Introduction. Angrites are a rare group (~7 known) of igneous meteorites with basalt-like composition, which probably derive from a relatively small parent body that differs from those of other igneous meteorites (1,3). Angrites show evidence for extinct 53Mn, 146Sm, and 245Pu, and precise U-Pb, and Pb-Pb ages of 4.558 Gyr for two angrites define the time of early parent body differentiation (2). The 147Sm-143Nd ages of two angrites range between 4.53 ±0.04 and 4.56 ±0.04 Gyr, but no 39Ar-40Ar or Rb-Sr ages have been reported. Most angrites show no evidence for either shock brecciation or metamorphism.

Brachinites are another very rare group of differentiated meteorites consisting primarily of olivine, with minor augite, chromite, Fe-sulfides, and sometimes plagioclase and opx (3). Presence of excess 125Xe and excess 55Cr from decay of 53Mn in some brachinites indicate that they also formed very early. Brachinite petrogenesis is poorly defined. They may be igneous cumulates or metamorphic products of chondritic-like starting material (1,4). If after their formation, angrites and brachinites cooled quickly with minimal subsequent heating, then one might expect them to show uniquely old K-Ar ages, at least in comparison to other differentiated meteorites such as eucrites and mesosiderites.

Most angrites and brachinites contain very little, if any K-feldspar, which has deterred measurements of their Ar-Ar ages. We made 39Ar-40Ar analyses on two angrites, LEW86010 (metamorphosed) and D’Orbigny, and on two brachinites, EET99402 and Brachina. All are finds. Any feldspar in angrites is highly calcic, with expected K concentrations of <100 ppm. We selected LEW86010 and D’Orbigny because they have been the objects of several other studies and because chemical analyses suggested [K] was ~70 ppm in both meteorites (D. Mittlefehldt, pers. comm.). Brachina contains ~9.9% plagioclase of higher K-content than angrites (1), and EET99402 is estimated to contain ~5% K-poor plagioclase (4). Other brachinites contain little to no feldspar (1). We have successfully measured Ar-Ar ages on a few meteorites and lunar anorthosites with [K] <100 ppm.

Brachinites. The 39Ar-40Ar ages and K/Ca ratios as a function of cumulative release of 39Ar for brachinites EET99402 and Brachina are shown in Figs. 1a and 1b. Although [K] in our EET sample was quite low (31 ppm), corrections for Ar blanks and reactor-produced interferences on 39Ar were relatively modest. (Uncertainties in both corrections, along with isotopic measurement errors are included in age uncertainties for individual extractions.) Changes in the K/Ca ratio and rate of release of 39Ar with temperature for EET (Fig. 1a) suggest three distinct K-bearing phases. The lower Ar ages over 0-13% of the 39Ar release were probably produced by Antarctic weathering. Eight extractions (13-49% 39Ar release) show constant K/Ca, have the same age within their respective uncertainties, and define a mean age of 4.13 ±0.06 Gyr. The next three extractions (49-99% 39Ar release) seem to be a different phase and give an average age of 4.265 ±0.025 Gyr. We interpret this age spectrum to indicate different degrees of 40Ar degassing from phases with different Ar degassing properties by a single heating event ~4.13 Gyr ago. Most probably this thermal event was a large impact on the parent asteroid.

The age spectrum for Brachina is more complex, and the rate of Ar release suggests multiple K-bearing phases. The 36,37,38Ar isotopic data indicate that significant amounts of terrestrial Ar were released in the first few extractions (0-17% 39Ar release), and these younger ages were likely produced by terrestrial weathering. Either atmospheric or trapped meteoritic 36Ar also seems to have been released over ~17-30% 39Ar release. The average age for 11 extractions releasing 30-100% of the 39Ar is 4.25 ±0.06 Gyr. The reason for the decrease in age at ~55% 39Ar release is not apparent, as the steady decrease in K/Ca seems inconsistent with a 39Ar recoil effect. This age minimum, 4.13 Gyr, is identical to the inferred degassing age of EET99402, and may indicate a common degassing event for both brachinites. The age spectrum over 20-100% 39Ar release may represent separate partial 40Ar diffusion loss profiles from phases with different Ar diffusion.
properties, as suggested for EET99402. Interestingly, a 40Ar/36Ar versus 39Ar/36Ar isochron plot of those extractions releasing 30-100% of the 39Ar is highly linear ($R^2 = 0.9994$) and gives an age of 4.28 ±0.02 Gyr and a 40Ar/36Ar intercept of −151 ±179. However, the possible negative intercept suggests that this is a false isochron produced by different degassing rates between 39,40Ar produced from K and cosmogenic 36Ar (5).

Angrites. The 39Ar/40Ar ages and K/Ca ratios as a function of cumulative release of 39Ar for angrites LEW86010 and D’Orbigny are shown in Figs. 2a and 2b. Although LEW86010 contained 80 ppm K, its Ar-Ar age spectrum is highly disturbed. Only the first extraction (0-13% 39Ar) suggests the release of significant amounts of terrestrial Ar. The 36Ar/39Ar and 36Ar/38Ar ratios are relative constant for most other extractions, suggesting the release of only cosmogenic Ar and not atmospheric or trapped 36Ar. The young Ar-Ar ages and higher K/Ca ratios for the first few extractions were most probably produced by terrestrial weathering, and we have observed similar effects in some LEW eucrites. The major decrease in age at ~75% 39Ar release is probably not caused by 39Ar recoil, as K/Ca increases here. It appears that even higher temperature K-bearing sites in LEW have been altered by either Antarctic weathering or impact heating on the parent body. It is surprising that these effects have not been observed in other isotopic chronometers. The D’Orbigny sample had very low K (10 ppm) and high Ca, making the reactor correction to 39Ar very large and the Ar ages quite uncertain. Only the first extraction (0-12% 39Ar) released obvious terrestrial Ar, and extractions releasing 29-100% of the 39Ar show constant 36Ar/37Ar and 36Ar/38Ar ratios indicative of only cosmogenic Ar. D’Orbigny suggests a sample ~4 Gyr old which has lost a significant fraction of its 40Ar. Angrites may not be dateable by K-Ar.