
(12) United States Patent 	 (1o) Patent No.:	 US 7,739,671 B1
Hinchey et al.	 (45) Date of Patent:	 Jun. 15, 2010

(54) SYSTEMS, METHODS AND APPARATUS FOR	 (58) Field of Classification Search None
IMPLEMENTATION OF FORMAL	 See application file for complete search history.
SPECIFICATIONS DERIVED FROM
INFORMAL REQUIREMENTS	 (56)	 References Cited

(75) Inventors: Michael G. Hinchey, Bowie, MD (US);
James L. Rash, Davidsonville, MD
(US); John D. Erickson, Midland, TX
(US); Denis Gracinin, Blacksburg, VA
(US); Christopher A. Rouff, Beltsville,
MD (US)

(73) Assignee: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1260 days.

(21) Appl. No.: 11/203,590

(22) Filed:	 Aug.12, 2005

Related U.S. Application Data

(63) Continuation-in-part of application No. 10/789,028,
filed on Feb. 25, 2004, now Pat. No. 7,543,274.

(60) Provisional application No. 60/533,376, filed on Dec.
22, 2003, provisional application No. 60/603,521,
filed on Aug. 13, 2004.

(51) Int. Cl.
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

................. 717/136; 717/117; 717/106;
7/146; 706/922; 706/56; 706/60; 706/46;

706/47

102

U.S. PATENT DOCUMENTS

5,101,491 A * 3/1992 Katzeff 	 703/22
5,485,615 A * 1/1996 Wennmyr	 717/109
5,815,713 A 9/1998 Sanders
6,408,431 BI 6/2002 Heughebaert et al.
6,681,383 B1 1/2004 Pastor et al.
6,684,388 B1 1/2004 Gupta et al.
6,772,409 B1 8/2004 Chawla et al.

2002/0100014 Al* 7/2002 Iborra et al	 717/104
2003/0110472 Al 6/2003 Alloing et al.
2004/0015832 Al 1/2004 Stapp et al.

(Continued)

OTHER PUBLICATIONS

Author: HAnle et al.; Title: "An Authoring Tool for Informal and
Formal Requirements Specifications'; Date: 2002; URL: http://
www.springerlink.com/content/9b5wu2vOeaOlnyrb/fulltext.pdf.*

(Continued)

Primary Examiner Lewis A Bullock, Jr.
Assistant Examiner Joseph Kelly
(74) Attorney, Agent, or Firm Heather Goo

(57)	 ABSTRACT

Systems, methods and apparatus are provided through which
in some embodiments an informal specification is translated
without human intervention into a formal specification. In
some embodiments the formal specification is a process-
based specification. In some embodiments, the formal speci-
fication is translated into a high-level computer programming
language which is further compiled into a set of executable
computer instructions.

19 Claims, 6 Drawing Sheets

104

G06F 9/44
G06F 9/45
G06F 17/00
G06N 5104
G06N 5102

(52) U.S. Cl.
71'

INFORMAL	 LAWS OF
SPECIFICATION	 CONCURRENCY

106

TRANSLATOR

108

PROCESS-
RASED

SPECIFICATION

110	 112

ANALYZER	 CODE
TRANSLATOR

HIGH-LEVEL	 114
COMPUTER
LANGUAGE

100

US 7,739,671 B1
Page 2

U.S. PATENT DOCUMENTS
2004/0064804 Al 4/2004 Daniels et al.
2004/0073899 Al 4/2004 Luk et al.
2004/0143814 Al 7/2004 de Jong
2004/0230945 Al 11/2004 Bryant et al.
2004/0233232 Al 11/2004 Iborra et al.
2005/0010895 Al 1/2005 Reddappagari
2005/0050513 Al 3/2005 Motoyama et al.

OTHER PUBLICATIONS
Author: Moulding et al.; Title: "Combining formal specification and
CORE: an experimental investigation'; Date: Mar. 1995; URL:
http://ieeexplore.ieee.org/stamp/stampjsp?tp—&arnumber-373906
&isnumber=8550.*

Author: JavaWorld.com; Title: "Run the Java program without the
JDK runtime? Yes you can! (Apr. 20, 1999)'; URL: http://www.
javaworld.com/javaworld/javaqa/1999-04/03-norLintime.html.*

Author: Jackson et al.; Title: "Automated support for the develop-
ment of formal object-oriented requirements specifications'; Date:
1994; URL: http://www.springerlink.com/content/
7385755m5jm60121/fulltext.pdf.*

Author: Letelier et al.; Title: "Prototyping a Requirements Specifi-
cation through an Automatically Generated Concurrent Logic Pro-
gram'; Date: Jan. 1, 1998; URL: http://www.springerlink.com/con-
tent/wgn3malae67n3mld/fulltext.pdf.*

* cited by examiner

U.S. Patent	 Jun. 15, 2010	 Sheet 1 of 6	 US 7,739,671 B1

102104
INFORMAL	 LAWS OF

 /

SPECIFICATION	 CONCURRENCY

106

TRANSLATOR

108

PROCESS-
BASED

SPECIFICATION

110	 v	 v	 112

ANALYZER	 CODE
TRANSLATOR

HIGH-LEVEL
	 114

COMPUTER
LANGUAGE

FIG. 1
	 100

U.S. Patent	 Jun. 15, 2010	 Sheet 2 of 6	 US 7,739,671 B1

202

TRANSLATE INFORMAL SPECIFICATION INTO
PROCESS-BASED SPECIFICATION SEGMENTS

204
AGGREGATE THE PROCESS-BASED

SPECIFICATION SEGMENTS INTO A SINGLE
PROCESS-BASED SPECIFICATION

206
TRANSLATE THE SINGLE PROCESS-BASED

SPECIFICATION
INTO HIGH LEVEL LANGUAGE INSTRUCTIONS

208
COMPILE THE HIGH LEVEL LANGUAGE

INSTRUCTIONS INTO EXECUTABLE CODE

FIG. 2
	 200

U.S. Patent	 Jun. 15, 2010	 Sheet 3 of 6	 US 7,739,671 B1

VERIFY
SYNTAX

302

304
MAP TO

PROCESS-BASED
SPECIFICATION

CONSISTENCY
WITH OTHER

PROCESS-BASED
SPECIFICATIONS

306

308
VERIFY LACK

OF OTHER
PROBLEMS

FIG. 3 300

U.S. Patent	 Jun. 15, 2010	 Sheet 4 of 6	 US 7,739,671 B1

00N
^h

OW
Z) C^

W 0_ LL

C)
o
C)

_U

Z

T—j	
cn Q

N O
N

M	 cc)

U_	 `t	
v

W Z

W Z U
^ Z W

a°a
°

Y Qa o
w m
IL
cn w

N Yv-
It

CV Z)	 Q	 p Q W}
J

U OU
CL

U w
z

U) ix
o w

z^

NN NO

	

U.S. Patent	 Jun. 15, 2010	 Sheet 5 of 6	 US 7,739,671 B1

	

102-,	 /)	 -104

	

INFORMAL	 LAWS OF
SPECIFICATION	 CONCURRENCY

502

CSP
TRANSLATOR

504

CSP
SPECIFICATION

506

508	 510
VISUALIZATION	 ANALYZERCSP TOOL

	

TOOL 1*__^	 ^_4	 I/
504

MODIFIED CSP
SPECIFICATION

112

CODE
TRANSLATOR

114
HIGH-LEVEL
COMPUTER
LANGUAGE	 500FIG. 5

U.S. Patent	 Jun. 15, 2010	 Sheet 6 of 6	 US 7,739,671 B1

00
N O w

q

(O
w a w
OU o

U
0m

Z

QJ
O O N

co
N

LO LO O
N

U
M
`,	 M

Q!w z OH w O

OU) pUw Uz ¢ U z>
af Q a O

CL T OQ
wa m

cn
N

w
Y

CL

w
U'

00
^-

U < 0 QW OU
J N w
aU z

a
o

C) v o o co
w^
Z

N N

US 7,739,671 B1
1

SYSTEMS, METHODS AND APPARATUS FOR
IMPLEMENTATION OF FORMAL

SPECIFICATIONS DERIVED FROM
INFORMAL REQUIREMENTS

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Application Ser. No. 60/603,521 filedAug. 13, 2004 under 35
U.S.C. 119(e).

This application is a continuation-in-part of U.S. applica-
tion Ser. No. 10/789,028 filed Feb. 25, 2004 now U.S. Pat. No.
7,543,274 entitled "System and Method for Deriving a Pro-
cess-based Specification," which claims the benefit of U.S.
Provisional Application Ser. No. 60/533,376 filed Dec. 22,
2003.

ORIGIN OF THE INVENTION

The invention described herein was made by a employees
of the United States Government and may be manufactured
and used by or for the Government of the United States of
America for governmental purposes without the payment of
any royalties thereon or therefor.

FIELD OF THE INVENTION

This invention relates generally to software development
processes and more particularly to deriving formal specifica-
tions from informal specifications.

BACKGROUND OF THE INVENTION

Requirements-Based Programming (RBP) has been advo-
cated as a viable means of developing complex, evolving
systems. In RBP, requirements can be systematically trans-
formed into executable computer instructions. An implemen-
tation of RBP provides a way to generate executable com-
puter instructions from requirements with neither the time
involved in manually writing the executable computer
instructions, nor the mistakes regarded (generally speaking)
as unavoidable in manually writing the executable computer
instructions.

Complex systems in general cannot attain high dependabil-
ity without addressing the crucial remaining open issues of
software dependability. The need for ultrahigh dependability
systems increases continually, along with a correspondingly
increasing need to ensure correctness in system development.
Correctness exists where the implemented system is equiva-
lent to the requirements, and where this equivalence can be
proved mathematically.

Development of a system that will have a high level of
reliability requires the developer to represent the system as a
formal model that can be proven to be correct.

Conventional system development tools and methods that
are based on formal models provide neither automated gen-
eration of the models from requirements nor automated proof
of correctness of the models. Conventional system develop-
ment tools and methods provide no automated, generally
applicable way to produce a system or even a procedure
that is a provably correct implementation of the customer's
requirements. Furthermore, requirements engineering as a
discipline has yet to produce an automated, mathematics-
based process for requirements validation. Automatic code
generation from requirements has been the ultimate objective
of software engineering almost since the advent of high-level

2
programming languages, and calls for capability of "require-
ments-based programming" have become strong.

Several tools and products exist in the marketplace today
for automatic code generation from a given model; however,

5 these tools and products typically generate code, portions of
which are never executed, or portions of which cannot be
justified from either the requirements or the model. More-
over, existing tools do not and cannot overcome the funda-
mental inadequacy of all currently available automated devel-

io opment approaches, which is that they include no way to
establish a provable equivalence between the requirements
stated at the outset and either the model or the code they
generate.

In particular, one tool for deriving executable code from
15 informal notations requires translating the informal specifi-

cations into traces, and then using an automated theorem
prover to infer an equivalent process-based description.
Traces are sequences of events that have occurred in a par-
ticular ordering up to a particular point in time. Inferring an

20 equivalent process based specification from the traces
requires large computational facilities, sometimes even as
large as a supercomputer.

Traditional approaches to automatic code generation,
including those embodied in commercial products such as

25 Matlab®, in system development toolsets such as the B-Tool-
kit(k or the VDM++® toolkit, or in academic research
projects, presuppose the existence of an explicit (formal)
model of reality that can be used as the basis for subsequent
code generation. However, these traditional approaches not

30 only depend on other ways to provide the explicit formal
model, but also include no facility to ascertain or establish
that the model corresponds to the customer's requirements.
While such an approach is reasonable, the advantages and
disadvantages of the various modeling approaches used in

35 computing are well known, and certain models can serve well
to highlight certain issues while suppressing other, less-rel-
evant details. The converse is also true. Certain models of
reality, while successfully detailing many of the issues of
interest to developers, can fail to capture some important

40 issues, or perhaps even the most important issues. Existing
reverse-engineering approaches suffer from a similar plight.
In typical approaches, a model is extracted from an existing
system and is then represented in various ways, for example
as a digraph. The re-engineering process then involves using

45 the resulting representation as the basis for code generation,
as indicated above.

The model on which automatic code generation is based is
referred to as a design, or more correctly, a design specifica-
tion. There is typically a mismatch between this design speci-

50 fication and the implementation (sometimes termed the
"specification-implementation gap") in that the process of
going from a suitable design to an implementation involves
many practical decisions that must be made by the automated
tool used for code generation without any clear-cut justifica-

55 tions other than the predetermined implementation decisions
of the tool designers. Further, there is a more problematic
"gap," termed the "analysis-specification gap," that empha-
sizes the problem of capturing requirements and adequately
representing them in a specification that is clear, concise, and

60 complete. This specification must be formal, or proof of cor-
rectness is impossible.

Unfortunately, many software system designers are reluc-
tant to embrace formal specification techniques, believing the
formal specification techniques to be difficult to use and

65 apply, despite many industrial success stories. While software
system designers are happy to write descriptions as natural
language scenarios, or even using semi-formal notations such

US 7,739,671 B1
3

as unified modeling language (UML) use cases, the software
system designers are reticent to undertake formal specifica-
tion. However, absent a formal specification of the system
under consideration, there is no possibility of determining
any acceptable level of confidence in the correctness of an 5

implementation. More importantly, formal specification must
be ensured to have fully, completely, and consistently cap-
tured the prescribed requirements. System requirements can-
not be expected to be perfect, complete, and consistent from
the outset, which is why it is even more important to have a 10

formal specification. Such a formal specification can high-
light errors, omissions, and conflicts. The formal specifica-
tion must also reflect changes and updates from system main-
tenance, as well as changes and compromises in
requirements, so that it remains an accurate representation of 15

the system throughout the life cycle of a system.
Requirements typically evolve during the life cycle of a

system, Manual change to the system creates a risk of intro-
ducing new errors and necessitates retesting and revalidation,
which can greatly increase the cost of the system. Often, 20

needed changes are not made due to the cost of making
consequential changes in the rest of the system. Sometimes
changes are simply made in the code and not reflected in the
specification or design due to the cost or due to the fact that
those who generated the original specification or design are 25

no longer available.
For the reasons stated above, and for other reasons stated

below which will become apparent to those skilled in the art
upon reading and understanding the present specification,
there is a need in the art for an automated, generally appli- 30

cable approach to produce a system that is a provably correct
implementation of an informal design specification that does
not require use of a theorem-prover. There is a further need for
a convenient way of generating a new system when system
requirements change. There is also a need for an automated, 35

mathematics-based process for requirements validation that
does not require large computational facilities.

BRIEF DESCRIPTION OF THE INVENTION
40

The above-mentioned shortcomings, disadvantages and
problems are addressed herein, which will be understood by
reading and studying the following specification.

General-purpose systems, methods and apparatus to trans-
form informal system requirements into a provably equiva- 45
lent formal model are described herein. Such a method rep-
resents a step toward high-dependability system engineering
for numerous possible application domains. For the classes of
systems whose behavior can be described as a finite set of
scenarios, methods transform informal requirements into a 50
provably equivalent formal model that can be used as the
basis for code generation and other transformations.

A formal model is automatically transformed into code
with minimal or no human intervention to reduce the chance
of inadvertent introduction of errors by developers. Auto-
matically producing the formal model from customer require-
ments further reduces the chance of insertion of errors by
developers.

Specifications are written as informal scenarios in con-
strained natural language, or in a range of other notations. The
scenarios will be used to derive a formal model that is equiva-
lent to the requirements stated at the outset, and which sub-
sequently will be used as a basis for code generation. The
formal model can be expressed using a variety of formal
methods. In some embodiments, Hoare's language of Com-
municating Sequential Processes (CSP) is used, which is
suitable for various types of analysis and investigation, and as

4
the basis for fully formal implementations, as well as for use
in automated test case generation, etc.

In one aspect, a method to generate a process-based speci-
fication from an informal specification includes translating an
informal specification to a plurality of process-based specifi-
cation segments andtranslating the plurality of process-based
specification segments to high-level computer language
instructions.

In further aspect, the translation of the informal specifica-
tion includes interpreting or translating meaningful expres-
sions in the syntax of the informal specification and thereby
mapping, in more-or-less direct fashion, the informal speci-
fication to a process-based specification.

In another aspect, a method to generate a process-based
specification from an informal specification includes trans-
lating each of a plurality of requirements of the informal
specification to aplurality of process-based specification seg-
ments, aggregating the plurality of process-based specifica-
tion segments into a single process-based specification
model, and translating the single process-based specification
model to instructions encoded in Java computer language or
other implementation language.

Systems, clients, servers, methods, and computer-readable
media of varying scope are described herein. In addition to the
aspects and advantages described in this summary, further
aspects and advantages will become apparent by reference to
the drawings and by reading the detailed description that
follows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that provides an overview of a
system to generate a high-level computer source code pro-
gram from an informal specification, according to an embodi-
ment of the invention;

FIG. 2 is a flowchart of a method to generate an executable
system from an informal specification, according to an
embodiment;

FIG. 3 is a flowchart of a method to translate mechanically
each of a plurality of requirements of the informal specifica-
tion to a plurality of process-based specification segments,
according to an embodiment;

FIG. 4 is a block diagram of an embodiment of the hard-
ware and operating environment in which different embodi-
ments can be practiced;

FIG. 5 is a block diagram of a particular CSP implemen-
tation of an apparatus to generate a high-level computer
source code program from an informal specification, accord-
ing to an embodiment; and

FIG. 6 is a block diagram of an embodiment of a hardware
and operating environment in which a particular CSP imple-
mentation of FIG. 5 is implemented.

DETAILED DESCRIPTION OF THE INVENTION
55

In the following detailed description, reference is made to
the accompanying drawings that form a part hereof, and in
which is shown by way of illustration specific embodiments
which may be practiced. These embodiments are described in

60 sufficient detail to enable those skilled in the art to practice the
embodiments, and it is to be understood that other embodi-
ments may be utilized and that logical, mechanical, electrical
and other changes may be made without departing from the
scope of the embodiments. The following detailed descrip-

65 tion is, therefore, not to be taken in a limiting sense.
This detailed descriptionis dividedinto five sections. Inthe

first section, an embodiment of a system level overview is

US 7,739,671 B1
5
	

6
described. In the second section, embodiments of methods 	 these actions can be explicit and required, while others may
are described. In the third section, an embodiment of the

	
be due to errors arising, or as a result of adapting to changing

hardware and the operating environment in conjunction with
	

conditions as the system executes.
which embodiments may be practiced is described. In the

	
For example, if the system involves commanding space

fourth section, particular implementations of embodiments s satellites, scenarios for that system may include sending com-
are described. Finally, in the fifth section, a conclusion of the	 mands to the satellites and processing data received in
detailed description is provided. 	 response to the commands. Natural language scenarios might

be specific to the technology or application domain to which
System Level Overview	 they are applied. A fully automated general purpose approach

io covering all domains is technically prohibitive to implement
FIG. 1 is a block diagram that provides an overview of an 	 in a way that is both complete and consistent. To ensure

embodiment of a system 100 to generate a high-level com-	 consistency, the domain of application might be specific-
puter source code program from an informal specification. 	 purpose. For example, scenarios for satellite systems may not
The system 100 solves the need in the art for an automated, 	 be applicable as scenarios for systems that manufacture agri-
generally applicable way to produce a system that is a prov- 15 cultural chemicals.
ably correct implementation of an informal design specifica-	 In one preferred embodiment, the system 100 also includes
tion that does not require, in applying the system to any	 a set of laws of concurrency 104. Laws of concurrency 104
particular problem or application, the use of a theorem- 	 may be defined as rules detailing equivalences between sets
prover.	 of processes combined in various ways and/or relating pro-

One embodiment of the system 100 is a software develop- 20 cess-based descriptions of systems or system components to
ment system that includes a data flow and processing points 	 equivalent sets of traces. Laws of concurrency 104 may be
for the data. System 100 may be representative of (i) com-	 expressed in any suitable language for describing concur-
puter applications and electrical engineering applications 	 rency. These languages may include, but are not limited to,
such as chip design and other electrical circuit design (ii)

	
CSP, CCS (Calculus of Communicating Systems) and vari-

business management applications in areas such as workflow es ants of these languages.
analysis, (iii) artificial intelligence applications in areas such

	
In one embodiment, the informal specification 102 and a

as knowledge-based systems and agent-based systems, (iv) 	 set of laws of concurrency 104 are received by a specification
highly parallel and highly distributed applications involving 	 translator 106. Herein the plurality of rules or requirements of
computer command and control and computer-based moni- 	 the informal specification 102 are translated to a process-
toring, and (v) any other area involving process, sequence or so based specification 108 or other formal specification lan-
algorithm design. According to the disclosed embodiments, 	 guage representation. According to at least one embodiment,
the system 100 preferably converts different types of specifi- 	 the translator 106 may accomplish the translation mechani-
cations (for example natural language scenarios or descrip- 	 cally, where a mechanical translation may be defined to mean
tions which are effectively pre-processed scenarios) into pro-	 that no manual intervention in the direct translation is pro-
cess-based formal specifications on which model checking s vided. In some embodiments, the process-based specification
and other mathematics-based verifications are performed, 	 108 might be an intermediate notation or language of sequen-
and then optionally converts the formal specification into 	 tial process algebra such as CSP.
code.	 The preferred process-based specification 108 is, in some

One embodiment of the system 100 preferably includes an 	 embodiments, mathematically and provably equivalent to the
informal specification 102 having a plurality of rules or 40 informal specification 102. However, one skilled in the art
requirements. The informal specification 102 can be	 will recognize that "mathematically equivalent" does not nec-
expressed in restricted natural language, graphical notations, 	 essarily mean "mathematically equal." Mathematical equiva-
English language, programming language representations,	 lence of two elements A and B means that A implies B and B
scenarios or even using semi-formal notations such as unified

	
implies A. Note that applying the laws of concurrency 104 to

modeling language (UML) use cases.	 45 the process-based specification 108 would allow for the
In one preferred embodiment, a scenario can be a natural 	 retrieval of a trace-based specification that is equivalent to the

language text (or a combination of any representations, e.g.	 informal specification 102. Further note that the process-
graphical, of sequential steps or events) that describes the 	 based specification of one embodiment is mathematically
software's actions in response to incoming data and the inter-	 equivalent to, rather than necessarily equal to, the original
nal goals of the software. Some scenarios may also describe 50 informal specification 108. This aspect indicates the process
communication protocols between systems and between the 	 may be reversed, allowing for reverse engineering of existing
components within the systems. Also, some scenarios may be 	 systems, or for iterative development of more complex sys-
known as use-cases. Preferably, a scenario can describe one 	 tems.
or more potential executions of a system, describing what

	
In some embodiments, the system includes an analyzer 110

happens in a particular situation and what range of behaviors 55 to determine various properties such as the existence of omis-
is expected from or omitted by the system under various 	 sions, deadlock, livelock, and race conditions in the process-
conditions.	 based specification 108.

In one embodiment, natural language scenarios are con- 	 In one embodiment, the system 100 also includes a code
structed in terms of individual scenarios written in a struc- 	 translator 112 to translate the plurality of process-based
tured natural language. Different scenarios may be written by 60 specification segments 108 to a set of instructions in a high-
different stakeholders of the system, corresponding to the

	
level computer language 114, such as the Java language.

different views they have of how the system will perform, 	 System 100 can be operational for a wide variety of infor-
including alternative views corresponding to higher or lower 	 mal specification languages and applications; thus system
levels of abstraction. Natural language scenarios may be gen- 	 100 is preferably generally applicable. Such applications
erated by a user with or without mechanical or computer aid. 65 might include distributed software systems, sensor networks,
The set of natural language scenarios provides the descrip-	 robot operation, complex scripts for spacecraft integration
tions of actions that occur as the software executes. Some of

	
and testing, chemical plant operation and control, and autono-

US 7,739,671 B1
7

mous systems. However, one skilled in the art will recognize
that other applications not listed herein may fall within the
scope of this invention.

Moreover, the system 100 of one embodiment can provide
regeneration of the executable system when requirements 5

dictate a change in the high level specification. In a preferred
system 100, all that may be required to update the generated
application is a change in the informal specification 102, after
which the changes and validation might ripple through in a
mechanical process when system 100 operates. This also io
allows the possibility of cost effectively developing compet-
ing designs for a product and implementing each to determine
the best one.

Most notably, the preferred system 100 of at least one
embodiment does not include an automated logic engine, 15

such as a theorem prover, to infer the process-based specifi-
cation segments from the informal specification. However,
the plurality of process-based specification segments 108
may be provably correct implementations of the informal
specification 102, provided the developer of an instance of 20

system 100 has properly used a theorem prover (not shown) to
prove that the direct mechanical translator 106 correctly
translates informal specifications into formal specifications.

Some embodiments of the system 100 operate in a multi-
processing, multi-threaded operating environment on a com- 25

puter, such as computer 402 in FIG. 4. While the system 100
is not limited to any particular informal specification 102,
plurality of rules or requirements, set of laws of concurrency
104, specification translator 106, process-based specification
108, analyzer 110, code translator 112 and high-level com- 30

puter language 114, for sake of clarity a simplified informal
specification 102, plurality of rules or requirements, set of
laws of concurrency 104, specification translator 106, pro-
cess-based specification 108, analyzer 110, code translator
112, and high-level computer language 114 are described, 35

although one skilled in the art will understand that other
elements may fall within the purview of this invention as
defined by the claims.

Embodiments of the preferred system 100 may relate to the
fields of chemical or biological process design or mechanical 40

system design, and, generally to any field where the behaviors
exhibited by a process to be designed is described by the use
of a set of scenarios expressed in natural language, or some
appropriate graphical notation or textual notation.

45
Method Embodiments

In the previous section, a system level overview of the
operation of at least one embodiment is described. In this
section, the particular methods of such embodiments are 50
described by reference to a series of flowcharts. Describing
the methods by reference to a flowchart enables one skilled in
the art to develop such programs, firmware, or hardware,
including such instructions to carry out the methods on suit-
able computers, executing the instructions from computer- 55
readable media. Similarly, the methods performed by the
server computer programs, firmware, or hardware are also
composed of computer-executable instructions. Methods 200
and 300 are preferably performed by a program executing on,
or performed by firmware or hardware that is a part of, a
computer, such as computer 402 in FIG. 4.

FIG. 2 is a flowchart of a method 200 to generate an
executable system from an informal specification, according
to an embodiment. Method 200 may solve the need in the art
to generate executable computer instructions from require-
ments with neither the time involved in manually writing the
executable computer instructions, nor the mistakes that may

8
arise in manually writing the executable computer instruc-
tions, without using a theorem prover.

In at least one embodiment, the method 200 includes trans-
lating 202 each of a plurality of requirements of the informal
specification to aplurality of process-based specification seg-
ments. In some embodiments, the translating 202 includes
inferring the process-based specification segments from the
informal specification. One embodiment of translating 202 is
shown in FIG. 3 below.

In some embodiments, the process-based specification is
process algebra notation. That embodiment may satisfy the
need in the art for an automated, mathematics-based process
for requirements validation that does not require large com-
putational facilities.

Thereafter, method 200 may include aggregating 204 the
plurality of process-based specification segments into a
single process-based specification model.

Subsequently, method 200 may include translating 206 the
single process-based specification model to instructions
encoded in the Java computer language or some other high-
level computer programming language. Thereafter, the
method 200 may include compiling 208 the instructions
encoded in the Java computer language or other high level
computer language into a file of executable instructions.

In some embodiments, method 200 includes invoking the
executable instructions, which provides a method to convert
informal specifications to an application system without
involvement from a computer programmer.

Most notably, some embodiments of the method 200 do not
include invoking a theorem prover to infer the process-based
specification segments from the informal specification.

FIG. 3 is a flowchart of a method 300 which may translate
each of a plurality of requirements of the informal specifica-
tion to a plurality of process-based specification segments,
according to an embodiment. The method 300 can be
described as one embodiment of translating 202 in FIG. 2.

In one embodiment, the method 300 includes verifying 302
the syntax of the plurality of requirements of the informal
specification. Thereafter, method 300 may include mapping
304 the plurality of requirements ofthe informal specification
to a process-based specification.

In some embodiments, method 300 subsequently also
includes verifying 306 consistency of the process-based
specification with at least one other process-based specifica-
tion. In some embodiments, method 300 subsequently also
includes verifying 308 a lack of other problems in the pro-
cess-based specification. One example of other problems is
unreachable states in the process defined in the process-based
specification, although one skilled in the art will appreciate
that any number of other applicable problems exist, which
also fall within the scope of this invention.

In some embodiments, methods 200 and 300 are imple-
mented as a communication media, such as a computer data
signal embodied in a carrier wave that represents a sequence

60 of instructions which, when executed by a processor, such as
the processor 404 in FIG. 4, cause the processor to perform
the respective method or as a computer-accessible storage
medium having stored executable instructions capable of
directing a processor, such as the processor 404 in FIG. 4, to

65 perform the respective method. In varying embodiments, the
type of storage medium may be a magnetic medium, an
electronic medium, an electromagnetic medium, an optical

US 7,739,671 B1
9

medium or other mediums that will be readily apparent to one
skilled in the art and fall within the scope of this invention.

Hardware and Operating Environment

FIG. 4 is a block diagram of the hardware and operating
environment 400 in which different embodiments can be
practiced. The description of FIG. 4 provides an overview of
computer hardware and a suitable computing environment in
conjunction with which some embodiments can be imple-
mented. Embodiments are described in terms of a computer
executing computer-executable instructions. However, some
embodiments can be implemented entirely in computer hard-
ware in which the computer-executable instructions are
implemented in read-only memory. Some embodiments can
also be implemented in client/server computing environ-
ments where remote devices that perform tasks are linked
through a communications network. Program modules canbe
located in both local and remote memory storage devices in a
distributed computing environment. Some embodiments can
also be at least partially implemented in a quantum mechani-
cal computing and communications environment.

In one embodiment, a computer 402 includes a processor
404, commercially available from Intel®, MOTOROLA®,
Cyrix® and others. The computer 402 may also include ran-
dom-access memory (RAM) 406, read-only memory (ROM)
408, and one or more mass storage devices 410, and a system
bus 412, that operatively couples various system components
to the processing unit 404. The memory 406, 408, and mass
storage devices 410 are preferably types of computer-acces-
sible media. Mass storage devices 410 may be more specifi-
cally types of nonvolatile computer-accessible media and can
include one or more hard disk drives, floppy disk drives,
optical disk drives, and tape cartridge drives. The processor
404 preferably executes computer programs stored on the
computer-accessible media.

The computer 402 can be communicatively connected to
the Internet 414 (or any communications network) via a com-
munication device 416. Internet 414 connectivity is well
known within the art. In one embodiment, a communication
device 416 is a modem that responds to communication driv-
ers to connect to the Internet via what is known in the art as a
"dial-up connection." In another embodiment, a communica-
tion device 416 is an Ethernet(k or similar hardware network
card connected to a local-area network (LAN) that itself is
connected to the Internet via what is known in the art as a
"direct connection" (e.g., TI line, cable modem, DSL, wire-
less, etc.).

Preferably user enters commands and information into the
computer 402 through input devices such as a keyboard 418
or a pointing device 420. The keyboard 418 permits entry of
textual information into the computer 402, as known within
the art, and embodiments are not limited to any particular type
of keyboard. Pointing device 420 permits the control of the
screen pointer provided by a graphical user interface (GUI) of
operating systems such as versions of Microsoft Windows®.
Embodiments are not limited to any particular pointing
device 420. Such pointing devices include mice, touch pads,
trackballs, remote controls and point sticks. Other input
devices (not shown) can include a microphone, joystick,
game pad, gesture-recognition or expression recognition
devices, or the like.

In some embodiments, the computer 402 is operatively
coupled to a display device 422. Display device 422 is pref-
erably connected to the system bus 412. Display device 422
may permit the display of information, including computer,
video and other information, for viewing by a user of the

10
computer. Embodiments are not limited to any particular
display device 422. Such display devices include cathode ray
tube (CRT) displays (monitors), as well as flat panel displays
such as liquid crystal displays (LCD's) or image and/or text

5 projection systems or even holographic image generation
devices. In addition to a monitor, computers typically include
other peripheral input/output devices such as printers (not
shown). Speakers 424 and 426 (or other audio device) may

10 provide audio output of signals. Speakers 424 and 426 are
also preferably connected to the system bus 412.

According to one embodiment, the computer 402 also
includes an operating system (not shown) that is stored on the
computer-accessible media RAM 406, ROM 408, and mass

is storage device 410, and is and executed by the processor 404.
Examples of operating systems include Microsoft Win-
dows®, Apple MacOS®, Linux®, UNIX®. Examples are not
limited to any particular operating system, however, and the

20 construction and use of such operating systems are well
known within the art.

Embodiments of computer 402 are not limited to any type
of computer 402. In varying embodiments, computer 402
comprises a PC-compatible computer, a MacOSO-compat-

25 ible computer, a Linux®-compatible computer, or a UNIX®-
compatible computer. The construction and operation of such
computers are well known within the art.

Computer 402 can be operated using at least one operating
30 system to provide a graphical user interface (GUI) including

a user-controllable pointer. Computer 402 can have at least
one web browser application program executing within at
least one operating system, to permit users of computer 402 to
access an intranet, extranet or Internet world-wide-web pages

35 as addressed by Universal Resource Locator (URL)
addresses. Examples of browser application programs
include, but are not limited to, Netscape Navigator® and
Microsoft Internet Explorer®.

The computer 402 can operate in a networked environment
4o

using logical connections to one or more remote computers,
such as remote computer 428. These logical connections may
be achieved by a communication device coupled to, or a part
of, the computer 402. Embodiments are not limited to a par-

45 ticular type of communications device. The remote computer
428 can be another computer, a server, a router, a network PC,
a client, a peer device or other common network node. The
logical connections depicted in FIG. 4 include a local-area
network (LAN) 430 and a wide-area network (WAN) 432.

50 Such networking environments are commonplace in offices,
enterprise-wide computer networks, intranets, extranets and
the Internet.

When used in a LAN-networking environment, the com-
puter 402 and remote computer 428 are preferably connected

55 to the local network 430 through network interfaces or adapt-
ers 434, which is one type of communications device 416.
Remote computer 428 may also include a network device
436. When used in a conventional WAN-networking environ-

60 ment, the computer 402 and remote computer 428 preferably
communicate with a WAN 432 through modems or other
methods and apparatus known to one skilled in the art (not
shown). At least one example of a modem, which can be
internal or external, can be connected to the system bus 412.

65 Ina networked environment, program modules depicted rela-
tive to the computer 402, or portions thereof, can be stored in
the remote computer 428.

US 7,739,671 B1
11

Preferably, the computer 402 also includes a power supply
438. Each power supply can be a battery.

CSP Implementation

Referring to FIG. 5, a particular CSP implementation 500
is described in conjunction with the system overview in FIG.
1 and the methods described in conjunction with FIG. 2.

FIG. 5 is a block diagram of a particular CSP implemen-
tation of an apparatus 500 to generate a high-level computer
source code program from an informal specification. Appa-
ratus 500 may solve the need in the art for an automated,
generally applicable way to produce a system that is a prov-
ably correct implementation of an informal design specifica-
tion, which does not require use of a theorem-prover.

According to one embodiment, the apparatus 500 includes
an informal specification 102 having a plurality of rules or
requirements. The informal specification can be expressed in
restricted natural language, graphical notations, or even using
semi-formal notations such as unified modeling language
(UML) use cases. Apparatus 500 may also include a set of
laws of concurrency 104.

The informal specification 102 and a set of laws of concur-
rency 104 may preferably be received by a CSP translator
502. The plurality of rules or requirements of the informal
specification 102 can then be translated, for example
mechanically, to a specification 504 encoded in CSP.

In some embodiments, the apparatus 500 includes a formal
specification analyzer 506 to perform model verification/
checking and to determine the existence of omissions, dead-
lock, livelock and race conditions, or other failure conditions,
in the CSP specification 504. In some embodiments, the for-
mal specification analyzer 506 receives and transmits infor-
mation from and to a visualization tool 508 that provides a
way to modify the CSP specification 504. In some embodi-
ments, the formal specification analyzer 506 receives and
transmits information from and to a tool 510 designed for
CSP that provides a way to modify the CSP specification 504.

The formal specification analyzer 506 may generate a
modified CSP specification 504 that is in turn received by a
code translator 112 or compiler to translate the plurality of
process-based specification segments 108 to a set of instruc-
tions in a high-level computer language 114, such as Java
language.

Further, formal specification analyzer 506 may allow the
user to manipulate the formal specification 160 in various
ways. For example, the formal specification analyzer 506
may allow the user to examine the system described by the
informal specification 102, and to manipulate it. The CSP
specification 504 may be analyzed to highlight undesirable
behavior, such as race conditions, and equally important, to
point out errors of omission in the informal specification 102.
The formal specification analyzer 506 is an optional but use-
ful stage in the disclosed embodiments of the present inven-
tion. If the formal specification analyzer 506 is not used, then
the process-based specification 160 and the modified CSP
specification 504 can be identical. Hence, if the formal speci-
fication analyzer 506 is not used then preferably all references
to the modified CSP specification 504 disclosed below also
apply to the CSP specification 504.

Most notably, the apparatus 500 of some embodiments
does not include an automated logic engine, such as a theorem
prover, to infer the process-based specification segments
from the informal specification.

12
Apparatus 500 is preferably operational for a wide variety

of informal specification languages and applications, and
thus the apparatus 500 can be generally applicable. Such
applications include distributed software systems, sensor net-

s works, robot operation, complex scripts for spacecraft inte-
gration and testing, and autonomous systems.

Preferably, the apparatus 500 components of the CSP
translator 502, the formal specification analyzer 506, visual-

lo ization tool 508, CSP tool 510 and the code translator 112 can
be embodied as computer hardware circuitry or as a com-
puter-readable program, or a combination of both, such as
shown in FIG. 6. In another embodiment, apparatus 500 is

15
implemented in an application service provider (ASP) sys-
tem.

More specifically, in the computer-readable program
embodiment, the programs can be structured in an object-
orientation using an object-oriented language such as Java,

20 Smalltalk or C++, and the programs can be structured in a
procedural-orientation using a procedural language such as
COBOL or C. The software components may communicate
in any of a number of ways that are well-known to those

25 skilled in the art, suchas application program interfaces (API)
or interprocess communication techniques such as remote
procedure call (RPC), common object request broker archi-
tecture (CORBA), Component Object Model (COM), Dis-
tributed Component Object Model (DCOM), Distributed

30 System Object Model (DSOM) and Remote Method Invoca-
tion (RMI). The components can execute on as few as one
computer as in computer 402 in FIG. 4, or on at least as many
computers as there are components. One skilled in the art will
understand that other computer languages, structures, and

35 communication interfaces and techniques may be used that
fall within the scope of this invention as defined by the claims.

CONCLUSION

40 A direct mechanical translator of informal specifications is
described. Although specific embodiments have been illus-
trated and described herein, it will be appreciated by those of
ordinary skill in the art that any arrangement which is calcu-

45 lated to achieve the same purpose may be substituted for the
specific embodiments shown. This application is intended to
cover any adaptations or variations. For example, although
described in procedural terms, one of ordinary skill in the art
will appreciate that implementations can be made in an

50 object-oriented design environment or any other design envi-
ronment that provides the required relationships.

In particular, one of skill in the art will readily appreciate
that the names of the systems, methods and apparatus are not
intended to limit embodiments. Furthermore, additional sys-

55 tems, methods andapparatus canbe addedto the components,
functions can be rearranged among the components, and new
components to correspond to future enhancements and physi-
cal devices used in embodiments can be introduced without

60 departing from the scope of embodiments. One of skill in the
art will readily recognize that embodiments are applicable to
future communication devices, different file systems, and
new data types.

The terminology used in this application is meant to
65 include all object-oriented, database and communication

environments and alternate technologies which provide the
same functionality as described herein.

US 7,739,671 B1
13

We claim:
1. A computer-accessible storage medium having execut-

able instructions to generate computer-language instructions
from an informal specification, the executable instructions
capable of directing a processor to perform: 	 5

translating an informal specification to a plurality of formal
specification segments, wherein translating comprises a
verification process using mathematical laws by which
sequences of data in the informal specification are
mapped to at least one of a plurality of formal specifi- 10

cation segments using an automated logic engine,
wherein an inference engine iteratively applies a set of
rules to a set of data representing a problem to determine
a solution to the problem by logical manipulation and
analysis of the data; the mathematical laws including the 15

Laws of Concurrency, whereby the Laws of Concur-
rency are algebraic laws that (a) allow at least one pro-
cess to be manipulated and analyzed; (b) permit formal
reasoning about equivalences between processes; and
(c) determine traces from the at least one process; and 20

translating the sequences of data in the informal specifica-
tion to at least one of a plurality of formal specification
segments without the use of an automated logic engine,
wherein translating comprises a process by which the
sequences of data in the informal specification are 25

matched to the at least one of a plurality of formal
specification segments as specified by the prior map-
ping; and

translating the plurality of formal specification segments to
high-level computer language instructions using the 30

mathematical laws, wherein the plurality of formal
specification segments are matched to high-level com-
puter language instructions.

2. The computer-accessible storage medium of claim 1,
wherein the plurality of formal specification segments further 35

comprise:
a sequential process algebra, wherein the sequential pro-

cess algebra is a member of a diverse family of related
approaches to formally modeling concurrent systems
that provide a tool for the high-level description of inter- 40

actions, communications, and synchronizations
between a collection of independent agents or processes,
along with algebraic laws that allow process descrip-
tions to be manipulated and analyzed, and permit formal
reasoning about equivalences between processes. 	 45

3. The computer-accessible storage medium of claim 2,
wherein the sequential process algebra further comprises:

a language of Communicating Sequential Processes,
wherein the language of Communicating Sequential
Processes is a formal language for describing patterns of so
interaction in concurrent systems.

4. The computer-accessible storage medium of claim 1,
wherein the high-level computer language instructions fur-
ther comprise:	

55
object-oriented high-level programming language instruc-

tions.
5. The computer-accessible storage medium of claim 1,

wherein the executable instructions capable of directing the
processor to perform translating an informal specification to 60

a plurality of formal specification segments further comprise:
verifying a syntax of the informal specification, wherein

verifying the syntax comprises checking that the
sequence of data of the informal specification complies
with the encoded syntax rules; 	 65

translating the informal specification to a plurality of for-
mal specification segments.

14
6. The computer-accessible storage medium of claim 5,

wherein the executable instructions capable of directing the
processor to perform translating an informal specification to
a plurality of formal specifications segments further com-
prise:

verifying a consistency of the plurality of formal specifi-
cations segments with each other; and

verifying a lack of other problems in the plurality of formal
specification segments.

7. The computer-accessible storage medium of claim 6, the
medium further comprising executable instructions capable
of directing the processor to perform:

determining correctness of the plurality of formal specifi-
cation segments using an automated logic engine.

8. The computer-accessible storage medium of claim 1, the
medium further comprising executable instructions capable
of directing the processor to perform:

analyzing the plurality of formal specification segments,
whereby analyzing includes identifying at least one
equivalent alternative process-based specification and
characterizing differences between the process-based
specification and the at least one alternative process-
based specification, wherein differences include the
number of processes, deterministic behavior, and com-
petition for resources.

9. The computer-accessible storage medium of claim 1, the
medium further comprising executable instructions capable
of directing the processor to perform:

aggregating the plurality of formal specification segments
into a single model.

10. The computer-accessible storage medium of claim 1,
the medium further comprising executable instructions
capable of directing the processor to perform:

modifying the informal specification.
11.A computer-accessible storage medium having execut-

able instructions to generate computer instructions from an
informal specification, the executable instructions capable of
directing a processor to perform:

translating each of a plurality of requirements of the infor-
mal specification to a plurality of process-based speci-
fication segments, wherein translating comprises a veri-
fication process using mathematical laws by which the
requirements in the informal specification are mapped to
at least one of a plurality of process-based specification
segments using an automated logic engine, wherein an
inference engine iteratively applies a set of rules to a set
of data representing a problem to determine a solution to
the problem by logical manipulation and analysis of the
data; the mathematical laws including the Laws of Con-
currency, whereby the Laws of Concurrency are alge-
braic laws that (a) allow at least one process to be
manipulated and analyzed; (b) permit formal reasoning
about equivalences between processes; and (c) deter-
mine traces from the at least one process; and

translating the requirements in the informal specification to
the at least one of a plurality of process-based specifica-
tion segments without the use of an automated logic
engine, wherein translating comprises a process by
which the requirements in the informal specification are
matched to the at least one of a plurality of process-based
specification segments as specified by the prior map-
ping;

aggregating the plurality of process-based specification
segments into a single process-based specification
model; and

US 7,739,671 B1
15
	

16
translating the single process-based specification model to

	
livelock condition is a condition in which two executing

instructions encoded in an object-oriented high-level
	

processes each wait for the other to finish, as their rela-
programming language. 	 tive internal states change continually during execution

12. The computer-accessible storage medium of claim 11, 	 without progress being made by either process, and
wherein the executable instructions capable of directing a 5	 wherein a race condition is a cause of concurrency prob-
processor to perform translating each of a plurality of require- 	 lems when multiple processes access a shared resource,
ments of the informal specification to a plurality of process-	 with at least one of the accesses being a write, with no
based specification segments further comprise: 	 mechanism used by any of the processes to moderate

verifying a syntax of the plurality of requirements of the 	 simultaneous access to the shared resource;
informal specification; 	 10	 a code translator operable to translate the plurality of pro-

mapping the plurality of requirements of the informal
	

cess-based specification segments to a set of instructions
specification to a process-based specification;

	
in a high-level computer language; and

verifying a consistency of the process-based specification	 a compiler to compile the instructions encoded in the high-
with at least one other process-based specification; and

	
level computer language into a file of executable instruc-

verifying a lack of other problems in the process-based 15	 tions.
specification. 	 16. The system of claim 15, wherein the system further

13. The computer-accessible storage medium of claim 11, 	 comprises:
the medium further comprising executable instructions 	 a visualization tool operably coupled to the analyzer for
capable of directing a processor to perform: 	 modifying the Communicating Sequential Processes

compiling the instructions encoded in an object-oriented 20	 specification.
programming language into a file of executable instruc- 	 17. The system of claim 15, wherein the system further
tions.	 comprises:

14. The computer-accessible storage medium of claim 11, 	 a Communicating Sequential Processes tool operably
wherein the process-based specification model further com- 	 coupled to the analyzer for modifying the Communicat-
prises:	 25	 ing Sequential Processes specification.

a language of Communicating Sequential Processes, 	 18. The system of claim 15, wherein the high-level com-
wherein the language of Communicating Sequential

	
puter language further comprises:

Processes is a formal language for describing patterns of
	

an object-oriented high-level programming language.
interaction in concurrent systems. 	 19. A system, the system comprising:

15. A system to generate an executable software system, 30	 a processor;
the system comprising:	 • storage device coupled to the processor, the storage

• processor;
	

device operable to store an informal system require-
• Communicating Sequential Processes translator, oper-	 ments specification;

able to receive informal specifications and mathematical
	

• software apparatus operative on the processor operable to
laws; and to generate a Communicating Sequential Pro- 35	 translate the informal specification info a formal speci-
cesses specification comprising a plurality of process- 	 fication, wherein the software apparatus further com-
based specification segments;	 prises:

the translator performs a verification process comprising 	 • translator, the translator operable to perform a verifica-
using the mathematical laws by which the informal

	
tion process comprising using mathematical laws by

specifications are mapped to the Communicating 40	 which the informal specificationis mappedto theformal
Sequential Processes specification segments using an 	 specification using an automated logic engine, wherein
automated logic engine, wherein an inference engine 	 an inference engine iteratively applies a set of rules to a
iteratively applies a set of rules to a set of data represent- 	 set of data representing a problem to determine a solu-
ing a problem to determine a solution to the problem by 	 tion to the problem by logical manipulation and analysis
logical manipulation and analysis of the data; the math- 45	 of the data; the mathematical laws including the Laws of
ematical laws including the Laws of Concurrency,	 Concurrency, whereby the Laws of Concurrency are
whereby the Laws of Concurrency are algebraic laws	 algebraic laws that (a) allow at least one process to be
that (a) allow at least one process to be manipulated and

	
manipulated and analyzed; (b) permit formal reasoning

analyzed; (b) permit formal reasoning about equiva-	 about equivalences between processes; and (c) deter-
lences between processes; and (c) determine traces from 50	 mine traces from the at least one process; and
the at least one process; and

	
the translator operable to translate the informal specifica-

the translator translates the informal specifications to the 	 tions to the Communicating Sequential Processes speci-
Communicating Sequential Processes specification seg- 	 fication segments without the use of an automated logic
ments without the use of an automated logic engine, 	 engine, wherein translating comprises a process by
wherein translating comprises a process by which the 55	 which the informal specifications are matched to the
informal specifications are matched to the Communicat- 	 Communicating Sequential Processes specification seg-
ing Sequential Processes specification segments as 	 ments as specified by the prior mapping;
specified by the prior mapping; 	 an analyzer operable to perform model verification/check-

an analyzer operable to perform model verification/check- 	 ing and determine existence of omissions, deadlock,
ing and determine existence of omissions, deadlock, 60	 livelock, race conditions, and other problems and incon-
livelock, race conditions, and other problems and incon- 	 sistencies in the Communicating Sequential Processes
sistencies in the Communicating Sequential Processes 	 specification, wherein an omission includes missing
specification, wherein an omission includes missing 	 model-specification details for a circumstance that
model-specification details for a circumstance that	 should be covered by the model as a whole, wherein a
should be covered by the model as a whole, wherein a 65	 deadlock condition is a condition in which two execut-
deadlock condition is a condition in which two execut- 	 ing processes each wait for the other to finish, wherein a
ing processes each wait for the other to finish, wherein a

	
livelock condition is a condition in which two executing

US 7,739,671 B1
17

processes each wait for the other to finish, as their rela-
tive internal states change continually during execution
without progress being made by either process, and
wherein a race condition is a cause of concurrency prob-
lems when multiple processes access a shared resource,
with at least one of the accesses being a write, with no
mechanism used by any of the processes to moderate
simultaneous access to the shared resource;

18
a code translator operable to translate the formal specifi-

cation to a set of instructions in a high-level computer
language; and

a compiler to compile the instructions encoded in the high-
level computer language into a file of executable instruc-
tions.

	7739671-p0001.pdf
	7739671-p0002.pdf
	7739671-p0003.pdf
	7739671-p0004.pdf
	7739671-p0005.pdf
	7739671-p0006.pdf
	7739671-p0007.pdf
	7739671-p0008.pdf
	7739671-p0009.pdf
	7739671-p0010.pdf
	7739671-p0011.pdf
	7739671-p0012.pdf
	7739671-p0013.pdf
	7739671-p0014.pdf
	7739671-p0015.pdf
	7739671-p0016.pdf
	7739671-p0017.pdf

