NORMALIZED-DIFFERENCE SNOW INDEX (NDSI)

Dorothy K. Hall and George A. Riggs
1Cryospheric Sciences Branch, Code 614.1,
2NASA/Goddard Space Flight Center, Greenbelt,
3MD, USA
4SSAI
5Lanham, Maryland, USA
6

Definition

Normalized-Difference Snow Index (NDSI) — the difference of two bands (one in the visible and one in the near-infrared or short-wave infrared parts of the spectrum) is used to map snow. Snow is highly reflective in the visible part of the electromagnetic spectrum and highly absorptive in the near-infrared or short-wave infrared part of the spectrum, whereas the reflectance of most clouds remains high in those same parts of the spectrum, allowing good separation of most clouds and snow.

Introduction

The NDSI has a long history. The use of ratioing visible (VIS) and near-infrared (NIR) or short-wave infrared (SWIR) channels to separate snow and clouds was documented in the literature beginning in the mid-1970s. By Valovcin (1976, 1978) and by Kyle et al. (1978). A considerable amount of work on this subject was conducted at, and published by, the Air Force Geophysics Laboratory (AFGL) (e.g., see Bunting and d'Entremont, 1982). The objective of the AFGL work was to discriminate snow cover from cloud cover using an automated algorithm to improve global cloud analyses. Later, automated methods that relied on the VIS/NIR ratio were refined substantially using satellite data, by Crane and Anderson (1984), Dozier (1989), and Rosenthal and Dozier (1996) for regional scales, and by Riggs et al. (1993), Hall et al. (1995, 2002), and Hall and Riggs (2007) for global snow-cover mapping. In this section, we provide a brief history of the use of the NDSI for mapping snow cover.

Band ratios used to discriminate snow and clouds

Results of an investigation of snow reflectance characteristics using data from Skylab Earth Resources Experiment Package (EREP) S192 multispectral scanner are presented by Barnes and Smallwood (1975). For the first time, satellite-observed snow study from the spectral range extending from the visible (0.41–1.25 μm) was possible, and this paved the way for automated snow-cover mapping. Shortly thereafter, Valovecin (1976) at AFGL introduced the idea of using the ratio of radiance values in the VNIR (0.68–0.76 μm) and NIR or SWIR (1.55–1.75 μm) to provide a method to discriminate between snow cover and clouds. Kyle et al. (1978) used the ratio of the 1.6–0.754 μm channels to distinguish snow and clouds using a cloud physics radiometer with 0.754–1.64 μm channels. They also used an IR band to test for surface temperature further distinguished snow and clouds.

Additional work done at AFGL by Bunting and d'Entremont (1982) employed a 1.6 μm sensor flown on the Defense Meteorological Satellite Program (DMSP) Special Sensor C (SSC) to separate snow and clouds. They also used 11% reflectance to define the lower bound of reflectance for snow cover. Crane and Anderson (1984) reviewed the previous work, mainly conducted at AFGL, and employed the DMSP Operational Linescan System (OLS), which operated in the 0.4–1.0 μm and 8–13 μm range, along with SSC data (1.51–1.63 μm). They employed reflectances derived from the various sensors to map snow using a threshold technique.

More-sophisticated use of band ratios as applied with Landsat Thematic Mapper TM data was developed by Dozier (1987, 1989). The normalized difference of TM...
The term normalized-difference snow index (NDSI) was coined by Hall et al. (1995), but the NDSI technique already had nearly a 20-year heritage as similar methods using various visible and near-infrared bands had been used since the mid-1970s to map snow and separate snow from most clouds. Following the launch of the MODIS in 1999, the NDSI approach to mapping snow cover became automated using an algorithm that utilizes the NDSI along with a variety of threshold tests.

Bibliography

