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The two-burn maneuver to escape the gravitational pull of a central body is described.  
The maneuver, originally suggested by Hermann Oberth, improves efficiency considerably 
for a wide range of missions of interest in space exploration and scientific investigation.  A 
clear delineation of when the maneuver is more effective is given, as are methods to extract 
the most advantage when using the maneuver.  Some examples are given of how this 
maneuver can enable exploration of the outer solar system, near interstellar space, and 
crewed missions to Mars and beyond.  The maneuver has the potential to halve the required 
infrastructure associated with a crewed mission to Mars and achieve increased solar escape 
velocities with existing spacecraft technologies. 

 

Nomenclature 

a = semi-major axis 
a1 = semi-major axis of the ellipse resulting from the first burn (equal to a2) 
G = gravitational constant 
M = mass of the central body 
r = radial distance 
r0 = radius of initial circular orbit (equal to r1) 
r2 = radial distance from the central body immediately prior to the second burn. 

r


 = vehicle acceleration 
V = velocity 
V0 = initial velocity  
V2 = velocity immediately prior to the second burn 
V = change in velocity  
V1 = change in velocity after the first burn 
V3 = change in velocity after the second burn 
Vt = total change in velocity  
 = specific orbital energy 
 = standard gravitational parameter 
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I. Introduction 
In 1928 Oberth1 suggested the option of a two-burn orbital maneuver that would, on the first burn, drop an 

orbiting spacecraft further down into the central body’s gravity well, then a second burn would be performed to 
accelerate the spacecraft allowing it to escape the gravity well.  This maneuver was not studied in detail by Oberth.  
Later, a brief analysis was done by Levin2.  In this paper we present a detailed analysis of this two-burn maneuver 
including a comparison with a direct burn maneuver.  Our analysis clearly shows that in some cases, the two-burn 
maneuver results in a higher specific mechanical energy as opposed to the direct burn.  The analysis presented is a 
complete mathematical description without bias of the results to specific applications.   

Two-body motion is of primary interest in most space trajectory applications as the vehicle is strongly 
affected by the planet (or star) it is orbiting compared with other distant astronomical bodies3.  Similarly neglected 
are perturbations due to solar light pressure, atmospheric effects, spacecraft processes or gravitational harmonics due 
to the deviation from a uniform sphere of the central body.  Neglecting the perturbing forces, the summation of 
forces on the vehicle is simply 
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From the above equation the gravitational force is a function of the inverse square of this radius vector.  In the 
Newtonian equation only the mass of the large body is considered since the mass of the vehicle is much smaller.  
Taking the dot product of equation (1) with respect to r


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where   is referred to as the specific orbital energy of the vehicle.  The orbital energy is the sum of the specific 

kinetic energy (the first term) and the specific potential energy (the second term).  In deriving this equation it is 
convenient to assume that the reference line for potential energy is at infinity.  The right hand side of the equation 
expresses specific orbital energy as a function of the orbits semi-major axis.   

The equations above define the major parameters of a spacecraft in a coasting trajectory around a central 
body.  In the operation of a spacecraft, changes in the orbit must be made to allow the spacecraft to travel to points 
of interest such as other planetary bodies.  Turning on the spacecraft propulsion system, or performing a ‘burn’ in 
industry parlance, will place the vehicle in a new coasting trajectory once the burn is completed. 

 Conventional chemical propulsion systems are characterized as high thrust.  The time to execute a burn is 
orders of magnitude lower than the overall mission time.  High thrust burns are treated as impulsive, and so the 
equations above are applied to the new spacecraft velocity after the burn, which is sufficient to describe the new 
spacecraft orbit.  The burn is quantified by another industry term, V, or “delta-vee”, which is determined by the 
properties of the propulsion system, the types of propellants involved, and the amount of propellant used.  
Minimizing V is the overriding performance objective in almost all spacecraft design endeavors.  A smaller V 
generally translates to a smaller spacecraft that is usually less expensive and more reliable to operate, simpler to 
design, and generally better able to meet mission objectives.  It should be noted that the size of the spacecraft can be 
linked exponentially to the value of V.4  An example of high thrust propulsion systems are the conventional 
chemically powered liquid engines and solid motors seen on launch vehicles and spacecraft since the start of the 
space age.  

Low thrust trajectories are characterized by propulsion systems that are on for large portions of the overall 
mission.   These propulsion systems tend to be proportionally larger than those for high thrust systems, but also tend 
to require less propellant.  Thus vehicles with low thrust propulsion systems are smaller and less massive than their 
high thrust counterparts in a wide variety of mission scenarios. Examples of low thrust propulsion systems are the 
nuclear and solar electric systems that have been strongly considered for a number of missions in recent years5.  
Additionally, solar electric propulsion can be found in previous NASA missions such as Deep Space 1 and are being 
used as station-keeping thrusters for a number of Earth orbiting satellites.  

Because low thrust propulsion thrust duration is substantial compared to the mission time, the optimal 
direction of the propulsive thrust at each moment along the trajectory becomes important.  Optimizing the “guidance 



schedule” of thrust direction and magnitude to limit the V required and therefore the spacecraft size becomes an 
issue.  Generally this is done by complex numerical integration of the equations of motion coupled with a variety of 
optimization routines.  The optimization problem is difficult and there are a number of trajectory analysts that are 
dedicated on a daily basis to optimize these trajectories for missions of interest in space exploration. 

Due to the computationally intensive nature of trajectory design, there has been strong interest since the 
1950’s to determine analytical approximations to low thrust trajectories that would give generally accurate results.  
A prevalent argument in the derivation of these approximations is that the thrust vector should always be aligned 
with the spacecraft’s velocity vector.  The reason can be seen by taking the time derivative of the kinetic energy 
equation, which is 
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Thus the instantaneous rate of change of kinetic energy is proportional to both acceleration and velocity.  The 
local maximum is found when the spacecraft velocity and acceleration are parallel.  However, as argued by Levin6, 
the spacecraft could accelerate in a different direction, forcing the spacecraft into a different orbit with a point of 
closest approach to the central body, the periapse, being closer to the central body than the original orbit.  
Examination of equation (2) shows that for a coasting orbit, the specific mechanical energy remains constant but the 
kinetic energy is traded for potential energy.  At periapse kinetic energy is at a maximum and potential energy is at 
minimum, just like for any gravitational force dominated problem like a swinging pendulum or a ball in free flight.  
By equation (3), driving to a lower orbit and then accelerating at periapse would maximize the change in energy of 
the spacecraft for a given acceleration (and thrust). 

 This only describes the conversion of potential to kinetic energy.  Understanding the infinite gain in 
specific mechanical energy requires discussion of another concept.  One is tempted to expect only a finite amount of 
energy to be delivered to a spacecraft due to its latent chemical or nuclear energy.  However the propellant has 
potential energy as well.  Imagine that the spacecraft is propelled not by accelerating propellant, but by releasing a 
solid mass (of the same mass as the propellant it replaces) at high velocity, perhaps through use of a spring.  The 
coiled spring in this case represents the latent energy of the propellant or propulsion system energy source.  In the 
direct acceleration option both masses representing both burns would be released, propelling the vehicle into a 
higher orbit with periapse equal to the initial orbit.  The spring loaded masses would be ejected into a lower orbit 
with apoapse equal to the initial orbit.  The conservation of energy is not violated when one considers the change in 
kinetic energy of the spacecraft and the ejected masses.  For the two-burn option, the first mass is ejected to slow the 
spacecraft and allow it to drop to a lower orbit.  The ejected mass gains velocity and flies to a higher orbit about the 
central body.  At periapse the spacecraft releases the second mass.  This mass accelerates the vehicle and itself drops 
into a lower orbit.  The derivations above show that the energy gained by the second mass ejection can greatly 
overcome the energy lost from the first mass ejection.  The second mass can be left in a significantly lower orbit 
depending on the magnitude of the periapse radius.  At the limit, the second mass is ejected from an infinitely small 
orbital radius, recovering an infinitely large change in kinetic energy for the spacecraft.   

The discussed two-burn option could easily be confused with a gravity assist maneuver. However, the gravity 
assist maneuver is based on a massive body such as a planet dragging the spacecraft along for part of the 
spacecraft’s trajectory.  Momentum (and specific orbital energy) will be exchanged between the planet and 
spacecraft.  The effect on the spacecraft is substantial, imparting in most cases a velocity change ( V ) that could 
not be easily duplicated with current propulsion systems.  The effect on the planet is minimal, due to its massive 
nature relative to the spacecraft.  This momentum exchange is between an external body and the spacecraft and the 
exchange will occur even if no burn is made by the spacecraft.  Conversely, a slingshot maneuver will not work 
unless there is a substantial burn at the periapse of the elliptical trajectory.  The additional energy gained by the 
spacecraft is represented by the additional loss in specific energy by the propellant expended at the periapse burn.  It 
does not represent a transfer of momentum from the central body to the spacecraft.   

 It should be noted that this principle is already in use in the context of a gravitational assist.  It is well 
known that performing a burn maneuver at the periapse during a gravitational assist maneuver will enhance the 
overall V gained from the maneuver.  In fact the principle known as the Oberth Effect describes how a burn is 
most effective in accelerating a vehicle when it is conducted at the periapse of the spacecraft’s orbit.7  

 



II.  Theory for the two-burn maneuver 
As a thought experiment the authors considered a maneuver where the spacecraft would decelerate from an 

initial circular orbit with a single high thrust burn, dropping into an orbit with a lower specific mechanical energy.  
When the vehicle reaches the periapse of the new orbit it accelerates with another high thrust burn.  The primary 
objective of this study is to determine if such a maneuver can produce a higher specific orbital energy than a direct 
burn from the initial circular orbit.  A sketch of the maneuver is illustrated in Figure 1.   

 

 

Figure 1.  In the two-burn maneuver, the first burn decelerates the spacecraft resulting in a trajectory that 
takes it further into the gravity well of the central mass (this is opposed to a single direct burn which 
accelerates the spacecraft).  The second burn is performed at the periapse of the new elliptical orbit and 
accelerates the spacecraft out of the gravity well of the central mass.  

 The primary purpose of this study is to derive an equation that compares the specific mechanical energy 
achieved after the second burn at periapse to that of a direct burn to escape.  We begin by deriving an equation for 
the specific mechanical energy of the two-burn maneuver using the equations shown above.  Starting with equation 

(2) and designating the second burn at periapse as 3V  the specific mechanical energy equation becomes 
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The second burn is made at periapse and is assumed to be an impulse burn.  The periapse point is given by the 
definition of semi-major axis as 112 2 rar   where the semi-major axis can be calculated by the specific 

mechanical energy of the orbit before the 3V  burn to be 11 2a .  With the substitution of the velocity 

immediately before the second burn, V2, using equation (2) the specific mechanical energy equation yields 
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The specific energy of the orbit at position 1 can be defined from the conditions at position 1  1
2

11 2 rV   .  

The specific mechanical energy equation then yields, 
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For an initially circular orbit, the initial velocity can be expressed as 00 rV  .  Again note that the burn the 

vehicle makes to depart the initial circular orbit ( 1V ) is assumed to be instantaneous.  Also note that the 1V  

maneuver opposes the initial velocity of the spacecraft as shown in Figure 1.  If we define the convenience variable 

101 VrV   , then with further algebra our final equation for the specific mechanical energy is, 
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Here the final specific mechanical energy is a function of the radius of the initial orbit and the magnitude of the 

V  maneuvers only.  Note that there is an asymptote when V1 is zero, corresponding to 01 rV  . 

 We now revisit the direct burn option.  The specific mechanical energy for the direct burn option is simpler 
to derive.  Noting that the starting velocity has been defined previously and that the total change in velocity for the 

direct burn is 31Total VVV   the specific mechanical energy yields 
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Setting the two energy equations equal to one another will yield the breakeven point between the direct 
option and the two-burn option 
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Due to the plus/minus term which came from roots that developed during the derivation of the equations, there are 
two solutions.  Taking the negative root results in, 

 

0
31 r

VV


 . 
(10) 

This linear equation defines where the energy for the direct and two-burn maneuvers are equal.  An additional line 

where this is true is when 0V1   as can be seen in the above energy equation. Taking the positive root results in 

the second equation,  
  

  03
2

1
0

131

0
31





VV
r

VVV

r
VV





 

(11) 

 To demonstrate when the two-burn option will produce a greater specific mechanical energy over that of 
the direct burn option, we present Figures 2 - 5.  Figures 2 and 4 show the negative root from the above equations 
and Figures 3 and 5 show the positive root.  Figures 2 and 3 are for an initial Low Earth Orbit (LEO) for a trajectory 
around the Earth and Figures 4 and 5 are for an initial orbit of one astronomical unit (AU) for a trajectory around the 

Sun. In each of these plots, the top figure gives 1V  versus specific mechanical energy for a constant 3V .  The 

three vertical lines indicate the two cross over points and the vertical asymptote mentioned above.  The lower figure 

plots the above two equations for 1V  versus 3V .  This plot shows where the direct burn and two-burn options 

will have the same specific mechanical energy.  The two vertical lines show the two cross over points.   

 For the two-burn maneuver to have a higher specific mechanical energy, 1V  must fall in specific regions.  

If one considers the three vertical lines in the top plots to divide the plot into four regions, and we number those 
regions 1-4 from left to right, the 2-burn option will have a higher specific mechanical energy in regions 1 and 3.  In 
the other regions, the direct burn maneuver will have a higher specific mechanical energy.  Looking at the Earth 

orbital figures and the negative root option, this means the 2-burn 1V  must meet the following criteria; 

01 V618.0V   or 01 V618.1V0  .  For the positive root, the 1V  criteria is 11 xV   where 1x  is 

the negative root of     0VVVVVVVVV 3
2
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2

130   or 210 xVV   where 2x  

is the positive root of the above equation.  Note that the x2 point may appear either before or after the vertical 

asymptote depending on the value of 3V . 

With respect to the total V budget, Figure 6 shows the specific mechanical energy related to 1V .  This 

figure was calculated for the same 1 AU orbit as Figures 4 and used the negative root solution.  The figure re-



emphasizes the effect when 01 VV  .  The asymptote at this point puts the specific mechanical energy at positive 

or negative infinity depending on the value of 1V .  This is true for any total V budget. 

Figure 7 emphasizes the amount by which the two-burn maneuver can exceed the direct maneuver in 
producing escape velocity.  In Figure 7 it is clear that the two-burn maneuver does not gain relative to a direct burn 
unless the total V exceeds that of the initial velocity.  The figure also shows that the maneuver can gain 
substantially relative to the direct burn under the right circumstances.  The plot also shows the first V required to 
drop perihelion to that of Mercury and Venus’ average orbital distance and that to drop perihelion to within 3 solar 
radii.  It is evident that the spacecraft must come very close to Sol in this scenario to realize significant gains in Vinf.  
Additionally the larger the entire V budget is, the further perihelion can be to realize the same gain in Vinf. 
 

 

Figure 2. Comparison between a direct burn and the negative root of the two-burn maneuvers around the 

Earth from an initial orbit of 400 km above the Earth (LEO).  In the top figure s/km15V3   and the 

two-burn maneuver shows a higher specific mechanical energy in two of the four regions.  The lower figure 
shows two points where the specific mechanical energy for the two maneuvers will be equal, the crossing of 

the horizontal and sloped lines and at the vertical line, s/km0V1  . 



 

Figure 3. Comparison between a direct burn and the positive root of the two-burn maneuvers around the 

Earth from an initial orbit of 400 km above the Earth (LEO).  In the top figure s/km15V3   and the 

two-burn maneuver shows a higher specific mechanical energy in two of the four regions.  The lower figure 
shows two points where the specific mechanical energy for the two maneuvers will be equal, at the crossing of 
the horizontal line and the non-linear function. 

For instance, assuming that the spacecraft can survive a close approach to the sun of 3 solar radii and a total 
V  budget of 40 km/sec the slingshot maneuver can produce a change in specific orbital energy approximately 

three times that of the direct maneuver.  Survival of a three solar radii approach is the goal of Solar Probe+ mission8, 
so there is good expectation that this goal is within current technological limits. There is also the possibility of using 
the two-burn maneuver not only for escape but also for orbit raising missions.  However the maneuver as shown is 
not more efficient than a Hohmann maneuver.  This is evident by considering the concept of escape velocity.  Given 
a spacecraft at a certain orbital radius the minimum velocity that will attain escape from the central body is 
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Comparing the escape velocity to initial circular velocity plus the budget allowed for a maneuver gives,   
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Figure 4. Comparison between a direct burn and the negative root of the two-burn maneuvers around the 

Sun from an initial orbit of 1AU.  In the top figure s/km15V3   and the two-burn maneuver shows a 

higher specific mechanical energy in two of the four regions.  The lower figure shows two points where the 
specific mechanical energy for the two maneuvers will be equal, the crossing of the horizontal and sloped lines 

and at the vertical line, s/km0V1  . 

Since the two-burn maneuver requires that the V budget exceeds the circular velocity the left hand side of 
the equation will always exceed escape velocity.  Thus the two-burn maneuver is not as efficient as that for a 
Hohmann transfer.  However, frequently a mission requires a fast transfer from one orbit to another, faster than the 
Hohmann transfer produces.  Crewed missions and robotic probes to deep space make waiting for Hohmann 
transfers prohibitive.  Thus the two-burn maneuver could be compared to a semi-tangential trajectory.  In this 
scenario there are some instances where the two-burn maneuver proves more effective.  More analysis is indicated 
in this area. 

It should be noted that the analysis in figures 6 and 7 assume a starting position of an orbit around the sun at 
earth’s distance (1 AU).  The premise of this two-burn maneuver is that burns should be done as low in the gravity 
well as possible.  In a realistic situation the first burn, intending to slow the spacecraft so it will drop towards the 
sun, would be done in Low Earth Orbit.  The benefit is that the first burn is done deep in the gravity well of Earth 
making it less expensive to drop towards the sun.  The difference can be significant, and the results above for 
starting points in orbit around the sun are therefore conservative. 



 

Figure 5. Comparison between a direct burn and the positive root of the two-burn maneuvers around the Sun 

from an initial orbit of 1AU.  In the top figure s/km15V3   and the two-burn maneuver shows a higher 

specific mechanical energy in two of the four regions.  The lower figure shows two points where the specific 
mechanical energy for the two maneuvers will be equal, at the crossing of the horizontal line and the non-
linear function. 

V. Conclusions 
The two-burn option can produce a greater specific mechanical energy for a given V  budget than a direct 

burn but only when the total budget exceeds the initial velocity in the initial orbit.  So the V budget must be 
considerable before the slingshot maneuver is worthwhile.  For instance starting from a circular orbit around the sun 
at a distance equal to earth’s orbit, the V budget equal to the initial circular velocity is sufficient to completely 

escape the solar system with a V  of about 17.5 km/sec.   However the V  budget is well within the range of 

many missions of interest to NASA. For instance the interstellar precursor mission presents the challenge of 
traveling 1000 astronomical units (AU) within 50 years, the career lifetime of the average engineer or scientist.  The 
escape velocity above will deliver a spacecraft to the required distance in over 110 years so clearly a slingshot 
maneuver would be useful for this mission.  Other deep space missions to the outer planets, Kuiper Belt, Oort Cloud, 
and heliopause would similarly be enhanced by use of this maneuver. 
 Finally a class of mission that has received attention by NASA in recent years is the deflection or 
fragmentation of asteroids and comets that are on a collision course with Earth.  The V imparted to an oncoming 

asteroid is very low, on the order of 1-100 cm/sec9.  This V  is sufficient to deflect most asteroids provided that 



the impulse is applied to the asteroid early enough.  Current deflection methods require 2-50 years between 
application of the impulse and the projected collision date.  Therefore the device that will impart the impulse to the 
asteroid must intercept or rendezvous with the asteroid with all haste.  Given the above the V requirement to 

intercept an incoming asteroid is generally on the order of 10-30 km/s10.  The V requirement to rendezvous can be 
as high as 70 km/sec.  Both values are well within the range necessary to make the two-burn maneuver economical. 

 

Figure 6. The specific mechanical energy of the negative root two-burn maneuver, versus 1V  for varying 

total V  budgets.  The vertical asymptote is at the initial orbital velocity (29.78 km/s).  Values represent a 
solar orbit starting at 1 AU (Earth-like) orbit.  

 This paper started by examining the concept that acceleration along the velocity vector would result in an 
optimal acceleration of the spacecraft.  While acceleration along the velocity vector is locally optimal it turns out 
that there is a special maneuver that in certain cases will outperform the “optimal” cross product acceleration by 
actually decelerating the vehicle and accelerating it when it reaches periapse.  It is presented here as an important 
maneuver to be considered for high V  missions such as interstellar precursor or similar deep space missions and 
potentially crewed round trip missions to Mars and beyond.  This has profound implications for future space 
exploration.  Being able to use in-situ resources to create propellants or even construct vehicles on the moon has 
even greater importance now that the two-burn maneuver can be used to substantially reduce the propulsive 
requirements for deep space missions. 

0 10 20 30 40 50
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

4

ΔV
1
 (km/s)

S
pe

ci
fic

 M
ec

ha
ni

ca
l E

ne
rg

y 
(k

m
2 /s

2 )

 

 
20
25
29
30
35
40
45
50



The V  required to complete a mission to Mars and return is 12-13 km/sec for Hohmann transfers.  
However, radiation exposure, crew supplies and crew mental health issues have forced vehicle designers to look at 
much higher V  missions that can reduce trip times and mission risk.  Mission studies for crewed missions to 

Mars with a limiting total trip time of 2 years of less have V  requirements above 20 km/sec.  Therefore it is 
possible that the new option could have application in orbit raising maneuvers where limiting mission time is 
critical.  A proof of principle calculation shows significant gains in performance for crewed missions to Mars using 
this maneuver.  This gain is predicated on the hope that water ice will be found on the moon and can successfully be 
turned into useable propellant.  Given this assumption the two-burn maneuver can reduce vehicle size by up to half, 
or decrease mission time by half.  The former dramatically reduces the cost of a Mars trip, while the latter reduces 
the risk to crew.   

 

Figure 7. Ratio of Vinf for the two-burn maneuver to the Vinf attained through a direct burn over a range of 
total V  budgets.  The negative root solution was used for this figure.  The vertical asymptote is at the initial 
orbital velocity (29.78 km/s).  The values represent a solar orbit starting at 1 AU (Earth-like orbit). 

 
  

 The two-burn maneuver shows considerable promise to enable a variety of scientific and exploration 
missions in deep space.  The authors believe that this two-burn maneuver could have as large of an impact on space 
exploration as the gravity assist.  Developed at the very beginning of the space program, the gravity assist enabled 
missions from Voyager to Cassini to visit the planets of the solar system using technologies that were then available.  
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Clearly without the gravity assist those technologies would have been inadequate to explore much of the solar 
system outside of the moon and Mars.  Similarly the two-burn maneuver provides a method for exploration of the 
boundary of the solar system and interstellar space using today’s technologies and technologies of the near future.  
Such missions are difficult to conceive without considering the advantages of alternative maneuvers.   
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