Engagement of Metal Debris Into a Gear Mesh

Robert F. Handschuh and Timothy L. Krantz
Glenn Research Center, Cleveland, Ohio

July 2010
NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI Help Desk at 443–757–5803
- Telephone the NASA STI Help Desk at 443–757–5802
- Write to: NASA Center for AeroSpace Information (CASI) 7115 Standard Drive Hanover, MD 21076–1320
Engagement of Metal Debris Into a Gear Mesh

Robert F. Handschuh and Timothy L. Krantz
Glenn Research Center, Cleveland, Ohio

Prepared for the
International Conference on Motion and Power Transmissions (MPT2009-Sendai)
sponsored by the Machine Design and Tribology Division of the Japan Society of Mechanical Engineers
Sendai, Japan, May 13–15, 2009

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

July 2010
Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Available electronically at http://gltrs.grc.nasa.gov
Engagement of Metal Debris Into a Gear Mesh

Robert F. Handschu and Timothy L. Krantz
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the “chip” through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

Introduction

In some space mechanisms the loading can be so high that there is some possibility that a gear chip might be liberated while in operation of the mechanism (Refs. 1 to 5). Also, due to the closely packed nature of some space mechanisms and the fact that a space grease is used for lubrication, chips that are released can then be introduced to other gear meshes within this mechanism. In this instance, it is desirable to know the consequences of a gear chip entering in between meshing gear teeth. To help provide some understanding, a series of bench-top experiments was conducted to engage chips of simulated and gear material fragments into a meshing gear pair. One purpose of the experiments was to determine the relationship of chip size to the torque required to rotate the gear set through the mesh cycle. The second purpose was to determine the condition of the gear chip material after engagement by the meshing gears, primarily to determine if the chip would break into pieces and to observe the motion of the chip as the engagement was completed. This document also presents preliminary testing done with metal “debris” other than chips from gears, namely steel shim stock and drill bits of various sizes and diameters.

Test Equipment

The gear testing was done using a Glenn Research Center Spur Gear Fatigue test rig. This rig uses two identical spur gears engaged with one another. The shaft mounting is an overhung arrangement for the test gears, and the nearby bearings are roller bearings. The overhung distance from the bearing supports is approximately 32 mm (1.25 in.). Because the test machine was designed for experiments of gear fatigue, the shaft and bearing supports are relatively large and stiff. Figure 1 shows the test gearbox with a pair of test gears mounted.

Test Gears, Test “Debris” and Chips, and Procedure

The gears used for this study were case-carburized and ground, and were manufactured from the steel alloy AISI 9310. The gears design information is shown in Table 1. The gears were shot-peened after hardening and before final grinding. The gears were representative of gears utilized in a space mechanism that was being simulated.

The gear design specifications and the actual mounted center distance determine the root clearance and backlash of a pair of gears. The backlash and root clearances were determined for the first pair of test gear mounted on the test fixture. The backlash was measured as 0.15 mm (0.006 in.) using a standard measurement setup (Fig. 2). The root clearance was measured as 0.94 mm (0.037 in.). The root clearance was determined by running a piece of soft material (solder) through the mesh and measuring the deformed material with a caliper.

Three types of “debris” were placed into the meshing gear teeth for testing, namely steel shim stock, drill bit shanks, and pieces or “chips” from gear teeth. The shim stock materials used were steel and stainless steel. The shim thickness ranged from 0.13 to 1.88 mm (0.005 to 0.074 in.). The shims were cut to a length of approximately 2.5 to 3.8 mm (0.100 to 0.150 in.), representing approximately half of the tooth height. The shim lengths were wider than the faces of the gears and were placed to engage the full-face width of the gear teeth (Fig. 3). The drill bit shanks used for these experiments had shank diameters ranging from 1.07 to 1.96 mm (0.042 to 0.077 in.).

The gear chip pieces used in this work were liberated from a spare test gear (case-carburized and ground AISI 9310 steel). Ten gear chips were used for testing. Eight of the ten chips were created by scoring a mark on the gear tooth using a small rotating cutting wheel and then striking the score-line with a cold chisel. This created chips with irregular shapes and the chips were of varying sizes (mass). Two of the gear chips were made by cutting the gear tooth using a metals-lab cutting wheel. These two chips have a more regular shape and (as compared to chips made by striking) relatively smooth edges. To quantify the sizes of the chips, the mass of each chip was determined (Table 2). The figures that follow show at least one image with a scale marker for each chip used for testing.
TABLE 1.—BASIC GEAR DIMENSIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value (mm)</th>
<th>Value (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of teeth</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Module, (Diametral pitch); mm (1/in.)</td>
<td>2.12 (12)</td>
<td></td>
</tr>
<tr>
<td>Circular pitch, mm (in.)</td>
<td>6.65 (0.2618)</td>
<td></td>
</tr>
<tr>
<td>Whole depth, mm (in.)</td>
<td>4.98 (0.196)</td>
<td></td>
</tr>
<tr>
<td>Addendum, mm (in.)</td>
<td>2.11 (0.083)</td>
<td></td>
</tr>
<tr>
<td>Chordal tooth thickness, mm (in.)</td>
<td>3.25 (0.1279)</td>
<td></td>
</tr>
<tr>
<td>Helix angle, (deg)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pressure angle, (deg)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Pitch diameter, mm (in.)</td>
<td>88.9 (3.50)</td>
<td></td>
</tr>
<tr>
<td>Outside diameter, mm (in.)</td>
<td>93.14 (3.667)</td>
<td></td>
</tr>
<tr>
<td>Root fillet, mm (in.)</td>
<td>1.02 (0.04)</td>
<td></td>
</tr>
<tr>
<td>Measurement over pins, mm (in.)</td>
<td>93.87 (3.6956)</td>
<td></td>
</tr>
<tr>
<td>Pin diameter, mm (in.)</td>
<td>3.66 (0.144)</td>
<td></td>
</tr>
<tr>
<td>Backlash, mm (in.)</td>
<td>0.15 (0.006)</td>
<td></td>
</tr>
<tr>
<td>Tip relief, mm (in.)</td>
<td>0.015 (0.0006)</td>
<td></td>
</tr>
</tbody>
</table>

Testing using the shims and drill bits were done with no lubrication on the gear teeth. For tests done with gear chips, a generous amount of a Teflon-based, space-qualified grease was applied with a brush to the teeth prior to testing. During testing, one of the gear shafts (the driven gear) was free to rotate. That is, there was no resistive torque applied. The driving gear was rotated with a torque wrench by hand in a very deliberate manner. The peak torque reading recorded by the torque wrench was recorded as the engaged debris was rolled through the mesh.

Test Results

The results for the shim stock and drill bit testing will be discussed first. To relate the peak torque required to roll the object through the gear mesh to the size of the object, the volume of the object was calculated assuming the full-face width of the gear was engaged and using a nominal height of 3.18 mm (0.125 in.) for the shim objects. The resulting relationship of peak torque to the object volume is provided in Figure 4. For the smallest shims tested, only a very small nominal drag torque of the rig setup was required to rotate the shim through mesh. The drill bit shanks required a significantly greater peak torque for an equivalent volume of
This can be explained by the higher hardness of the drill bit shank relative to shim stock, thereby requiring larger peak torque before any plastic deformation (or shaft deflection) of the bit shank or gear teeth takes place.

For the drill bit test data a straight line can be passed through the data. In the data for the much softer shim stock, there initially appears to be a linear relation up to a certain volume. Then a region of this data is nearly non-varying and only increasing torque slightly as the volume was increased. Finally for this data, a rather large increase in torque was recorded as the shim volume was in excess of 35 mm³.

A plausible explanation for this can be stated as follows. Initially the shim stock plastically compresses and an increase in volume causes a proportional change in torque. As the volume is increased, enough of the tooth tip—root clearance is still available to plastically compress the shim material resulting in little increase in the torque needed. Finally, as the volume of the tooth tip to root clearance is used up, the torque required to “extrude” the shim increase substantially.

For the case of the shim stock material, the main effect was elastic deformation of the support structure (shaft and bearings) and plastic deformation of the shim stock. Essentially the shim stock was extruded. The shim stock took the shape of the root-fillet region of the driven gear with intrusion by the tip of the driving gear (Fig. 5). The peak torque was roughly a linear function of the engaged shim volume. By visual examination, it was judged that the gear teeth were not damaged by engagement of the shim stock. For the case of the drill bit shanks, the main effect was elastic deformation of the supporting structure and some plastic deformation of the teeth. The drill bit shanks permanently deformed and damaged the tooth tip that made contact with the bit shank during the meshing process (Fig. 6).

Next, the results of testing with the gear chips will be discussed. The peak torque required to rotate the gears was, to a good approximation, a linear function of the mass of the engaged chip (Fig. 7). For chip #2 of Table 2, the peak torque exceed the measuring capacity of the torque wrench, and since the peak torque was not know precisely the data point was not included in the plot of Figure 7. A larger capacity torque wrench was used for subsequent testing.

It was noted that immediately after testing the disengaged chips were hot, indicative of the tremendous friction forces and plastic deforming work being done during the meshing process. Some of the smaller chips tended to remain in the root of the gear after the engagement. Larger chips were forced out of the mesh and were found on the table top just below the gear mesh. The gear on the left had been rotated clockwise with the torque wrench (the input torque direction), so the motion tended to throw and/or allow the chip to drop to
For the two largest chips (chips #6 and #7 of Table 2), the engaged gear teeth were deformed and damaged significantly enough that the gears could no longer be rotated with hand torque past the damaged tooth. An image of such damage is provided in Figure 8.

Images of the chips both before and after engagement testing are provided in Figures 9 to 18. The images show that the main effects on the chips were deformation of the chips to conform to the available tooth root spaces. In general, the chips remained intact. For the case of chips #5 and #8, small pieces were liberated from the main piece as can be seen in the figures. Chip #10 especially shows that the case-carburized material, even though generally described as brittle, can be significantly deformed and exhibit some toughness. Although the chip experienced some “tearing”, the chip did not “shatter” or otherwise exhibit extreme brittleness.
Figure 13.—Chip #5, mass of chip 0.139 grams.

Figure 14.—Chip #6, mass of chip 0.252 grams.

Figure 15.—Chip #7, mass of chip 0.342 grams.

Figure 16.—Chip #8, mass of chip 0.045 grams.

Figure 17.—Chip #9, mass of chip 0.096 grams.

Figure 18.—Chip #10, mass of chip 0.032 grams.
Finally all the data generated is shown in Figure 19. The drill bit and shim stock mass data was found using the data from Figure 4. The drill bit data was very comparable to the tooth chip data following the same trend. The shim stock data had a lower torque level over all the data taken. This must be an artifact of the nominal material hardness. The scatter in the tooth chip data is possibly due to non-symmetric shapes in comparison to the symmetry of the drill bit data.

Summary and Conclusions

A series of bench-top experiments was conducted to provide an understanding of the engagement of metal debris into a gear mesh. The gears used for testing were case-carburized 12-pitch spur gears made from the steel alloy AISI 9310. The metal debris that was engaged into the pair of meshing test gears was shim stock, drill bit shanks, and chips of gears liberated from a test gear.

It was found that the peak torque required to rotate the gears with the object engaged was proportional to the size (mass) of the engaged object. Engaging objects of higher hardness required a significantly greater peak torque relative to an equivalent sized object of lesser hardness.

For the largest chip sizes tested, sufficient deformation occurred to the gear teeth to prevent smooth motions of the gear when the damaged tooth is engaged.

During this study, no new chips and no obvious tooth fracture occurred.

Even though case-carburized steel hardened in the manner of the aerospace gears is generally described as “brittle”, the chips exhibited significant deformation and exhibited some toughness. Chips did not “shatter” or otherwise exhibit extreme brittle behavior.

Although large chips caused significant damage to the test gear teeth the data generated in this study could be used for minimum torque needed to drive a gear chip of a certain mass for the tested system. Therefore the torque required to drive a gear chip through mesh would be expected to be system dependent.

References

Engagement of Metal Debris Into a Gear Mesh

A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the “chip” through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.