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Single Shell: Ray Tracing Polynomial X-ray Optics:

X-ray telescopes with spatial resolution optimized over the field-of-view (FOV) are of special interest for missions, such as WFXT, focused on moderately deep and deep surveys of the X-ray sky, and for 

solar X-ray observations.  Here we report on the present status of an on-going study of the properties of Wolter I and polynomial grazing incidence designs, with a view to gaining deeper insight into their 

properties and simplifying the design process.  With these goals in mind, we present some results in the complementary topics of (1) properties of Wolter I X-ray optics and (2) polynomial X-ray optic ray 

tracing.  Of crucial importance for the design of wide-field X-ray optics is the optimization criteria.  Here we have adopted the minimization of a merit function, M, which measures the spatial resolution 

averaged over the FOV:  

where  w(θ,)  is a weighting function and   
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zyxzyx is the spatial variance for a point source on the sky at polar and 

azimuthal off-axis angles  (θ,φ).
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Single Shell: Ray Tracing Polynomial X-ray Optics:
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For a single Wolter I mirror shell  s, the spatial variance may be written as

The angle brackets around a quantity  q,  denote an average over a set of exit rays 

from a Monte-Carlo ray trace, and the subscript 0 denotes evaluation in the flat plane 

perpendicular to the optical axis at the nominal on-axis focus.  The variable δzs is the 

displacement of the mirror shell along the optical axis from its nominal position.  The variable  θtilt

is the angle with by which a detector plane with corner at the optical axis is tilted (see Figure 1).  

Expressions for  ds, es and fs are available on request.  Using the results from 

extensive Monte-Carlo ray traces (see Figure 2), we have devised analytic trail 

functions for the coefficients as, bs, cs, ds, es and fs:

In 1992, Burrows, Burg, and Giacconi showed how adding higher order 

polynomial terms to Wolter I prescriptions, and hence giving up some on-axis 

spatial resolution, can lead to mirror surface prescriptions with improved spatial 

resolution over a wide FOV.  Optimizing a nested array of polynomial optics involves 

many Monte-Carlo ray traces to cover parameter space, and complex methods of finding 

the optimum design.  We have devised a method, valid when the polynomial coefficients 

are sufficiently small, for ray tracing polynomial optics keeping the polynomial coefficients 

in symbolic form.  The method treats a polynomial optic as a perturbation on an 

underlying Wolter I optic:

where  ua,s and  ub,s are the polynomial coefficients and differ for the primary, 

P, and secondary, S, mirror elements (higher order polynomial terms may also 

be included), as do  As and  Bs.  For an underlying Wolter I optic we have:































2
,,,

,,,,

2
,,,

,,,,

2
,,,

2
,,,

tan

tantan2tan22

MsMsMs

MsMsMsMs
s

MsMsMs

MsMsMsMs
tilt

tiltMstiltsMstiltMssMssMsMs

efc
dbed

z

efc
dceb

fzedzczbaM







 















2

2
,0,

2
,

2
4

04
2

0

0,
0,

tantan1),,(

),,(4tan)(

),,(tan2)(

tan
2
4tan),,(tan

4tan
2

)(















































g

gc

gb

agaa

ccsctrials

bbbtrials

comaaa
a

trials





uuu 
  000







































 s

ss
s

s
sss u

r
z

r
zB

r
zArzr ,0

2

,0

2

,0,0

2
,0

2 21)( 


 SsbSsaPsbPsa uuuuu ,,,,,,,, ,,,


ssss

sss

hBsAS

BAP

,0
2

,00

,0

3tan)(,3tan:

0tan:









2
,0

,0

,01
,0

)]2cos(21[
11)(

tan
4
1

s
s

s
s

h

f
r























 

Expressions for  ds,tria,  es,trial and fs,trial are available on request.  Because of the azimuthal 

asymmetry introduced by tilting the detectors, these coefficients depend on azimuthal off-

axis angle as well as polar off-axis angle.  Integrating to evaluate the merit function  M, 

and then minimizing M, we find:



Our method involves writing ray position components  (x,y,z) and direction

vectors  (kx,ky,kz) in the form:

where

In this notation, the mirror prescription becomes:



The angle α0,s is the graze angle for 

an on-axis ray at the intersection plane. 

Nested Shells:
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For a set of  S nested mirror shells, we find the spatial variance is the sum of two terms.  The first 

is a sum over the spatial variances of the individual shells, weighted by their effective areas.  The second

is a weighted sum over a kind of variance of the spatial means for the individual shells.  The second term 

can be viewed as arising from the fact that the best focal surfaces of the different shells do not coincide with

each other or with the best focal surface for the nested set.  This result means that the shell parameters must 

be optimized simultaneously rather than individually.  These results for nested shells and the expressions 

below are valid for any mirror surface prescription.
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As long as the polynomial coefficients are sufficiently small, various operations 

such as addition, subtraction, multiplication, division, taking of square roots, etc.

are evaluated by expansions to second order in the polynomial coefficients.  Then

all the tasks required for a ray trace can be accomplished to the appropriate order.

These tasks are (1) populating the entrance aperture with rays (in position, the 

incident direction is assumed), (2) finding intersections with mirror segment surfaces,

(3) calculating unit normals to those surfaces, including deviations due to non-ideal 

surfaces, (4) determining the direction vector of the reflected ray, and (5) taking 

account of any obstruction by the next innermost shell.

Figure 2.  Mirror segment length ls vs. intersection radius r0,s, with points 

showing locations in the (ls, r0,s) plane of Monte-Carlo ray traces with 50,000

incident rays for  f = 5.5 m.  For the largest dot, we also carried out ray traces

with 100,000 incident rays for f = 5.5 m.  For the largest and mid-size dots, we 

also carried out ray traces for f = 4.5, 5.0 and 6.0 with 50,000 incident rays.

The solid curve shows the ls vs. r0,s relation for the wide-field design of Conconi

et al. (2010).  Curved dotted lines track the angle θcoma for which acoma = a0.

Figure 1.  Detector geometry showing 4 flat tilted detectors, one per quadrant.  The 

detectors are tilted up from a flat plane perpendicular to the optical axis by an amount

Θtilt.
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X-ray telescopes with spatial resolution optimized over the field-of-view (FOV) are of 

special interest for missions, such as WFXT, focused on moderately deep and deep 

surveys of the X-ray sky, and for solar X-ray observations.  Here we report on the 

present status of an on-going study of the properties of Wolter I and polynomial 

grazing incidence designs, with a view to gaining deeper insight into their properties 

and simplifying the design process.  With these goals in mind, we present some 

results in the complementary topics of  (1) properties of Wolter I X-ray optics and (2) 

polynomial X-ray optic ray tracing.  Of crucial importance for the design of wide-field 

X-ray optics is the optimization criteria.  Here we have adopted the minimization of a 

merit function, M, which measures the spatial resolution averaged over the FOV.  



Merit Function:
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where  w(θ,)  is a weighting function and

is the spatial variance for a point source on the sky at polar and azimuthal off-axis 

angles  (θ,φ).

Of crucial importance for the design of wide-field X-ray optics is the optimization 

criteria.  Here we have adopted the minimization of a merit function, M, which 

measures the spatial resolution averaged over the FOV:



Single Shell:

For a single Wolter I mirror shell  s, the spatial variance may be written as
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The angle brackets around a quantity  q,  denote an average over a set of exit rays 

from a Monte-Carlo ray trace, and the subscript 0 denotes evaluation in the flat plane 

perpendicular to the optical axis at the nominal on-axis focus.  The variable δzs is the 

displacement of the mirror shell along the optical axis from its nominal position.  The variable  θtilt

is the angle with by which a detector plane with corner at the optical axis is tilted (see Figure 1).  

Expressions for  ds, es and fs are available on request.  



Figure 1.  Detector geometry showing 4 flat tilted detectors, one per quadrant.  The 

detectors are tilted up from a flat plane perpendicular to the optical axis by an amount

Θtilt.



Using the results from extensive Monte-Carlo ray traces (see Figure 2), we have 

devised analytic trail functions for the coefficients as, bs, cs, ds, es and fs:
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Expressions for  ds,tria,  es,trial and fs,trial are available on request.  Because of the azimuthal 

asymmetry introduced by tilting the detectors, these coefficients depend on azimuthal off-

axis angle as well as polar off-axis angle.



Figure 2.  Mirror segment length ls vs. intersection radius r0,s, with points 

showing locations in the (ls, r0,s) plane of Monte-Carlo ray traces with 50,000

incident rays for  f = 5.5 m.  For the largest dot, we also carried out ray traces

with 100,000 incident rays for f = 5.5 m.  For the largest and mid-size dots, we 

also carried out ray traces for f = 4.5, 5.0 and 6.0 with 50,000 incident rays.

The solid curve shows the ls vs. r0,s relation for the wide-field design of Conconi

et al. (2010).  Curved dotted lines track the angle θcoma for which acoma = a0.



Integrating to evaluate the merit function  M, and then minimizing M, we find:
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Nested Shells:

For a set of  S nested mirror shells, we find the spatial variance is the sum of two terms.  The 

first is a sum over the spatial variances of the individual shells, weighted by their effective areas.  

The second is a weighted sum over a kind of variance of the spatial means for the individual shells.  

The second term can be viewed as arising from the fact that the best focal surfaces of the different 

shells do not coincide with each other or with the best focal surface for the nested set.  This result 

means that the shell parameters must be optimized simultaneously rather than individually.  These 

results for nested shells and the expressions below are valid for any mirror surface prescription.
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Ray Tracing Polynomial X-ray Optics:

In 1992, Burrows, Burg, and Giacconi showed how adding higher order 

polynomial terms to Wolter I prescriptions, and hence giving up some on-axis 

spatial resolution, can lead to mirror surface prescriptions with improved spatial 

resolution over a wide FOV.  Optimizing a nested array of polynomial optics involves 

many Monte-Carlo ray traces to cover parameter space, and complex methods of finding 

the optimum design.  We have devised a method, valid when the polynomial coefficients 

are sufficiently small, for ray tracing polynomial optics keeping the polynomial coefficients 

in symbolic form.  The method treats a polynomial optic as a perturbation on an 

underlying Wolter I optic:
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where  ua,s and  ub,s are the polynomial coefficients and differ for the primary, 

P, and secondary, S, mirror elements (higher order polynomial terms may also 

be included), as do  As and  Bs.



For an underlying Wolter I optic we have:
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The angle α0,s is the graze angle for 

an on-axis ray at the intersection plane. 



uuu 
  000







































 s

ss
s

s
sss u

r
z

r
zB

r
zArzr ,0

2

,0

2

,0,0

2
,0

2 21)( 


 SsbSsaPsbPsa uuuuu ,,,,,,,, ,,,










 0,0,,1

,0
,,0

s
Ps r

z


Our method involves writing ray position components  (x,y,z) and direction

vectors  (kx,ky,kz) in the form:

where

In this notation, the mirror prescription becomes:
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As long as the polynomial coefficients are sufficiently small, various operations 

such as addition, subtraction, multiplication, division, taking of square roots, etc.

are evaluated by expansions to second order in the polynomial coefficients.  Then

all the tasks required for a ray trace can be accomplished to the appropriate order.

These tasks are (1) populating the entrance aperture with rays (in position, the 

incident direction is assumed), (2) finding intersections with mirror segment surfaces,

(3) calculating unit normals to those surfaces, including deviations due to non-ideal 

surfaces, (4) determining the direction vector of the reflected ray, and (5) taking 

account of any obstruction by the next innermost shell.


