New Water Disinfection Technology for Earth and Space Applications as part of the NPP Fellowship Research

Nadia Silvestry Rodriguez, PhD
NASA POSTDOCTORAL PROGRAM
Administered by ORAU

KSC Engineering Academy Lecture Series
August 12th, 2010

Background

- Why do we need clean water?

[SANDIA Report on UV-LEDs]
Background

Water in Space?

http://apod.nasa.gov/apod/ap070625.html

- Water Disinfection
- Primary Disinfectant
- Secondary Disinfectant
- U.S. NASA-EPA
Problem Statement

- There is the need for a safe, low energy consuming and compact water disinfection technology to maintain water quality for human consumption

Background

- Chlorination YES or NO?
- Metals
- Other….Chloramines, Ozone
- Ultraviolet Radiation?
UV Disinfection

- http://www.camakers-water.com/UV_Technology.html
- germ-know.com/uv-facts.html

UV Disinfection

http://www.americanwater.com/about_the_industry/brass_house...
Background

- UV-LEDs

- SANDIA Report 2005
 - Escherichia coli ATCC 23229, high sensitivity to UV
 - Escherichia coli ATCC 15596, medium sensitivity to UV
Background

- Vilhunen et al. 2008
 - Escherichia coli (k12)

- Hammamoto et al. 2007, and Mori et al. 2007
 - Vibrio parahaemolyticus
 - enteropathogenic Escherichia coli,
 - Staphylococcus aureus

Background

- Escherichia coli DH5α

were reduced by greater than 5-log10 stages within 75 min at 315 J/cm² of UVA

- Salmonella enteritis

was reduced greater than 4-log10 stages within 160 min at 672 mJ/cm² of UVA
Background

Birmele et al., 2009

- *Sphingomonas paucimobilis*,
 Pseudomonas aeruginosa,
 Burkholderia cepacia,
 Methylobacterium fujisawaense and
 Cupriavidus metallidurans

3-log reduction in one hour of UVC exposure in a static test

- UVA Disinfection

- http://www.thesciencemag.org/content/7/4
- applianceboy.com/uv-techs.html
Background

$\text{TiO}_2 \xrightarrow{hv} \text{TiO}_2 (h^*_{\text{vb}} + e^-_{\text{eb}})$

$\text{O}_2 + e^-_{\text{eb}} \rightarrow \text{O}_2^-$

$\text{O}_2^- + e^-_{\text{eb}} + 2\text{H}^+ \rightarrow \text{H}_2\text{O}_2$

$\text{O}_2^- + \text{H}_2\text{O}_2 \rightarrow \cdot \text{OH} + \cdot \text{OH} + \text{O}_2$

$e^-_{\text{eb}} + \text{H}_2\text{O}_2 \rightarrow \cdot \text{OH} + \cdot \text{OH}$

$h^*_{\text{vb}} + \text{H}_2\text{O} \rightarrow \cdot \text{H} + \cdot \text{OH}$

$h^*_{\text{vb}} + \text{H}_2\text{O} \rightarrow \cdot \text{H} + \cdot \text{OH}$

$2 h^*_{\text{vb}} + 2\text{H}_2\text{O} \rightarrow 2\text{H}^+ + \text{H}_2\text{O}_2$

Silver, Ag

- Silver has been used in:
 - Water, vinegar, fruit juices, wine
 - Dental amalgams, composites
 - Topical creams, bandages, catheters, medical devices
 - Polymers, ceramics, synthetic fabrics
Silver, Ag

- Mechanisms of microorganism Inactivation:
 - Accumulates inside cells
 - Binds to:
 - Cell wall/ membranes
 - Proteins (-SH)
 - DNA
 - Electron donor groups

General Objective

- Design and test a reactor to prove the efficacy of a UVA-LED, TiO₂, and nanosilver safe technology to sustain water quality for life support systems.

Microorganisms tested:
- MS2 Bacteriophage
- Pseudomonas aeruginosa
- E. Coli
Experiment Design

<table>
<thead>
<tr>
<th>Experiment</th>
<th>UVA-LED</th>
<th>TiO₂</th>
<th>Nanosilver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment 1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment 2</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Treatment 3</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Treatment 4</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Materials and Methods

- Modified DFR
- UVA-LEDs
- TiO₂ coated glass slides
- Nanosilver
Materials and Methods

Drip flow reactor with LED placement on top.

Section view of DFR with gaskets, polyethylene, LED and PCB. Small aperture opening to reduce stray light into neighboring wells.

Section view of DFR with gaskets, polyethylene, LED and PCB with parabolic cut out to redirect radiation.
Materials and Methods

TiO$_2$ glass slides preparation was done by slurry deposition in a glass borosilicate slide (1x3 in).

- Nanosilver
Materials and Methods

Areas of Opportunity

- TiO$_2$ coating
- Nanosilver application and quantification
Materials and Methods

Bacteria or Virus

Centrifuge if it is bacteria only

Add Bacteria or Virus Concentration to Reactor container

Adjust Concentration

Reactors well

Add Nanosilver

Neutralize Disinfection Effect

Plate

Dilute

Incubate 24 Hrs

Count Colonies or Plaques
Results

Disinfection of MS2 Bacteriophage vs. Time

- CONTROL
- UVA
- UVA+TiO2
- UVA+TiO2+NANO SILVER
- UVA+NANO SILVER

Time (min)
Conclusions

- The design of the reactor presents no overheating and a constant temperature. A good electrical and optical performance for a UV water treatment system.

- The assessment of this study shows that UVA-LEDs can be used as a good disinfectant in water for MS2 Bacteriophage. The log reduction was sufficient to meet US EPA standards as a secondary disinfectant for maintaining water quality control.

Conclusions

- This study has shown that at the conditions tested there is no inactivation of *Pseudomonas aeruginosa* and *E. Coli* and further testing at different conditions (specifically contact area and time of exposure) have to be performed to use UVA-LED as a secondary disinfectant to maintain water quality.
Further work recommended

- Other contact areas and longer times of exposure should be tested.

- Microorganisms:
 - *Cryptosporidium parvum* oocyst

- Other research lines such as biocides and reactive oxygen species in the reactor.

Key point

UVLEDs are a viable disinfectant in water that should be further investigated to develop an optimized Water Technology for Earth and Space Applications.
References

IMAGES ON LEFT SIDE:

2. apod.nasa.gov/apod/image/9909/water_jsc.jpg

3. coep.pharmacy.arizona.edu/water/drink2.jpg

4. www.ryanswell.ca/projects/images/Photo5_Page1

5. imthi.com/.../2009/09/charity-water-honduras.jpg

Acknowledgements
• NASA and NPP administered by ORAU.
• Michael S. Roberts, Raymond Wheeler, and Daniel Barta.
• KSC Education Office (Patricia Gillis, Lisa Valencia, Hortense Burt and Lesley Garner).
• Dynamic technical support staff and everybody in the LSSC contract.
• Paul Hintze, LaNetra Tate, Wenyuan Li, Jackie Quinn, Lanfang Levine, Luz Maria Calle, Brenton Hicks, Kari Cezat and Carolina Ragolta.

Questions?

- Nasa Image: Earthrise over the lunar horizon, December 1968.
Nasa Image: Earthrise over the lunar horizon, December 1968.