER THE WATER; THE
CLOUDS SEEMED TO BE
SLIGHTLY LOWER IN PLACES

Illusion

0.5312 [Resolutory Action]: took evasive
action; [Make Model]: airbus

pos, radar, su-
pervise, trainee,
CTLR, error,
alert, busy, sector

I THINK HE CONFUSED 10:00
POS AND 2:00 POS; AS THEY
ARE BOTH 20 DEGREES OFF
OF OUR NOSE.

Proficiency

0.5085 [Flight Phras]: landing; [Event
Anomaly]: landing without clear-
ance

time, high, work-
load, unable, lack,
delay, difficulty,
additional

I NEGLECTED TO RESELECT
THE OTHER SIDE OF THE RA-
DIO TO TALK TO TWR AS I
WAS BUSY WITH THE CHK-
LIST.

Taskload

Table 4: Correlated Topics with the Topic ‘Fatigue’
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Figure 1: Storage Cost

CUBE100 is always the smallest one. (ii) The space com-
pression ratio from BASIC to CUBE20 is larger than the
one from CUBE20 to CUBE60, than the one from CUBE60
to CUBE100. Although the storage size is monotonically
reduced when ϵ increases, such reduction becomes trivial
when ϵ is sufficiently big. How to select an appropriate ϵ to
balance the time and the space costs is still an interesting
question left for future work. (iii) The compression ratio
increases when the number of dimensions increases. The
reason is that the text cube with more dimensions has a
smaller average number of documents in cells, which results
in less pre-computation.

6.2.2 Experiment 2: Query Processing Time

We report the query processing time in text cubes with dif-
ferent threshold (i.e., CUBE 20, CUBE60 and CUBE100).
BASIC is the baseline query processor which computes mea-
sures by retrieving documents in the raw database.
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Figure 2: Query Time by Varing Cell Size

In Figure 2, the average query processing time is shown
as a function of cell size (the size of a cell is the number
of aggregate documents in the cell). As expected, BASIC
increases its processing time approximately linearly, while
other curves vibrate as cell size increases. The reason can be
explained from the materializing procedure of T-CUBING:
at the very beginning, all base cells are precomputed; as



the cell size increases, more and more cells need to be ac-
cessed to answer queries; when Cost() reaches the threshold
ϵ, T-CUBING begins to precompute cells again.
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Figure 3: Query Time by Varing # Dimensions

In Figure 3, the average query processing time is plotted as
a function of the number of aggregated dimensions of the
queried cell. As expected, BASIC increases its query time
sharply, while CUBE20, CUBE60 and CUBE100 rise com-
paratively smoothly with the help of the text cube, among
which CUBE20 is the fastest. The similar vibration behavior
happened as in Figure 2.

7. CONCLUSIONS
We demonstrated a novel method to generate correlated
topic models from a large corpora of text reports which
can be analyzed in the subspaces defined by cells defined
by the intersection of numerous fixed fields and discovered
correlated topics. The research is motivated by the need
to develop technologies to help uncover aviation safety in-
cidents before they happen based on large repositories of
aviation safety narratives. These narratives are also anno-
tated with numerous fixed fields, thus giving an excellent
application domain for this research. The large number of
potential cells in the resulting text cube demand that the
computational complexity be sufficiently bounded. We ap-
plied this novel system to the analysis of crew fatigue and
show potential factors that may be related to fatigue issues.
Although a full analysis of crew fatigue and its contribut-
ing and correlated factors is out of the scope of this paper,
the technologies described can be used in future studies to
understand these issues.
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