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Abstract

A deterministic computational procedure for describing the transport of electrons in condensed media is formulated to
simulate the effects and exposures from spectral distributions typical of electrons trapped in planetary magnetic fields.
The primary purpose for developing the procedure is to provide a means of rapidly performing numerous repetitive
transport calculations essential for electron radiation exposure assessments for complex space structures. The present
code utilizes well-established theoretical representations to describe the relevant interactions and transport processes.
A combined mean free path and average trajectory approach is used in the transport formalism. For typical space
environment spectra, several favorable comparisons with Monte Carlo calculations are made which have indicated that

accuracy is not compromised at the expense of the computational speed.
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1. Introduction

The concept of developing a rapid analysis electron
transport code at NASA Langley Research Center (LaRC)
arose from a desire to have a companion code for the
LaRC deterministic transport code HZETRN [I]. The
algorithm developed here for electron transport is based
on the Continuous Slowing Down Approximation (CSDA)
combined with an elastic multiple scattering formulation
to define an electron mean free path and a transmission
function at a given target location. The cross sections
relevant to CSDA and multiple scattering are described
in the following section. The pertinent cross sections are
calculated with well-established theoretical formulas, valid
over the energy range representative of trapped electrons
in planetary magnetic fields. Consequently, a calculation
of positron production and annihilation is incorporated.
The cross section equations are cast in terms of specific
elemental atomic species, from which cross sections ap-
plicable to any user defined molecular system (mono or
polyatomic) are automatically constructed.

Details of the transport formulation are described in
a subsequent section, and are based on motion related
to some initial direction (axis of propagation). Behavior
of slowing and stopping of electrons and their associated
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bremsstrahlung is evaluated in terms of quantities con-
tained in the direction of the hemisphere centered on the
initial direction. The scattering and mean free path cal-
culations permit definition of mean trajectories relative to
the initial motion direction, so that axisymmetric spatial
and energy distributions may be inferred.

Comparisons with the corresponding Monte Carlo (MC)
calculations are shown. The MC cases utilized several
hours of machine time, whereas the LaRC calculations
were practically instantaneous. Despite some difference
in final magnitudes, general functional behavior is consis-
tent in the results. Consequently, the deterministic code
can be reliably used in trade studies where rapid analyses
are necessary.

The present code has the desirable feature that the re-
quired inputs are user defined through files specifying ma-
terial composition along with the incident environment dif-
ferential energy spectra for electrons and photons. Also
included with the code is a permanent atomic database
file which details the pertinent atomic properties. Most
results in this paper are presented for three selected ma-
terials: aluminum (Al), tantalum (Ta), and water (H20).
This selection of target materials was chosen to provide
examples of light and heavy materials in addition to exam-
ples of elemental and compound materials. The materials
were also selected for their uses in space applications. Alu-
minum is a common spacecraft structural material, water
closely approximates human tissue, and tantalum is used
in shielding sensitive electronics from electron and photon
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exposure in the planetary trapped radiation belts.

2. Cross Sections

The theoretical description of propagation of ener-
getic electrons and photons in condensed media requires
some representation of interaction cross sections with con-
stituent atoms of the medium. Application of principles of
quantum and semi-classical physics have gone far toward
providing formulations for electron and photon interaction
cross sections. Although many of these formulations are
mathematically complicated, they are often amenable to
approximation and parameterizations that greatly simplify
their practical application. The following subsections de-
scribe the formulations used here for interactions of elec-
trons and photons.

2.1. Electrons

Free energetic electrons passing through a material are
slowed and may eventually be stopped as they interact
with the fields of the nuclei and bound electrons of the
material. Interactions also result in a change of direc-
tion (scattering). In the present analysis, the electron
deceleration process is expressed in terms of energy loss
by collisions and the accompanying photon production
(bremsstrahlung). The dominant scattering process is as-
sumed to be that of small angle elastic (Rutherford) scat-
tering and is the only scattering process taken into account
in the present formulation.

2.1.1. Collisional Slowing and Stopping

Electron deceleration by collision processes, in which en-
ergy from the projectile electron is imparted to the elec-
trons of the medium, is usually cast in terms of the stop-
ping power, S, which is defined as the energy loss per unit
scaled distance, —dF /dx. Note that the distance z is mea-
sured in units of g/cm?. The resultant expression for the
collisional stopping power has been often referred to as
the modified Bethe-Bloch formula and is given here in the
notation of Anderson [2],

dE

Scol = = 2nr2mec?p' (No Z/A)GrC*, (1)
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(T + mec?)?
Gr=——"+—
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The superscript (4) indicates applicability to both elec-
trons (-) and positrons (4). Here, r. is the classical elec-
tron radius, m. is the rest mass of the electron, ¢ is the
speed of light in vacuum, p’ is the scaled mass density with

distance measured in g/cm?, Ny is Avogadro’s constant, Z
is the atomic number of the material, A is the atomic mass
of the material, T is the kinetic energy of the electron or
positron, I is the mean atomic ionization potential, ¢ is
the density correction term, and A is the shell correction
term. The F* quantity in Eq. is a function only of
projectile energy and is slightly different (a few percent)
for electrons and positrons. The present formulation im-
plements only the F* function that applies to electrons.
It may be written as the sum of three terms [2],

Fr=F~ = fi+ fo— fs, (3)

where

f1:2+21n{ A(Til,
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and

fom 14 (T + 2m562).
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The quantity § in Eq. represents a modification to
the Bethe-Bloch stopping power usually referred to as the
“density correction.” For this work, a parameterized form
of ¢ based on extensive experimental data [3] is used.
The remaining correction term, A, in Eq. 7 is called
the “shell correction” and is only important at low energies
when the projectile electron speed, v, approaches the speed
of a bound electron, v;. Its value, as used in the present
calculations, is given by [4]
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It is seen in Eq. that S.o is unbounded as T" — 0
due to the G factor. To correct the unbounded behavior
as T — 0, the non-relativistic stopping power derivation
provided by Bohr and discussed in the paper by Sigmund
[4] can be used. Bohr’s derivation results in a stopping
power that approaches zero at very low energies and ex-
hibits a maximum. The Bohr formula may be written in
CGS (centimeters-grams-seconds) units as

v
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with n = pNp/A is the number density, p is the mass den-
sity, e is the electric charge, C'y = 2e™7, v is Euler’s con-
stant, wy = I/h, and k is the reduced Planck’s constant.
The kinetic energy at which the Bohr formula for stopping
power exhibits a maximum is found from % =0,

n (b73*) = g



From Eq. ,

b=2%2C, /(2wry/me)

and

2/3
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where T’p is the projectile kinetic energy at peak stopping
power and exp is the base of natural logarithms. If Eq.
is compared with Eq. , the natural logarithm term
in Eq. can be identified with the C* in Eq. . This

gives
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While Eq. applies to T' > T’p, an extension of Bohr’s
stopping power formula to low energies, for T' < Ty, is
provided by Sigmund [4]. For the case of T < T, a simple
functional fit for the collisional stopping power in units of
MeV cm?/g has been derived for the present work,

Seol = Stmax eXp{—O.179 [ln(TB/T)]2'05}. (6)

Three simple materials important to space exploration
applications have been selected to demonstrate results
of the present model calculations: aluminum, tantalum,
and water. These materials were chosen to represent a
broad range of atomic properties and material densities.
The collision stopping powers, as calculated for these sub-
stances over the energy range of the code formulation,
were compared with the stopping powers obtained from
the database tabulations of the National Institute of Stan-
dards and Technology (NIST) [5]. The comparisons indi-
cated that the present formulation is quite acceptable over
the energy range of interest for space applications (0.01 -
1000 MeV), with the largest discrepancies occurring at the
lowest energies for heavy elements [6].

2.1.2. Radiative Energy Loss (Bremsstrahlung)

Accelerating (and decelerating) charged particles lose
energy by photon emission. Elaborate quantum-theoretical
calculations have gone far toward quantifying these
bremsstrahlung cross sections. A detailed description of
the theoretical results is given in Koch and Motz [7]. The
formulation may be greatly simplified by using several pa-
rameterizations; the implementation for this work is essen-
tially the same as that for the default cross sections of the
EGSnrc Monte Carlo code [8]. Several pertinent param-
eters that lead to the ultimate cross section formula may
be defined as [§]

Fo=4 [; n(2) + fc} , (7)

where
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Here, E, is the emitted photon energy and « is the fine
structure constant. The term F. serves to provide a high
energy Coulomb correction. Another parameter defines
the effects of screening in terms of an energy variable [§],

() ) e

which involves the electron total energy, E, = T + m.c?.

The screening functions have been specified as [8]

b1(6,) = 20.867 — 3.2426, + 0.62562 1
17 21,12 — 4.1841n(d, + 0.952) s>1 7

ba(02) = 20.209 — 1.9356, + 0.08652 s <
20T 6a(6s) 55 >

To account for the triplet production process, a param-
eter, £, is introduced which depends upon atomic charge
and involves the Coulomb correction above [8]. A param-
eterized fit for £ in units of cm?/g has been developed for
this work as

— =

3

€ ~ 1.1475in(0.421n Z)+0.12 {[sin(0‘76 In Z)]Q}Z . (10)

The final expression for the cross section for production
of a photon of energy F, by interaction of an electron of
total energy E. on an atom of charge Z may be written as

do,. ar?NoZ(Z+€)
e _ Te 02\ TS g 11
dE, FE, A v ( )
where
E.—E,\*
H, = 1+(E) (1 — F.)

2 <E6E,,

S .
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An obvious energy constraint is that only photons can
be produced that have energy less than the initial electron
kinetic energy. Consequently, do, ./dE, is calculated at
each electron energy T, for selected values of E,, /T [0.001,
0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 0.9, 0.95, 0.98, 0.99, 1.0].
This distribution of energy values has been chosen to ac-
curately resolve the cross section variations at both ends



of the energy spectrum. A source term (, for production
of photons by an electron flux ., may be written in terms
of the bremsstrahlung cross section as

T
((E,,T) = /%(T’)%dT' for E, <T. (12)
E, v

The corresponding energy loss term due to radiative pro-
cesses may be evaluated as

E,
d v,e
Siad = / E, d‘;; dE!. (13)
0 v

Using Eq. , the radiative loss stopping powers for
the three materials selected for this study were calcu-
lated. In contrast to the collision stopping powers, the
bremsstrahlung stopping power is greater for higher charge
elements and increases monotonically with energy. The
logarithmic stopping power for the present approximate
formulation is nearly linear with the logarithm of the en-
ergy and begins to have substantial effects for kinetic en-
ergies greater than a few MeV. Comparison with NIST
[5] data revealed some disparities at low kinetic energies
(T < 0.1 MeV) [6], but, as will be shown subsequently in
Sec. bremsstrahlung effects on the general transport
process have a significant impact only for kinetic energies
greater than several MeV.

2.1.3. Multiple elastic scattering

Strict conservation principles require that electron-atom
interactions generally result in energy exchange accom-
panied by re-direction with respect to spatial variables.
Approximations that tend to decouple energy loss pro-
cesses and directional changes greatly simplify electron
transport analysis. In the present work, these processes
are made practically independent. Energy loss is specified
by collision and radiative losses without regard for direc-
tional change, while projectile trajectories are described by
elastic scattering interactions. Such assumptions call for
careful scrutiny with regard to both broad energy spectra
and the wide variety of material types. Some precedents
have been set in earlier works [0, [10] in which such ap-
proaches have been used. In the present formulation, the
elastic (Rutherford) scattering cross sections, og, are im-
plemented as a basis for calculating an electron transport
mean free path,

_ P
>\tr - TLO’R7 (14)
where n = pNy/A is the number of scattering centers per
unit volume in the medium. The present development
closely follows that of Kawrakow and Rogers [§], in which

the screened Rutherford cross section is given as

Ze2(T + mec?)
g T(T + 2mec?)(1 —cos@+1/e) |

(15)

where 6 is the scattering angle and € is a parameterized
screening function,

€ ~ 1413[(1 4 T/moc®)? = 1)(Za)~%/3.
Integrating Eq. over all scattering angles to obtain

the total cross section allows the electron transport mean
free path to be written as [6]

Mr = p/nogr
_ A (T? + 2T'm.c?)?
27 Npet Z2 [In(2€) — 1(T + mec?)?’

The above quantity will be dealt with in the subsequent
section on the transport algorithm. Note that the behav-
ior of the transport mean free path increases monotoni-
cally with kinetic energy and is nearly logarithmically lin-
ear with the log of the kinetic energy, having generally
higher values for lower atomic weight elements.

Another parameter related to elastic multiple scattering
is the mass scattering power [I1]. This quantity is analo-
gous to stopping power, but refers to solid angle scattering
rather than energy loss. The mass scattering power is de-
fined in Li and Rodgers [11] as

(16)

2rem?2ctZ(T + mec?) 2 Ny

P, = —Y (0 17
s ™ T(T+2m862) 7 ( r)v ( )
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The mass scattering power is used in the transport al-
gorithm to relate electron traversal on a specific trajectory
to the axial penetration distance. The above formulation
predicts a nearly linear monotonically decreasing variation
of the logarithm of scattering power with the logarithm of
energy.

2.2. Photons

Bremsstrahlung photons produced by electron-atom in-
teractions are attenuated and absorbed in the transport
medium. In the present work, only the three most im-
portant processes involved in photon energy degradation
and absorption are considered: photoelectric absorption,
incoherent scattering, and electron-positron pair produc-
tion. These processes are dominant for different energy
ranges, but when taken collectively, they closely approx-
imate the total attenuation for the energy range consid-
ered here (0.001 - 1000 MeV). The contribution due to
coherent (or Rayleigh) scattering has not been included in
this analysis since it does not significantly add to the total
cross section over the energy range of interest (0.001 - 1000
MeV).



2.2.1. Photoelectric Absorption

Photoelectric absorption involves interactions of a pho-
ton with a bound electron in which the photon energy is
absorbed with a corresponding kinetic energy increase for
the electron. The detailed evaluation of the photoelectric
cross sections requires the use of complicated atomic mod-
els in sophisticated solutions of the Schrodinger equation
for all energies and elements under consideration. For the
present formulation, liberal use is made of parametric fit-
ting formulas devised from the extensive calculations and
tabulations provided by NIST [5]. First, the energy values
for the absorption discontinuities of the K and L shells
have been approximated as

Ex =~ 5.435 x 1073222038 eV
Ep ~ 1.5754 x 1074225984 keV

(1<2<92), (18)
(30 < Z < 92).

Note that energies in this section are in keV, and L-edge
energies are only considered for Z > 30. In addition, only
the discontinuities due to the K and L shells have been
considered. The discontinuities (edges) due to the elec-
tronic shells occur at values of the photon energy corre-
sponding to the binding energies of electrons involved in
the interaction. When the incoming photon has an energy
greater than the binding energy of a given atomic shell or
subshell, a discontinuity may occur.

At the edge discontinuities, the NIST data has also been
used to develop formulas for the upper (u) and lower (1)
values of the photoelectric cross section:

Oku = T165.5E 5™ cm? /g, (19)
o1 = 593.59E 3% cm? /g,
oLy = 9620.6E, 1213 em?/g,
op = 1633.5E, 1212 cm?/g.

Examination of typical photoelectric cross sections re-
veals that the logarithmic slope,

d(ln UPE)
din E,)’
is very nearly constant for a given atomic system between
absorption edges. Using NIST [5] cross section data,

parametric fits were used to approximate the logarithmic
slopes.

m =

For E, > Fk:

-3 _ <
i — { 6.9068 x 10732 —3.014 Z <10 (20)

—3.31477~0-08156 Z > 11

For .1 keV < FE, < Fg:

For all Z and Fx < E, < 10000 keV:

E,\ME
OPE = OKu <E;> : (22)
For Z > 29 and E;, < E, < Fk:
EN\MF
OPE = OLu (-EL> . (23)

An extension to energies less than the lowest edge en-
ergy considered was extrapolated with a power law func-
tion approaching an asymptote based on an extrapolated
maximum absorption cross section. For Z < 29 and for
energies below the K-edge, an asymptotic cross section is
calculated using the average ionization potential,

I\
O] = 0Kl (.EK> . (24)

The extrapolation formula is then

T 14 ApEE’

where the exponent p and coefficient Ap are given by

OPE (25)

mg Ap: (O’]/UKl)fl

7(0’}([/0‘[>—1’ Eé){

These constants are found by matching the cross section
and the slope at the K-edge. For Z > 29, the low energy
extrapolation below the L-edge is found by using an L
subscript instead of K in Egs. -.

For the three selected materials, the photoelectric cross
sections, as calculated with the present parameterization
were compared with their NIST [5] counterparts and agree-
ments were considered to be fair to good [6].

(26)

2.2.2. Inelastic Photon Interactions

As the photoelectric absorption coefficient decreases
rapidly with increasing energy, the next process to domi-
nate is when the photon imparts a portion of its energy to
an electron resulting in scattering of a lower energy photon.
The process is referred to as inelastic (incoherent) scatter-
ing. The cross section formula for release of an electron of
kinetic energy T, by a photon of initial energy F, has been
taken from Anderson [2] as the free electron Klein-Nishina
process. The energy constraints are 0 < T, < Tiax Where

2F?
Tax = —_—.
mec? + 2F,

Here, T, is the kinetic energy of the emitted electron and
FE, is the incident photon energy. The cross section for-
mulation is

dO’KN o N()Z 7T’I“g
dT., A ¢FE,

R\? RT, 2
24+ (= - 27
+(q) - E, qR @7)




with

In order to render the cross section applicable to bound
atomic electrons, elaborate quantum theory calculations
are required. Such considerations are only appreciable at
lower photon energies. For this work, a parametric mul-
tiplying function has been developed to approximate this
effect,

o (28)

[Bg*B;L 11’1(Z)]
In B(Z,E,) = — {Blln(z)“ﬂ

E,

where By = 0.471, B, = 1.5184, B3 = 1.003, and
B, = 0.13317 when E, is given in units of MeV. The final
inelastic scattering cross section then becomes:

doin doxn
=®(Z F, .
dT, (2, Ey) dT.,

For each FE,, the total inelastic cross section is found by
integration over the appropriate emitted electron energy;

(29)

Tmax
do in

T’ (30)

Oin =
0

As a function of incident photon energy, the total inelas-
tic cross sections, calculated with the present model, were
compared with the corresponding NIST [5] values. The
model approximation was in better agreement for lighter
materials. An exception occurred at higher energies where
the model formulas are slightly inaccurate [6]. However,
in this energy range, the inelastic cross section does not
contribute appreciably to the total photon attenuation, as
will be subsequently shown in Sec.

2.2.3. Pair Production

Electron-positron pair production may occur when a
photon of sufficient energy interacts with a strong localized
Coulomb field. The photon initial energy is transformed
into the combined rest mass of the newly created particles
(2m.c?), with any remaining energy appearing as kinetic
energy of the new particles. A comprehensive description
of the process may be found in Motz et al. [12], where a
variety of cross section quantities are derived for several
aspects of the phenomenon. The formulation from Li and
Rogers [11], chosen for use in the present work, applies to
the cross section for production of a positron of total en-
ergy E, by a photon of initial energy E,. Only positron
production associated with pair production is considered
in this work. The positron production differential cross
section may be written in simple terms as

No ar?Z(Z +¢)

do

where

Q1 =[E} + (E, — E4)*|[¢1 — F.l,
and

Q2 = §E+(Eu —Ey)[¢2 — Fel.

The terms &, ¢1(8"), ¢2(6’), and F, are the same as for
the bremsstrahlung cross section, Eqgs. —, with the
exception that the value of ¢’ is determined as

_ 136m.c*E,
ZBE (B, — By)

Energy conservation constrains the positron energy as

6/

(32)

meCQ < E+ < Thax + m6027

with

Tomax = By — 2mec?.

The above formulas for pair production become some-
what inaccurate as the pair production threshold is ap-
proached. Consequently, a power law function is fit at the
first energy grid value greater than 4 MeV (= Ej4, see be-
low). Now, the low energy pair production cross section is
given as

opp = App(E, —1.03)Y  for 1.03 MeV < E, < E4, (33)

with
y— Qv E,—1.03
dE, Ei=E, opp(Es)
and
A = opp(Es)

PP (By —1.03)y"

A source term for positron production may be derived
in a manner similar to that described for production
of bremsstrahlung photons. See Eq. . For a pho-
ton differential flux spectrum ¢, (E,, ), positron produc-
tion may occur between energies Fypmin = 2m.c? and
Eppmax = Eymax — 2mec?, where E, max is the highest
photon energy value considered. The expression for the
source term becomes

Epp,max
!
Pv (Ew .7;)

pPp,min

dopp
dE,

C(Ey,z) = dE,. (34)

E

It should be noted that in parallel with the positron pro-
duction process, a similar cross section expression applies



to the creation of the partner electron, along with the cor-
responding source term for secondary electrons. Just as
for the inelastic process, the pair production cross section
may be found by integrating Eq. over the allowed
positron energy ranges, namely from m.c? to E, — m.c?.

Results of pair production cross sections, as calculated
from the present model were compared with the appro-
priate NIST [5] values. Agreement was very good except
for energies near the threshold region where the power law

extrapolation formula was invoked [6].

2.8. Cross Section Implementation

The individual cross sections described previously are
used in combination to provide three critical parameters
essential for description of the electron-photon transport
process. The ultimate slowing and stopping of electrons is
governed by the total stopping power obtained from the
sum of the collision and radiative stopping powers. The
collision process dominates at low energies (less than ap-
proximately 1 MeV). Here, the radiative process assumes
the dominant role at high energies (greater than approx-
imately 1 MeV). A transitional minimum occurs in the
neighborhood of 1 MeV where the lower energy inaccura-
cies in the radiative stopping power of the present model
have insignificant impact on the total stopping power.

The general attenuation and extinction of photons in
a medium is found to be closely related to the sum of
the photoelectric, inelastic, and pair production cross sec-
tions. In the present model, the coherent (Rayleigh) scat-
tering processes were not considered because of their rela-
tive unimportance in space radiation effects. The inaccu-
racies in the inelastic cross sections at energies larger than
approximately 100 MeV have insignificant impact on the
total attenuation of photons due to the pair production
process dominating at higher energies [0].

The final parameter of importance to the electron-
photon transport process is that of the photon energy de-
position coefficient which is used to calculate effective pho-
ton dose. See Eq. in Sec. This relates to those
fractions of the photon attenuation processes (fpg, fin,
fpp) that produce secondary electrons. For photoelectric
absorption, it is assumed that the secondary electron is
emitted with the same energy as the incident photon (i.e.
the binding energy of the released electron is neglected)
and the value of fpg is unity. In the case of inelastic scat-
tering [13],

where E, ;, is the energy of the photon produced in the
inelastic process initiated by a photon of energy FE,. For
the pair production process, fop = 1 — 2m.c*/E,,.

An additional reduction in the photon energy deposition
coefficient is required to discount secondary electrons that
subsequently produce additional bremsstrahlung. In the
present model, this factor is represented by (1—Srad/STot ),

where Stot = Siad + Scol - This factor is only applied to
the inelastic and pair production processes, so that the
model expression for the total photon energy deposition
coefficient becomes [13]

Tmax,in
Srad dUin !
en — 1 - in ’ dT
ften = OPE +/ ( STot)f I
0
Tmax,pp g J
rad Opp 4
1-— ——dT
+ / ( STot )fpp dT/ 9 (35)
0

where the upper limits on the integrations apply to the
maximum allowed emitted electron energies for the re-
spective processes. The energy deposition coefficient is
described in detail in the X-Ray Data section of the NIST
website [5].

3. Transport Formulation

In the present work, the general transport process is
focused principally on the description of the penetra-
tion of a primary electron field along with secondary
bremsstrahlung photons generated by electron-atom
interactions. For electrons, an essentially one-dimensional
formulation is developed with some reference given to
the effects of radially symmetric scattering. While the
electron propagation is determined by the stopping
powers, the photons are assumed to be transported along
the direction of travel of the electrons. Photon intensity
is governed by the radiative transfer equation [14], which
utilizes the calculated attenuation coefficients.

3.1. Electrons

A quantity of fundamental importance in describing the
transport of electrons in matter is the maximum distance
of travel, which is determined from the energy loss stop-
ping powers calculated from the modified Bethe-Bloch and
bremsstrahlung formulas in Egs. and . This quan-
tity is referred to as the CSDA range R(E). For a given
energy, E/, the CSDA range is defined as

raE f dE
F) = = .
R( ) /STot /Scol+Srad (36)
0 0

The inverse of the R(E) function, R~!(E) = E(R), may
be used to construct the variation of dE/dx as a function
of distance traveled by an electron of initial energy Fj.
Such a function, S(Ey, x), is analogous to the usual Bragg
curve, but neglects straggling and measures energy loss as
a function of distance traveled along the particle’s path
rather than perpendicular depth in a material. Straggling
is accounted for after the incorporation of the statistics




associated with scattering. The residual energy of an elec-
tron, at position s, is given by

S

R
W(s) :/S(Eo,x)dw—/S(Eo,x)dx
0 0
=FEy— | S(Eo,z)dz, s<R. (37)
/

For a beam of mono-energetic electrons, it is assumed
that the maximum distance traversed is the CSDA range
and straggling is neglected. However, the average distance
of penetration along the beam axis direction is generally
less than the CSDA range due to multiple scattering ef-
fects. The average deflection for a unit path length can
be defined by the inverse mean free path (A\;,*) [9] which
yields

S

d(z) ds’
(cost) = ——"~ =exp |— | —— (38)
ds 0/ Aer(s))

and

’
S S

(2(s)) = / exp |- / Afé) ds’. (39)

0 0

In general, (x) is defined to be the arithmetic average of
the variable z. For electrons, (z(R)) is interpreted as an
“effective range” or the axial distance at which 50% of the
electrons have stopped and takes place at the z-value for
which the transmission is 0.5.

A further critical assumption is made by specifying a
Gaussian distribution about (z(R)), where (z(R)) is the
distance of peak electron population. In addition, it is
assumed that practically all electrons are stopped at z =
R(FE). This Gaussian represents the variation in electron
path length due to multiple scattering effects. By invoking
the formula for half-width of the Gaussian distribution, a
value for deviation, X, is found as [I5]

_ R—(2(R))
"= 222 (40)

The resultant Gaussian function may be interpreted as the
probability that an electron penetrates an axial distance z
within increment dz,

P(z) = N\}% exp {_[zé;(f)}]} . (41)

Integration of the Gaussian function results in an er-
ror function prescribing the number of particles having

stopped over distance z. The complementary error func-
tion [16] results in the corresponding transmission func-

tion,
n(z) = 0.5 {1 —erf [W] } . (42)

For simplicity, a special algorithm for the standard error
function has been utilized in the present code [17].

In addition to specifying the transmission probability of
electrons as a function of axial penetration distance z, it
is necessary to evaluate the variation of primary electron
energy as a function of z. A formula has been developed
[10] in terms of the moments of the mass scattering power
that expresses, in cylindrical coordinates (z,r), the dis-
tance covered for an average electron trajectory having
axial distance z and deflection radius r. The moments are
calculated as

z

a; = /Ps(u)(z —u)'du, (43)

0

with P given by Eq. . The moments are then used
to derive an equation [I0] for distance along an average
trajectory passing through (z,7),

z

s(z,r) :/

0

Nl

1+a0(z/)+< - —1) “%(Z/)] dz'. (44)

as(z) as(2")

The quantity /a2(z) has been identified [10] as the half-
width at half-height of the distribution of deflection radius
at axial distance z. This observation leads to the infer-
ence that a “most typical” trajectory intersects the point
(2,4/az). The third term in Eq. then vanishes. An

“average mean path” now becomes,

(s(2)) :/,/1+a0(z')dz’. (45)
0

Reference to Eqgs. and shows that the relation-
ship between the mean axial distance and average mean
path is such that (z) < z < (s). An average residual
energy (W) may be associated with an average distance
along a path length (s) by again interpolating on a table of
CSDA range-energy relations. However, the interpolated
value (W) reaches zero before z = R is attained because
(s) is a value that includes average deflection and z = R is
the axial distance traveled in the continuous slowing down
approximation assuming no angular deflection. The axial
penetration, however, may extend beyond the distance at
which (W) vanishes due to energy straggling. A provision
for energy straggling is supplied by introducing a power
law function of the form

(W) = Ay (R — 2)k. (46)



This formula is invoked somewhat arbitrarily for z-values
for which (W) < 0.5 Wespa. When this condition per-
tains, the constants A,, and k are evaluated by point-slope
matching at the z-value where (W) = 0.5 Wegpa.

In going from the boundary to distance z, particle num-
ber conservation requires that ¢(0,79)0Ty = ¢(z,T)0T,
where the energy scaling corresponds to that prescribed
by the CSDA range-energy relation for the material. In
general, Y is defined as a small, finite difference in the
value of Y. The above transport parameters, along with
particle number conservation, may be used to devise an
expression for the differential flux spectrum of electrons,
©(z,T), at distance z with kinetic energy T, given the
initial spectrum at z = 0 with initial kinetic energy Tp,

@(Oa TO):

¢(0, To)n(2)S(To)
S(T)
In addition, the transmission function n(z) is used to ac-
count for particles not arriving at z due to interaction not
accounted for in the stopping power. Division of the ki-
netic energy increments by distance increments leads to an
expression in terms of stopping powers in Eq. . Thus,
for a slab of thickness w, the differential spectrum of pri-
mary electrons may be found at any axial distance z < w.
If primary electrons are the only concern, the calcula-
tion could end with Eq. . However, bremsstrahlung
photons are generated during the transport process. In
order to take this process into account, a spatial grid is
established within the slab layer. In the present code, a
slab layer is assigned a spatial grid, normally of 20 to 30
points, with spacing increasing monotonically according to
the following formula,

d; = ( Jif_ll)Qw. (48)

Here, d; is the depth in the material slab of the ith point
and N is the total number of points in the spatial grid of
the slab. The photon source term may then be calculated
at each spatial grid point as

o(z,T) = (47)

T(d:)
((Eus) = [ o) Fetar’ (19)
78] 1 - (pe dEV .
E,

Finally, the primary electron spectra provided by the
present code are calculated at each spatial grid point as

(0, Eo)n(ds, Eo)S(Ep)
Sﬁe,z(dzv T) = S(T)

Implementation of Eq. for the illustrative low Earth
orbit (LEO) spectrum [I8] normally incident on aluminum
provides the results shown in Fig. [I| (the environment spec-
trum is labeled Z = 0.0). The stopping of low energy elec-
trons and the transfer of high energy electrons to lower
energies is evident in the spectral functions at increas-
ing penetration depths. Similar results for Jovian trapped

(50)
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Figure 1: LEO electron spectra at several aluminum thicknesses.

electrons in the vicinity of Europa in aluminum are shown
in Fig. 2l using an environment from the NASA Jet Propul-
sion Laboratory (JPL) Galileo Interim Radiation Electron
(GIRE) Model [19]. The much greater penetration and
more gradual attenuation is clearly evident for this very
high energy environment. The peak in the flux occurs be-
cause low energy electrons are more likely to be stopped in
aluminum which appears as a decrease in flux at low en-
ergies. High energy electrons, on the other hand, will be
shifted to lower energies but not lost from the spectrum
which leads the shift in the peak of the flux to higher en-
ergies with a decrease in peak flux.

3.2. Photons

In the previous section on cross section evaluation, it
was shown that a spectral source term for bremsstrahlung
photons may be calculated. See Eq. . When the dif-
ferential electron flux spectra is specified as a function of
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Figure 2: Europa electron spectra at several aluminum thick-
nesses.



axial distance z, a corresponding photon flux may be de-
termined using a solution of the radiative transfer equa-
tion for an emitting-absorbing medium [14]. In addition
to the source function, the total attenuation coefficient is
required. The total attenuation coefficient is the sum of
the relavant cross sections,

(51)

The photon flux spectrum at each spatial grid point d;
then involves integration of the source term multiplied by
the attenuation factor;

OTot = OPE + Oin + Opp-

d;
ui(di, E)) = /((a:,El,)exp [—orot(d; — x)]dx.  (52)
0

Photon spectra for the case of the Europa spectrum are
illustrated in Fig. 3| and correspond to the electron spec-
tra Fig. The persistence of higher energy photons at
large aluminum depths is indicative of their highly pen-
etrating nature. The minimum and maximum values of
the flux at low energies are due to the discontinuity in the
photoelectric absorption cross section.

3.8. Positrons

Ordinarily, exposure effects due to space environment
electrons may be adequately evaluated from specified elec-
tron and photon flux values at a given target location.
The pair production contribution to the energy absorp-
tion coefficient should provide a fair estimate of exposure
due to positrons. However, if details of specific positron
interactions are of interest, it becomes necessary to include
explicit transport of the positrons and their associated an-
nihilation photons. In the present code, source terms and
flux for positrons are evaluated, along with source terms
for the annihilation photons, in an uncoupled manner with
a view toward allowing the user to assess the relative im-
portance of the presence of positrons. The positron source
term, ((E4,z), has already been given as Eq. . These
antimatter particles have a “sink” term by annihilation
with the constituent bound electrons of the medium. This
term may be represented as [§]

N, 71'7"3
Ne Uann(T) - Te+2

{7’24—67'—1-6

1) hy — h2] , (53)

where NN, is the number of electrons per unit mass of ma-
terial and oann(7) is the total annihilation cross section,
with

hlzln{7+1—|—\/7'(7'—|—2)],
T+4

ha

10

and 7 representing the positron kinetic energy in rest mass
units (0.511 MeV).

Positrons initially at spatial location z; arriving at xz; +
dx with energy E; began traversal of this increment at a
higher energy, Eg = E(R + dz), where R is the residual
range at x; + 0x. The CSDA process over the interval dx,
with no loss of positrons requires that

¢(Eo,x:)S(Eo) = ¢(Ej, i41)S(Ej). (54)
When annihilation takes place, the fraction of positrons
from the incident spectrum lost in distance dz is

oz
Ar(dx) = exp f/Ne Cann [E (Rj + x/)} dz’ % . (55)
0
The positrons transmitted through interval §z is then

(Ej,x; + 67) = psAr(6x)@ [E (R, + 6x) 2], (56)
with
S[E (Rj + éx)]
S(Ej)

Additional contributions to the positron flux at z;+1 =
x; + 0z arise from the distributed sources in the interval
that must include an additional annihilation factor, Ag;

ps =

dx

o) (B, x + 0x) = / ([E(R+a), x4z |Ag(z )z, (57)
0

with

Ag(z) = exp —7Ne Cann [E (Rj —|—x”)} dz’ . (58)
0
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Figure 3: Photon spectra from Europa electrons [19] at several
aluminum thicknesses.
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Figure 4: Positron flux at selected thicknesses in aluminum for
Europa spectrum [I9]. The curves for a depth of 8.89 g/cm?
and 15.3 g/cm? overlap above 1 MeV.

Here, Ag is the fraction of positrons lost from the positrons
created in the distance increment.

The total positron flux, g.+ = ® 4 ¢ is calculated
in the code by numerical integration procedures applied to
each of the established spatial grid intervals. Results for
the Europa spectrum for selected thicknesses in aluminum
are shown in Fig. [f] and may be compared with the corre-
sponding photon flux of Fig.|3] The peak in the positron
flux shown in Fig. [4] occurs at a positron kinetic energy
of approximately 1 MeV. This peak in the positron flux
is due to a minimum in the stopping power model at 1
MeV [6]. It is seen that the positron flux is a relatively
small fraction of the governing photon field and that the
uncoupled calculation is justified.

When the positrons are annihilated, photons are gener-
ated in accordance with the differential cross section [§].

dOann wr?
= 3 2 — 59
B,  r(r+2) [q(k) + q(T +2 — k)], (59)
where
1 T+1 1
== 2+2 |
q(:v) T (T Tt T+ 2 x) ’

with 7 and k being the positron kinetic energy and the
photon energy, respectively, in units of electron rest mass.
The annihilation photons are restricted by kinematics to
an energy range of

Me
14+a

m
S Eu,ann S 1_7(;,’

(60)

where

T+2
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Figure 5: Annihilation photon source for Europa spectrum [19]
in aluminum.

Finally, a source term for the annihilation photons per unit
mass of material may be expressed as

Tmax

Cl/,ann(EuafE) = (,D(EJF,(E)

Tin

dJann

dE,

dT,.  (61)

Production of annihilation photons occurs with the
highest probability near the electron/positron rest mass
energy. For the Europa case of Fig. @] the annihilation
photon source terms calculated according to Eq. are
shown in Fig. 5| and exhibit the expected peak at 0.511
MeV. Since this contribution is small relative to the other
processes, these photons are not transported in the present
formulation.

4. Dosimetric Calculations and Comparisons

The conventional radiation dose for ionizing radiations
in matter is defined as the energy imparted to a mass
element of the material by the particles traversing the
elemental mass. In general, only energetic charged
particles are responsible for the energy transfer. The
“dose” attributed to uncharged particles (e.g. photons,
neutrons) results from the charged particles generated
within the medium by the neutrals.

4.1. Electron and Photon Dose Evaluation

Energy deposition of electrons is calculated by multi-
plying the local flux (differential in energy) by the total
stopping power and integrating over energy. The dose at
a given location is given by

D.(w) = [ oulo E)S(ENE. (62)
0



In Eq. , FE represents the electron energy at position x.
The local differential flux, ¢, has units of electrons/(cm?
MeV). The stopping power, S, has units of MeV c¢m?/g,
while the units of D, are MeV /g which may be converted
to cGy or rads upon multiplication by the conversion fac-
tor 1.602 x 1078, For photons, absorbed dose is charac-
terized by the energy deposition coefficient, fie,, which is
described in Eq. and is expressed herein as a mass ab-
sorption coefficient with units cm?/g. The dose attributed
to photons is then

oo

Dl/(x) = /Men E, @V(Euax)dEu-
0

(63)

The use of e, to calculate effective photon dose (as is
done in the present code) is a simplistic approximation
method that has been widely used and considered to be
an adequate representation of this dose contribution [2, [5].
This approximation assumes that all the energy deposited
by photons is deposited by charged particles at the point
of their production. A more direct evaluation would be
to use the appropriate cross sections for generation of
secondary electrons (opg, o, and opp) to compute re-
spective source terms in the manner expressed in Eq. .
The corresponding flux terms could then be determined
using procedures analogous to that described for the
positron transport in Egs. —. Such modifications
may be considered for future upgrades if the additional
complexity appears to be warranted.

4.2. Sample Calculations and Comparisons

Calculations performed with the present code were se-
lected to examine the behavior of trapped electron spectra
interacting with light and heavy materials. The chosen
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Figure 6: Comparison of LaRC results in aluminum with ITS
[20] for LEO spectrum [I8]. The results for ITS and LaRC over-
lap for electrons above approximately 2 g/cm? of aluminum.

12

electron environment spectra (boundary conditions) are
shown in Figs. (1] and [2| and represent, respectively, the
environment in LEO (400 km, 51° inclination) [I8] and
the environment in the vicinity of the orbit of the Jovian
moon Europa [I9]. The initial environment is shown as the
curves labeled Z=0.0 in Figs. [I] and [2 along with the flux
spectra at various depths in aluminum. After transport
through the shield medium, the doses have been evaluated
in silicon to simulate exposure of a solid state device.

The Integrated TIGER Series (IT'S) Monte Carlo code
[20] was used to calculate dose for the LEO spectrum elec-
trons on aluminum at normal incidence for several depths.
The identical scenario was used with the LaRC determin-
istic code and the results are compared in Fig. [6] The
LaRC code gives generally lower values for the dose ver-
sus depth functions than the Monte Carlo results, but the
functional behavior is very similar. Greater differences are
to be expected for the low energy spectra of LEO because
scattering processes are more prominent in the transport
process and are treated differently in the two calculations.

For higher energy electron spectra, sample application
comparisons have been made for a Jovian electron environ-
ment generated by the NASA-JPL GIRE model [19]. The
relevant spectrum is shown in Fig. [2| as the curve labeled
Z = 0.0 and represents electron flux in Jupiter’s equatorial
plane at the average orbital distance of Europa. The nor-
mal incidence on a semi-infinite slab scenario was used for
the materials aluminum, tantalum, and copper-tungsten
(50%-50%) alloy. The previous LEO spectrum exhibited
very few electrons above 5 MeV, whereas the Europa elec-
trons may have substantial population up to and beyond
100 MeV.

The dose versus depth curves for the Europa spectrum
are given in Figs. and [9] for the specified materi-
als. In general, the LaRC deterministic calculations show
improved agreement with the corresponding Monte Carlo
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Figure 7: Comparison of LaRC results in aluminum with ITS
[20] for Europa spectrum [19].
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Figure 8: Comparison of LaRC results in tantalum with ITS
[20] for Europa spectrum [19].

results compared to the lower energy LEO environment.
The range of scaled thickness for the Europa cases is from
0.5 to 20 g/cm?. It is seen that electron stopping is prac-
tically complete at the end of this thickness range, after
which the bremsstrahlung contribution dominates.

5. Concluding Remarks

The electron/photon transport code described here has
been developed with a view toward simplicity and speed
in analysis of exposure from space environment electrons.
In its present form, the code may be implemented to great
advantage in shield material trade studies, numerical and
statistical experiments, uncertainty analyses, etc., despite
some observed differences with Monte Carlo comparisons.
Numerous comparative calculations, in addition to those
reported here, have been performed with similar degrees
of agreement as those presented in the text. In particular,
calculations for the trapped Jovian environment compare
more favorably with corresponding Monte Carlo results
than do the comparisons for the much lower energy-range
spectra of LEO. This fact suggests that the deterministic
formulas for low-energy scattering should be improved in
future versions.

There are several areas in which improvements to the
code are being considered. The various cross section com-
parisons with NIST [5] calculations show several instances
where the LaRC code cross sections may be improved
by introducing selective correction terms, even though
the cross section deviations noted have little impact on
final exposure results. With regard to transport, the
present code is amenable to immediate extension to a two-
dimensional axi-symmetric representation. In addition,
more explicit details pertaining to very high energy pro-
cesses involving positrons and their annihilation photons
may be obtained by a formal coupling of these species to
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Figure 9: Comparison of LaRC results in W-Cu alloy with ITS
[20] for Europa spectrum [19].

the general electron/photon transport. Although no sig-
nificant errors are indicated as a result of the decoupling of
positron and annihilation photon transport for the Jovian
spectral environments, use of the present code for high en-
ergy beam simulation or cosmic ray shower analysis would
most likely require full coupling of these processes. It is
therefore natural to anticipate code upgrades and exten-
sions in the near future.
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