Flow Control of Liquid Metal Propellants for In-Space Electric Propulsion Systems

Kevin W. Bonds, Kurt A. Polzin
NASA Marshall Space Flight Center Huntsville, AL

Hall Thrusters

Operation of Hall thrusters with bismuth propellant has been shown to be a promising path for development of high-power (140 kW per thruster), high performance (8000 s I_{sp} at >70% efficiency) electric propulsion systems [1].

Hotspot Flow Sensor [2, 3]

- Sensor to yield precise flow rate measurements for thruster control and performance
- Low propellant volume flow rate (0.1-1.0 mL/sec)
- The temperature at which bismuth is free flowing (around 300°C) and extremely low flow rate preclude the use of off-the-shelf sensing equipment.
- Sensor body made from non-conductive material
- The precise placement of very small components in a solid body without internal access to verify positioning is of major concern
- Active heating of flow chamber required to maintain propellant in liquid phase

How Does It Work?

A very short high-current pulse, generates a thermal feature (or “Hotspot”) in the bismuth through Ohmic heating. The time it takes the “Hotspot” to convect downstream can be used to determine flow rate.

- Flow speed of ~0.5 cm/sec at a mass flow rate of ~10 mg/sec [3]
- Flow chamber cross section: 0.031” x 0.020”
- Timescale for thermal diffusion >> convective timescale
- Time resolution for detection of the thermal feature is essential for accuracy—absolute temperature measurement is not required

Calibration Testing and Evaluation

Electromagnetic pump
- A small electromagnetic pump is used to supply pressure to the system
- Flow can be easily varied to obtain calibration over a range of flow rates

Pulse Circuitry
- A capacitor pulse circuit supplies the high-current pulse that generates the “Hotspot” (or thermal peak)

Two methods of peak detection under investigation
- Fiber-optic based IR detector and thermocouple