An investigation of the longitudinal proximity effect in superconducting and normal metal TES

Ari-David Brown, James A. Chervenak, Nikhil S. Jethava, Gunther Kletetschka, Vilem Mikula

As the TES volume and (effective) T_c become very small – for volume $< 10 \text{ mu m} \times 10 \text{ mu m} \times 0.5 \text{ mu m}$ and $T_c < 90 \text{ mK}$ – we approach a regime in which the noise equivalent power is dominated by fluctuations in power dissipating from the TES electrons to its phonons. Our ultimate goal is to build a TES bolometer that operates in this regime to be used for far-infrared and sub-mm astronomy. In this study, we characterize the R vs T behavior of small TES in order to engineer a TES bolometer that has a very low T_c. Sadleir et al [1] found that as the distance L between two superconducting leads, with the lead $T_c >>$ the TES T_c, connected at opposite ends of TES approaches zero, superconductivity is induced parallel to the current flow, or longitudinally, and results in a much higher effective TES T_c. Here we present effective T_c measurements of Mo/Au TES bounded by Nb leads as a function of L which ranges between 4 and 36 mu m. We observe that the effective T_c is suppressed for current density of order 10^{-6} A/µm². We also explore the possibility of using a normal metal TES.
