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1. INTRODUCTION

Electronic beam steering capability of phased array amteystems offer significant advantages when
used in real aperture imaging radiometers. The sensitdfitfuch systems is limited by the ability to
accurately calibrate variations in the antenna circuitratigristics. Passive antenna systems, which re-
quire mechanical rotation to scan the beam, have stabladeaistics and the noise figure of the antenna
can be characterized with knowledge of its physical tentpezg1],[2]. Phased array antenna systems
provide the ability to electronically steer the beam in aegiced direction. Such antennas make use of
active components (amplifiers, phase shifters) to provieigti®nic scanning capability while maintaining
a low antenna noise figure. The gain fluctuations in the acirponents can be significant, resulting
in substantial calibration difficulties [3]. In this papere introduce two novel calibration techniques that
provide an end-to-end calibration of a real-aperture, ptha@sray radiometer system. Empirical data will
be shown to illustrate the performance of both methods.

2. ONE DIODE TECHNIQUE

Fig 1 shows a simplified block diagram of a two load radiomstetem [4] with a phased array antenna
array. Fig 2 shows the configuration of each active anteramaait and the center element of the array. The
center element of the array radiates a Gaussian noise ofrkamplitude. A controller steps the radiometer
between target scene observations (with the radiated esdwneed off), internal load observations and an
observation of the target scene with the radiated noisecedurned on. The difference between the
emission temperature measured with the noise source tomadd off provides a method to compute the
gain of the antenna electronics. Though the plane of reteréor the calibration is the front-end of the
radiometer, this technique can account for drifts in thengdithe antenna electronics, thus providing a
guasi- end-to-end calibration.
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3. TWO DIODE TECHNIQUE

Fig 3 shows a modified radiometer and antenna array systers. intlividual active antenna element
is modified from the one diode method to include a front-endsiiich on each antenna element as
illustrated in fig 4. The center element of the array is theesamthe one diode method. In this setup, the
two internal loads in the radiometer are replaced by a naigece injected directly into the antenna array
through a feed network. The controller now steps betweetstiget scene observation (with the radiated
noise source turned off), an observation of the target seathethe radiated noise source turned on and
the injected load. In this method, the plane of referencéhiercalibration is the antenna itself, providing
an complete end-to-end calibration.
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4. CONCLUSION

This paper presents two novel methods to calibrate reattapemicrowave radiometer systems with
phased array antennas. The proposed techniques make uséual soupling between antenna elements
to measure the instantaneous gain of the antenna eledradriie one diode technique uses three calibra-
tion loads (one radiated antenna load and two loads intésrthe radiometer) to compute the gain of the
antenna electronics and the receiver while using the raglienmnput as the calibration plane of reference.
The two diode method uses only two calibration loads (ond is@adiated from the antenna and the sec-
ond load is injected into the antenna electronics) to oliteroverall system gain. The plane of reference
for this method is the input to the antenna. The performamcetits of the two methods will be shown
using empirical results.
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Motivation
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e Passive real-aperture microwave remote sensing systems have predominantly
been ‘staring’ or mechanically steered systems.

* Phased arrays have been used for years in radar systems for electronic
beamsteering but present enormous calibration challenges in passive systems

Can we calibrate an NxN phased
array antenna with active
g electronics in real-time?
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CHALLENGES

e The gain of active RF components can vary
component ageing.

* The noise figure can be expected to be fairly
stable at least in the short term.

SOLUTION

* Calibrate the antenna by observing a known
source

* Place a noise source in the field of view
of the antenna

* Use an injected noise source

e Use a mirror to look at a cold sky target

e Use mutual coupling between antenna
elements to establish a calibration
source

IEEE Geoscience and Remote Sensing Symposium, July 26-30, 2010, Honolulu, Hawaii



&N One Diode Calibration Method %

MSFC SCIENCE & MISSION SYSTEMS

Motivation: In-flight real-time continuous calibration

Antenna Array

Features: SEEEEEEEE -
* One Antenna Diode Calibration L
« Measure antenna electronics gain in real time - _
ape . DEEEEEEEE Radiometer DBE
e Utilize mutual coupling between antenna elements |DoEEEEEEE JE— Cold Load I P
o EE[E[EE[EEEE 1
as a calibration source 1 — | ;
. . . Antenna )
 Calibrate every scan angle in real time Sopar . | Rocsiver > Digizer
b
Implementation: @ Warm Load
* Radiate a noise source from the center element of
the array
e Radiated Diode (ENR =40 dB) used with a Hach
radiometer

Antenna Array Element Radiating Noise Source

Antenna Electronics
Gaussian
O |l % . _ 1O Antenna "\ Noise Source
Signal Combiner

Antenna Radiating Element

Antenna Radiating Element
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Calibration Equations
P.=kBG (T, +T.)
P, =kBG,(T, +T))
P, =kBG,(G,(T,+T,)+T,)
P, = kBG,(G, (T, +T, +T,)+T,)

o0

P, — Power observed from the radiometer warm load at
noise temperature T,

P. — Power observed from the radiometer cold load at
noise temperature T.

P — Power observed from the target scene (radiated
diode off)

P, — Power observed from the target scene with the
radiated diode (T, ) on

k — Boltzmann’s constant

G, — Radiometer gain

- = 5 G, — Antenna electronics gain
Vip = {)s < — Ga (TA j_ Tae ) Tc T, — Radiometer noise temperature

= PS GaTD T, — Antenna noise temperature
A T

— c —
I'y=Tpyp+ = T,
Ga
é _ PD . Ps - Tc
a — ’~ ’~ T
wo D
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Motivation: In-flight real-time continuous calibration

Antenna Array

Features: EEEENEEEEE _
. . . DEENEREEE N Soures
e Two Diode Calibration EENNEEEEE g
e End-to-end calibration for a phased array system =========
 Calibrate every scan angle in real time DEEDEEEEE St
e Utilize mutual coupling between antenna elements ========= —
. . antroller
as a calibration source EEEEEEEEN
* Requires fewer calibration loads than the One | Radiometer
. Anten
Diode Method ‘Snigr'n.':t1la - Recaiver = Digitizer
. Combilner
Implementation:
e Radiate a noise source from the center element of
the array
* Radiated Diode (ENR =40 dB) and an injected
noise source (~300 K)
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Calibration Equations

P; = kBG,(G,(T,+T,)+T,)
Py =kBG.(G (T, +T,)+T))
P_D:kBGr(Ga(TA +Tae +TD)+]—;)
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P, — Power observed from the injected noise source at
noise temperature T;

P, — Power observed from the target scene (radiated
diode off)

P, — Power observed from the target scene with the
radiated diode (T ) on

k — Boltzmann’s constant

G, — Radiometer gain

G, — Antenna electronics gain

T, — Radiometer noise temperature

T,. — Antenna noise temperature

Independent of N

system ]
parameters!
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The front side comprises

assive antenna
Frequency L- band (2 passbands) glements.

Antenna Type | Real aperture planar phased array

Array 81 element (9x9) electronic beam steering

Dimensions 102 x 102 x 18 cm

Beamwidth 15° (3dB at nadir)

Polarizations Horizontal, Vertical

Beams 2 simultaneous acquisition

Scan Type Push-broom, Conical, Staring at any angle

Control In-flight reprogrammable scan mode

Electronics Programmable Integrated circuit (PIC)
Behind the antenna Each antenna
elements are the : element has a circuit

board that steers
the beam and
switches RF
polarization.

: electronic control
components.
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Four receivers acquire data at

Type Hach two narrow bands and two wide
bands simultaneously.
No. Channels | 4 .
Array 81 element (9x9) electronic beam steering
Narrow Wide

No. Receivers 2 2
Antenna Inputs 2 2
Passbands 1401-1425 MHz 1350-1450 MHz
Integration Time 10 ms (min.) 10 ms (min.)
Dimensions 7.6x7.6x7.6cm [ 89x89x3.8cm
Internal Cal. Loads Warm: 300 K Warm: 300 K

Cold: 150 K Cold: 150 K
Down Convert Freq. 8-32MHz 10-110 MHz

All four receivers are integrated into
a common enclosure with required
splitters, filters and amplifiers.

e

L T
L =:-__- 4 . .
RF A

= Test Point

The wide band receivers developed in-
house observe a wider spectrum for
possible RFI that may effect observations.

: Theses radiometers are a byproduct of a
IEEE Geoscience and Remote Sensing Symposium, July 26-30, 2010, Honolulu, Hawaii Phase I and Phase Il SBIR
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Dimensions 48cmx 69 cmx 22 cm

Filters 16 subbands for each channel
Subchannel 2.65 MHz (narrowband receiver)
Bandwidth 7.8 MHz (wideband receiver)

Clock 10 ms oscillator

Digitizer 12 bit ADC; internal processing to 7 bit
Correlator Nallatech BenADC-V4 with Xilinx FPGA

RFI Processing

ADD method: Computes | & Q moments

Control

RTD PC/104-Plus stack

Storage

11 Mb packets

Subband | Center Freq. (MHz)

| Number | Narrow
1 1401.7
2 1403.2
3 1404.7
a 1406.3
5 1407.8
6 1409.4
7 1411.0
8 1412.5
9 14141
10 14157
11 1417.2
12 1418.8
13 14203
14 14219
15 1423.5
16 14246

1338.9
1246.7
1354.5
1262.3
1370.2
12378.0
12385.8
1293.6
1401.4
1409.2
1417.0
1424.8
143227
1440.5
1448.3
1456.1
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MEGA

Correlator Module:
Nallatech BenADC-V4
firmware with Xilinx Spartan
FPGA

et
MUK
VIRTEX 4 |
NeayLiiEn' |
FF 1148 EHEDR45
DEgaat oAl |
7= i

Control Computer:
RTD PC/104-Plus Stack

Developed by Univ. of Michigan,
Space Physics Research Lab
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 The amplitude of the mutually coupled signal is a function of scan

angle — results in different radiated diode observations at each scan
angle

* Impact of the difference in system noise temperature due to front-
end antenna switch loss as a function of switch position

» Efficiency of the radiated diode as a function of antenna size? Can this

be overcome by using multiple radiating elements embedded within
the array?
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Conclusions
e Use of a radiated noise diode as a calibration source for an antenna
array can be (relatively) simple to implement and significant

applications
 First results are promising and indicate good potential for beam

forming radiometers
e Opportunities for improvement

Future Work

e Address scan angle dependent mutual coupling issues
e Analyze efficiency of calibration as a function of antenna size
* Improve the injected feed network
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