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NASA’s Inflatable Re-entry Vehicle Experiment (IRVE) II successfully demonstrated an 

inflatable aerodynamic decelerator after being launched aboard a sounding rocket from 

Wallops Flight Facility (WFF). Preliminary day of flight data compared well with pre-flight 

Monte Carlo analysis, and a more complete trajectory reconstruction performed with an 

Extended Kalman Filter (EKF) approach followed. The reconstructed trajectory and 

comparisons to an attitude solution provided by NASA Sounding Rocket Operations 

Contract (NSROC) personnel at WFF are presented. Additional comparisons are made 

between the reconstructed trajectory and pre and post-flight Monte Carlo trajectory 

predictions. Alternative observations of the trajectory are summarized which leverage flight 

accelerometer measurements, the pre-flight aerodynamic database, and on-board flight 

video. Finally, analysis of the payload separation and aeroshell deployment events are 

presented. The flight trajectory is reconstructed to fidelity sufficient to assess overall project 

objectives related to flight dynamics and overall, IRVE-II flight dynamics are in line with 

expectations. 

Nomenclature 

αtotal = Total angle of attack, degrees 

CA = Axial force coefficient 

CN = Normal force coefficient  

CY = Side force coefficient 

Cm = Pitching moment coefficient  

Cw = Yawing moment coefficient  

Cl = Rolling moment coefficient  

I. Introduction 

N August 17, 2009 NASA Langley Research Center‟s Inflatable Re-entry Vehicle Experiment II (IRVE-II) 

successfully demonstrated the use of an inflatable aerodynamic decelerator. IRVE-II is a build-to-print re-flight 

of the IRVE-I mission
1
 launched in 2007. While IRVE-I suffered a flight mishap while separating from the 

sounding rocket, IRVE-II was a resounding success. IRVE-II was launched aboard a Terrier-Black Brant IX 

sounding rocket from NASA‟s Wallops Flight Facility (WFF). Spin stabilized at 3.5 Hz the inflatable aeroshell was 

deployed exo-atmospheric and entered the atmosphere unguided. The following details the post-flight reconstruction 

analysis performed for this mission. 

While data was collected for the entire trajectory, the IRVE-II experiment was defined between 80km and 40 km 

altitude. Therefore, an inflated view of this region between 416 seconds and 446 seconds after launch is provided. 

Pre-flight trajectory analysis and predictions used 2σ bounds; as such, the bounds of simulated Monte Carlo results 

are included in many of the following plots. Note that the 97.72 percentile denoted in the plots is equivalent to two 

standard deviations past the mean for a Gaussian distribution, the probability that a value is within ±2 standard 

deviations of the mean is 95.45, the number also commonly associated with “2σ”. The 99.87 percentile is equivalent 

to three standard deviations past the mean. 

II. Quick-Look Trajectory 

Quick-look trajectory data was provided by WFF several hours after the launch of IRVE-II. This data included 

altitude, horizontal range, and velocity from time of launch until 1093.5 seconds into flight. As a preliminary 

                                                           
1
 Project Engineer 

2
 Vice President, Analytical Mechanics Associates, Inc, AIAA Member 

O 



 

American Institute of Aeronautics and Astronautics 
092407 

 

2 

evaluation of the performance of IRVE-II, the quick-look trajectory is compared to the pre-flight simulation Monte 

Carlo results. The velocity included in the quick-look data is combined with the nominal GRAM07 WFF Range 

Reference Atmosphere (RRA) for the month of August to give an estimate of Mach. Plots of altitude, velocity, Mach 

number and downrange distance are shown in Figure 1. 

During the period of the experiment the quick-look data falls between the 50 and 97.72 percentile bounds of the 

pre-flight Monte Carlo simulation. As can be seen in Figure 1 (b), IRVE-II separated from the sounding rocket 

booster at 90 seconds with a higher than predicted nominal velocity. This correlates well with the higher than 

nominal altitude and downrange also seen and is a preliminary indication that IRVE-II performed within the 

predicted 2σ trajectory bounds. 

III. Trajectory Reconstruction 

In order to assess the performance of IRVE-II, data from the flight is used to reconstruct a Best Estimate 

Trajectory (BET). The reconstruction approach leverages several data sources including on board instrumentation, 

ground radar data and atmospheric measurements blended through the application of an Extended Kalman Filter 

(EKF) using the NewSTEP tool. The NewSTEP tool, data sources and their associated uncertainties, and data 

preprocessing are examined in detail in the following section. 

A. Approach 

The goal of the reconstruction is to determine the best estimated trajectory representing the vehicle state time 

history that most accurately fits all available measurement data. To achieve this, the NewSTEP Trajectory 

Reconstruction tool is used, which centers on an Extended Kalman Filter. NewSTEP is an Analytical Mechanics 

Associates, Inc. developed tool based on the numerical approach used in the Statistical Trajectory Estimation 

Program (STEP). STEP was used extensively in the 1960s and 1980s on projects including X-23A PRIME, Viking, 

Pioneer Venus and Shuttle. NewSTEP adds many enhancements to the original STEP tool including migration to 
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(b) 

 
(c) 

 
(d) 

Figure 1. Quick-look data compared to pre-flight Monte Carlo bounds. 
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MATLAB based code, addition of measurements and updated filters. It has been used in recent missions such as the 

Mars Exploration Rover (MER) and X-43A (Hyper-X) with ongoing work on Ares I-X, Orion Pad Abort 1 and Mars 

Science Laboratory (MSL) Entry Air Data System (MEADS). “Hyper-X Post Flight Trajectory Reconstruction” by 

Karlgaard
2
, et.al, provides a detailed discussion of the NewSTEP tool, its filters, and its numerical methods. 

A similar reconstruction effort has been undertaken by the NASA Sounding Rocket Operations Contract 

(NSROC) team. Their effort centers on the Algebraic Method, which infers attitude and roll rate based on solar 

sensor and magnetometer measurements. While not discussed in detail here, the NSROC solution was expected to 

produce an attitude solution for IRVE-II up to deployment of the inflatable with no guarantee of good data beyond 

this point. However, the NSROC team has been successful in producing a good solution well into re-entry including 

the region of the experiment. As a result, their solution is used both to initialize the NewSTEP reconstruction and to 

cross-validate results. 

B. Data Sources & Key Assumptions 

NewSTEP is capable of blending together data from multiple sources. For IRVE-II these data sources include 

multiple ground radar sites, on-board accelerometers and rate sensors and atmospheric measurements provided by 

the WFF range. Several WFF ground radar sites tracked IRVE-II via C-band transponders. IRVE-II was equipped 

with three on-board Systron Donner BEI QRS 11 rate sensors and a NSROC(a) containing 3-axis Setra 

accelerometers. Mass properties were measured pre-flight and atmosphere data was provide by several sources, 

including high altitude environments from a VIPER meteorological rocket, and low altitude winds from balloon 

data. 

Four radar stations tracked IRVE-II during flight, designated Radars 2, 3, 5, and 18. Radars 5 and 18 show a 

good track of IRVE-II and are used in the reconstruction effort. Radar 2 data includes significant noise with 

amplitudes well beyond the expected accuracy of the radar and Radar 3 exhibits a positional offset that does not 

correspond to the other radar tracks. Therefore, these two radar tracks have been excluded from the reconstruction. 

Prior to use in NewSTEP the raw rate sensor and accelerometer data is converted from counts to engineering 

units and rotated from the sensor coordinate frame to a common body frame. This frame is defined with the x-axis 

pointing along the axis of symmetry through the nose of IRVE-II, the y-axis pointing through the pyrotechnic cutter 

block and the z-axis completing the right handed coordinate system. In addition to the measured data, NewSTEP 

requires initial estimates of the uncertainty in sensor location, misalignment, noise, scale factor and bias for the rate 

sensors and accelerometers, which come from a combination of pre-flight measurements and calibrations as well as 

estimates based on engineering judgment. 

Mass properties used in NewSTEP are derived from pre-flight measurements. The flight is divided into two sets 

of values, those before (stowed) and those after inflation (deployed). As opposed to the stowed values, the deployed 

configuration values were not directly measured. Results of the stowed configuration measurements were used to 

calibrate a 3D CAD model which was used to extract mass properties for the deployed configuration. 

Atmosphere data used in NewSTEP comes from several different sources including a meteorological rocket, 

weather balloons and a reference atmosphere model. One hour and thirty six minutes after the launch of IRVE-II, a 

VIPER rocket was launched from WFF to measure meteorological conditions in the upper atmosphere. The VIPER 

rocket returned data for density, pressure, temperature, north and east winds and their corresponding RMS values 

between 30.5 km and 92 km altitude. No adjustment is made for the difference in launch times between the VIPER 

and IRVE-II, and the data from the VIPER are assumed to represent steady state values. Weather balloons released 

from WFF at the time of IRVE-II launch provide wind data for the lower atmosphere. North and east wind velocities 

were measured for the altitude range of 122m to 36.6 km. No adjustment is made for time and location differences 

relative to the IRVE-II trajectory. For this altitude range, and all others not covered by the VIPER data, uncertainties 

are generated by Earth GRAM07 using the August WFF RRA. 

The NewSTEP reconstruction is initialized at 295 seconds after launch from conditions supplied by the NSROC 

reconstruction solution, Radar 5 and the reference atmosphere model. Data from the accelerometers and rate sensors 

are available prior to this time; however, the roll rate sensor is saturated prior to 295 seconds and signal to noise 

ratio on all acceleration measurements is very poor. Position and velocity are computed from Radar 5 data and 

attitude from the NSROC solution. Atmosphere values are estimated using the mean and standard deviation values 

from Earth GRAM07. 

C. Preprocessing 

Raw sensor data must be preprocessed before being used in NewSTEP. Data from the accelerometers and rate 

sensors was received at 1250 Hz and preprocessed prior to use in NewSTEP. This preprocessing includes removal of 

rogue points, interpolation to a constant rate, smoothing and filtering. Rogue points are removed using evaluation of 
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the rate of change of the signal and engineering judgment. The data is then linearly interpolated at a constant rate of 

60 Hz. Next, smoothed time histories and noise covariance matrix estimates are computed using optimal Fourier 

smoothing. Finally, a low pass filter is applied in the frequency domain, in order to introduce no phase loss, using a 

5 Hz cut-off frequency. The 5 Hz cut-off frequency is well above the 1.5 Hz expected maximum rigid body 

frequencies for flight, resulting in negligible gain loss at the frequencies of interest. 

IV. Reconstruction Results 

Pre-flight expectations for the trajectory reconstruction accuracy were modest. Due to the fidelity of on-board 

instrumentation, 2σ attitudes within 6 degrees during peak pressure were anticipated. Allowing for the fidelity of 

measurements involved, the reconstruction performed favorably. 

Comparisons are made to several independent sources to ensure the validity of the NewSTEP results. In this 

section the results of the NewSTEP reconstruction are compared to the NSROC solution as well as pre- and post-

flight Monte Carlo simulation bounds. In addition, the reconstructed aerodynamic coefficients are compared to 

values predicted by the pre-flight aerodynamic database. 

A. Comparison to NSROC Solution 

The independent NSROC solution proved more viable than originally expected during re-entry and the results 

are used here to cross-validate the NewSTEP solution. Figure 2 presents comparisons between the NSROC and 

NewSTEP reconstruction results for altitude, total angle of attack and roll rate. Calculated differences between the 

two results are also shown as a function of time.  

Overall the results from the NewSTEP reconstruction compare favorably with the results from the NSROC 

reconstruction. Both solutions compare well in altitude, within 20 m, and show similar trends and magnitudes in 
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Figure 2. Comparison of NSROC and NewSTEP reconstruction results. 
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total angle of attack. While differences between the two results do exceed the anticipated 6 degrees, they remain 

within 10 degrees. Prior to 435 seconds the NSROC and NewSTEP solutions match well in frequency if not in 

magnitude. After 435 seconds, there is an inversion of the oscillations between the two angle of attack solutions. 

This discrepancy occurs during the entry pressure pulse and is seen in the reconstructed aerodynamic coefficients 

discussed later. 

 
(a) 

 
(b) 

Figure 3. On-board flight video of the aft side of the aeroshell at 421 seconds (a) and 440 seconds (b). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Calculated trajectory data compared to pre-flight simulated Monte Carlo bounds. 
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B. Comparison to Monte Carlo Predictions 

Prior to the flight of IRVE-II a Monte Carlo simulation was developed using the Program to Optimize Simulated 

Trajectories II (POST2). This simulation takes into account the measured mass properties, predicted trajectory states 

at separation from the sounding rocket, a pre-flight aerodynamic model and atmospheric variations and calculates 

expected trajectories. The aerodynamic model was based on both wind tunnel data and CFD analysis assuming a 

rigid aeroshell and the atmosphere was simulated using Earth GRAM07. 

Post-flight the Monte Carlo is rerun updating the timeline and initial conditions with known flight values. The 

initial conditions at separation, 90 seconds into flight, are taken from the NSROC attitude solution and radar data. 

The timeline for the aeroshell retention bag release and inflation are updated accordingly. Reconstruction results are 

plotted against both the pre-flight and post-flight Monte Carlo simulation bounds in the following sections. 

While the Monte Carlo simulations assume that the IRVE-II aeroshell remains rigid throughout the entire 

trajectory, there is evidence that IRVE-II flexed during the dynamic pressure pulse. Figure 3 shows two frames from 

flight video recorded by a camera mounted on the center-body. On the left is a frame from 421 seconds and on the 

right is a frame from 440 seconds, roughly corresponding to peak dynamic pressure. In the image on the right the 

aeroshell appears to occupy more of the field of view, with its edge closer to the bottom of the frame. Since the 

camera remains rigidly attached to the center-body, this may be due to aeroshell deflection or rotation of the center-

body axis of symmetry relative to the aeroshell axis of symmetry. This effect could change both the alignment of the 

accelerometers and the aerodynamics of the vehicle, which would explain some discrepancies between the measured 

accelerations and pre-flight estimates. Further collaboration is required with structural and photogrammetric analysis 

in order to quantify this effect and its impact on flight measurements. It is important to note that reconstructed 

trajectories are based on sensors within the center-body. As such, the trajectories represent the state of the center-

body. 

 
(a) 

 
(b) 

 

(c) 
 

(d) 

Figure 5. Reconstructed trajectory data compared to post-flight simulated Monte Carlo bounds. 
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1. Pre-Flight Monte Carlo Predictions 

The pre-flight Monte Carlo simulation results bound the reconstructed trajectory well. Plots of these bounds and 

the respective reconstruction values are shown in Figure 4. Altitude and total angle of attack remain within the 2σ 

predictions. Dynamic pressure exceeds the 2σ predictions, but remains within 3σ predictions. The reconstruction 

exhibits peak dynamic pressure approximately 8 seconds later than the pre-flight simulation. This timing difference 

is believed to be caused by a difference in the initial conditions of IRVE-II at separation, and is not evident when the 

results are compared to the post-flight Monte Carlo. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6. Reconstructed aerodynamic coefficients compared to pre-flight database. 
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2. Post-Flight Monte-Carlo Predictions 

The reconstruction results compare better to the post-flight Monte Carlo, in which the vehicle state at separation 

from the launch vehicle and timeline for inflation are updated. Plots of these results can be seen in Figure 5. Due to 

the ballistic nature of the trajectory prior to atmospheric interface, updating the initial conditions aligns the nominal, 

50 percentile values and the reconstruction results as well as reducing the 2σ bounds for most parameters. The total 

angle of attack bounds increase relative to the pre-flight Monte Carlo, but this is expected due to the uncertainty in 

the NSROC solution and atmospheric parameters, especially winds, at higher altitudes. 

IRVE-II‟s reconstructed total angle of attack, both wind relative and inertial, compares well with the 50 

percentile results of the post-flight Monte Carlo. However, between 435 and 445 a low frequency oscillation is seen 

that is not predicted by the simulation near peak dynamic pressure. The cause of this effect is not fully understood, 

but may be due to aeroshell deflection as discussed earlier. The reconstructed trajectory still exhibits higher than 

predicted dynamic pressure, with a value 8% higher than predicted at peak. 

C. Comparison to Aerodynamic Database 

NewSTEP also produces estimates and error bounds for aerodynamic coefficients in addition to the trajectory 

states. Input mass properties and sensed accelerations are used to calculate forces, which are then converted into 

coefficients using the atmospheric state and input reference area and length. The aeroshell is assumed to have a 

circular reference area with a diameter of 2.93 m based on a pre-flight laser scan. A similar process is used to 

produce the moment coefficients. 

By inputting the reconstructed trajectory states into the pre-flight aerodynamic database, predictions of the 

aerodynamic coefficients for the flown trajectory are generated. Estimated values and uncertainty bounds are 

calculated for axial, normal and side force coefficients and pitching, yawing and rolling moment coefficients using 

the reconstructed Mach, angle of attack and angle of sideslip. The uncertainties in these parameters are combined 

with the inherit uncertainty of the aerodynamic database to create 2σ bounds on the predicted aerodynamic 

coefficients. 

Comparisons between the NewSTEP reconstructed aerodynamic coefficients and the aerodynamic database 

computed coefficients are shown in Figure 6. The flight axial force coefficient is lower than that predicted by the 

aerodynamic database and exhibits oscillations between 430 and 445 seconds not seen in the database predictions. 

The normal and side force coefficients show similar trends albeit with differing magnitudes. 

The reconstructed pitching moment coefficient aligns with aerodynamic database until 430 seconds, showing 

similar oscillations and amplitudes. After this point the database predicts a higher value during the peak pressure 

pulse. The reconstructed rolling moment coefficient shows similar trends to the predicted values, but while the 

magnitude of the coefficient is small, it is much larger than predicted. 

D. Alternative Observations 

Alternative data sources and/or methods are used to verify the reconstructed trajectory. This includes using 

accelerations and the pre-flight aerodynamic model to calculate an axial force coefficient as well as using video to 

estimate vehicle attitude. These two alternative observations 

are discussed further in the following paragraphs. 

1. Axial Force Coefficient 

The accelerometer based estimate of CA is shown 

relative to the pre-flight aerodynamic database assuming the 

BET Mach and total angle of attack in Figure 7. Early in the 

entry, the measured CA is consistently lower than the 2σ low 

pre-flight database prediction. However, around 430 

seconds, the measured CA begins to converge with the pre-

flight prediction. At peak pressure, the difference between 

the measured and pre-flight CA is roughly 7%. This 

corresponds well to the differences seen in dynamic 

pressure. 

Although the discrepancy at peak pressure is nearly 

within 2σ uncertainty bounds, it is likely that the flexibility 

of the inflatable during the pressure pulse is impacting drag 

performance. Either a reduction in the effective cone angle 

or an increase in the effective total angle of attack of the 

 

Figure 7. CA calculated from accelerations 

compared to the pre-flight aerodynamic database 

prediction. 
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aeroshell of roughly 5 to 10 degrees could explain the reduced axial force coefficient. 

2. Attitude from Video 

The quality of the in-flight video presented another means of observing IRVE-II entry trajectory, specifically the 

vehicle‟s attitude. By positioning 3D CAD models in the NASA Synergistic Engineering Environment (SEE) tool 

according to the BET latitude, longitude, and altitude, an estimate of attitude is determined through comparison to 

video. More specifically, the NSROC attitude solution is used to initialize the orientation of the vehicle in SEE and 

adjustments are made to IRVE-II‟s attitude to match flight images so as to ascertain an estimate of the potential error 

in the NSROC solution. Analysis focused on the time between inflation and the beginning of the experiment 

assuming a rigid aeroshell. During this time, accelerations 

are low and the NewSTEP solution shows larger errors. 

Since this is also prior to the pressure pulse, the 

assumption of inflatable aeroshell rigidity is sound. 

An example result of this analysis is provided in 

Figure 8. At this time point, the CAD models and the 

flight video compare well with no adjustments. Note that 

the CAD-based image does not duplicate the fish-bowl 

perspective provided by the flight cameras. Despite this 

shortcoming, it is evident that the same amount of the 

Earth is visible beyond the edge of the aeroshell and the 

significant seams on the backside of the aeroshell are 

aligned. At other time points, adjustments of 5 to 10 

degrees in pitch and yaw are required to improve 

comparisons. Larger differences are seen in roll angle. 

Much of the adjustment can be explained by the potential 

for small phase error in the NSROC solution, a 10 degree 

error in roll corresponds to roughly a 0.2 second phase 

error. 

E. Other Flight Events 

Other flight events of interest include the sounding 

rocket separation and aeroshell deployment events. An 

assessment of these events, relative to pre-flight analysis, 

is provided in this section. 

1. Payload Separation 

Payload separation was a considerable pre-flight 

concern on IRVE-II given the IRVE-I flight mishap 

during this flight event. Two key changes to the separation 

 
(a) 

 
(b) 

Figure 8. Flight video compared to SEE visualization at 349.5 sec. 

 
(a) 

 
(b) 

Figure 9. Axial acceleration during payload shroud 

separation. 
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strategy for IRVE-II were made to improve the probability of success. These included the move to a different launch 

vehicle configuration and a larger payload shroud. The larger shroud affords more clearance between the payload 

shroud and IRVE-II. The other change involves the shroud separation ejector springs. The four-spring array used on 

IRVE-I was modified to a parallel, plunger arrangement, seen by WFF to impart less tip-off rate. 

The predicted performance of the shroud ejector springs is illustrated in Figure 9 relative to flight-measured axial 

acceleration. The blue trace is the raw axial accelerometer values from IRVE-II. The green line represents an 11-

point, centered average of these raw measurements, employed to remove high frequency noise. This eleven point 

average imparts negligible gain loss at the frequencies of interest. After filtering, the black line taken from pre-flight 

separation simulation provides an excellent match to the measured accelerations. Further, as illustrated in Figure 9 

(b) there is no evidence of re-contact between IRVE-II and the payload shroud. 

Pre-flight analysis of separation focused on identifying the worst case separation disturbance, ensuring that 

IRVE-II entry performance was robust to such a disturbance. This analysis modeled worst case conditions including 

an initial tip-off rate following the jettison of the 2
nd

 stage motor, ejector spring misalignments, contact stiffness and 

damping, and mass imbalances. The worst case, pre-flight prediction of total tip-off rate due to separation was 6.7 

deg/sec and the worst case angular momentum shift due to separation was estimated to be 7.5 degrees. 

Using IRVE-II rate sensor measurements, adjusted for bias, the tip-off rates during separation are estimated. 

Figure 10 illustrates IRVE-II tip-off rate including the raw measurements (blue) and an average (green). Although 

the tip-off rate increases due to the jettison of the 2
nd

 stage motor at 70 seconds, it is well below the worst case value 

of 3.57 deg/sec modeled pre-flight. At 80 seconds, the payload skirt is separated from the main payload. Here there 

is a small change in tip-off rate, which is further evidence of a clean shroud separation. At 90 seconds, IRVE-II is 

separated from the telemetry module (TM) and nosecone assembly. The tip-off rate drops to 1.2 deg/sec, which is 

well below the 6.7 deg/sec seen in worst case analysis. 

The separation induced attitude upset was also of concern pre-flight, as it directly impacts the entry angle of 

attack. This impact was captured in the initial tip-off rate, assumed to be at worst 3.57 deg/sec. Worst case 

simulations predicted an initial nutation of 6.5 degrees and a final shift in angular momentum of 7.5 degrees. This 

worst case shift occurs when the separation of IRVE-II from the TM/Nosecone assembly happens at the peak of its 

coning motion. 

The NSROC attitude solutions of the sounding rocket and IRVE-II provide a means of comparing IRVE-II 

attitude during separation to pre-flight predictions as seen in Figure 11. Qualitatively, the dynamics are strikingly 

similar. Quantitatively, the payload is initially coning with a nutation angle of roughly 2.6 degrees about an angular 

momentum vector that is 9.5 degrees away from vertical (green „X‟). Following the separation events, IRVE-II has a 

nutation angle less than 1 degree and an angular momentum vector that is 10.5 degrees from vertical. Therefore, the 

total angular momentum shift due to the separation is 1 degree from vertical, far below the 7.5 degrees worst case 

prediction. 

 

Figure 10. RV lateral body rates during the 

separation events. 

 

Figure 11. Attitude relative to vertical during 

separation, pre-flight simulations. 
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2. Deployment 

Inflation of the aeroshell is another event of significant interest. Due to the high level of complexity associated 

with this event, the pre-flight strategy was to model deployment as a disturbance event. A wide range of disturbance 

torques were evaluated in the IRVE-II POST2 simulation to ensure the simulation had a high level of robustness in 

terms of the resulting entry performance, most importantly entry total angle of attack. In an attempt to put these 

disturbance torques into some context, a simulation was also conducted that emulated potential mass imbalance 

during the deployment. This mass imbalance was modeled after the evolution in shape of the aeroshell seen during 

full-scale deployment ground testing in the NASA Langley Research Center 16-m vacuum sphere. Images taken 

during this test can be seen in Figure 12. Since the vehicle is not spinning in the ground test it was unlikely this 

evolution would be duplicated in flight. However, it does provide some insight into bounding the problem. When 

simulating the mass properties of this shape evolution, the resulting tip-off rate equated to roughly a 12 N-m-s 

disturbance. 

In comparison to pre-flight analysis, the flight deployment occurred over a very short duration. As seen in the 

roll rate time history plotted in Figure 13. IRVE-II reaches its full roll inertia in less than 2 seconds. The effective 

tip-off rate of the deployment, seen in Figure 14, is 4.1 deg/sec. When cross-referenced with the pre-flight 

simulation this equates to a flight disturbance between 0 and 4 N·m·s. 

V. Conclusion 

IRVE-II successfully demonstrated an inflatable aerodynamic decelerator and flight trajectories have been 

reconstructed to fidelity sufficient to assess overall project objectives related to flight dynamics. Overall, IRVE-II 

flight dynamics are in line with expectations. Accounting for the high boost velocity, the re-entry trajectory followed 

a nearly nominal profile indicating the expected drag performance. The re-entry vehicle appeared stable throughout 

the flight, until the aeroshell lost sufficient pressure to remain inflated. Based on these findings, the methodologies 

and design principals employed in IRVE-II flight dynamics and aerodynamics analyses are corroborated. 

Additional work, however, is recommended to further reconcile differences between pre-flight and post-flight 

predictions of body-axis accelerations and reconstructed aerodynamic coefficients. Collaboration with structures and 

 
(a) Stowed 

 
(b) Intermediate 

 
(c) Deployed 

Figure 12. Evolution of the aeroshell deployment during ground testing. 

 

Figure 13. Roll rate during deployment. 

 

Figure 14. Tip-off rate during deployment. 
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photogrammetric analysis is needed to understand and account for the structural dynamics seen during the entry 

pressure pulse, particularly deformation and deflection of the inflatable article. 

Lessons learned through the IRVE-II trajectory reconstruction have been provided to the proposed IRVE-3 

project. These lessons include ensuring required accuracy of post-flight data products drives the specification of 

flight instrumentation, improving the quality of the instrumentation available and supporting redundancy of 

reconstruction approaches. Adding instrumentation to directly quantify any inflatable deflection and deformation has 

also been recommended. 
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