Long Term Performance Retention Test
Using High Power COTS NiCd and NiMH Cells

NASA Aerospace Battery Workshop
November 18-20, 2003
by

Dan Hall-Lockheed Martin/NASA-JSC,
Eric Darcy-NASA-JSC,
Brad Strangways & Tim Nelson-Symmetry Resources, Inc.
Presentation Objectives

- Introduction to Space-Flight High Power Applications
- Problem Description for Current Designs
- Test Plan for NiCd and NiMH
- Results and Analysis
- Conclusion
Introduction

- Space Flight electromechanical actuators will require short duration high power batteries

- X-38 Crew Return Vehicle electromechanical actuators
 - Qualified the first 270V, 5 Ah (8.4Ah Actual) NiCd battery module for single use application
 - Requires 41.5W/Cell @ 1.0V
 - NiCd and NiMH ~40-50Wh/kg for commercial SubC cells have demonstrated capability
 - Cell charging maintenance development is needed to meet the 3 year on-orbit CRV mission

- Orbital Space Plane OSP will also need to maintain battery performance readiness > 6 months requiring similar maintenance regime development
Problem Description for Current Designs

- NiCd designs demonstrate unfavorable power degradation after long periods of inactivity

 - Up to 35% and 45% reversible and irreversible capacity losses were experienced after 4 and 7 months of charged storage (monthly maintenance charge)
 - Up to 70 and 85 mV/cell of voltage depression (impedance growth) after 4 and 7 months (monthly maintenance charge)

- Although some of the decay is recoverable with cycling, this adds a heavy interface requirement thereby reducing battery readiness

- Charging development options are limited by contactor life (100,000 cycles) for X-38 270V Battery.
Test Plan Objective

• A 5-cell SubC stick test vehicle was chosen using NiCd (CP-2400SCR) vs NiMH (HR-SC2600) both by Sanyo

• Compare differences at different charge maintenance regimes for NiMH as an alternative to NiCd

 • Capacity to 1.0V
 • Voltage after 1.2Ah discharge
 • Resistance @ 100 ms
 • Available pulse power @ 1.0V

• Identify regimes that provide acceptable performance
Continuous Charge Maintenance Test Plan

<table>
<thead>
<tr>
<th>Regime Type</th>
<th>Charge Method</th>
<th>Continuous Maintenance</th>
<th>Duration</th>
<th>Rest</th>
<th>Discharge</th>
<th>Pulse after 1.2Ah</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>@ 2.4A; Peak V-10 mV/cell(-5mV/cell for MH)</td>
<td>0.24A, 1 sec on, 10 sec off</td>
<td>Daily</td>
<td>1 hr</td>
<td>@ 3.5A to 1.0V</td>
<td>24A @ 0.1 sec / 2.4A @ 2 min</td>
<td>3 hr</td>
</tr>
<tr>
<td>Continuous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance Groups (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekly</td>
<td>@ 2.4A; Voltage Cutoff, -10 mV/cell (-5mV/cell for MH)</td>
<td>0.24A, 11 sec on, 10 sec off</td>
<td>Week</td>
<td>1 hr</td>
<td>@ 3.5A to 1.0V</td>
<td>24A @ 0.1 sec / 2.4A @ 2 min</td>
<td>3 hrs</td>
</tr>
<tr>
<td>Monthly</td>
<td></td>
<td></td>
<td>Month</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Month*</td>
<td></td>
<td></td>
<td>3 Months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Month*</td>
<td></td>
<td></td>
<td>6 Months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Note: Includes monthly check-out (0.5A for 3min, 10A, 0.1sec, recharge @ 2.4A to –dV)

- Discharge interval ladder with C/110 Charge
 - Daily cycle (Two 3-cell sticks)
 - Weekly, monthly, quarterly, semi-yearly cycle (4 groups; one 5-cell stick each)
Periodic Charge Maintenance Test Plan

<table>
<thead>
<tr>
<th>Regime Type</th>
<th>Charge Method</th>
<th>Rest</th>
<th>Topping Frequency</th>
<th>Discharge</th>
<th>Pulse after 1.2Ah</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodic Charge Maintenance Groups (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Topping</td>
<td>@ 2.4A; Voltage Cutoff, -10 mV/cell (-5mV/cell for MH) less than peak</td>
<td>1 month</td>
<td>None</td>
<td>@ 3.5A to 1.0V</td>
<td>24A @ 0.1 sec / 2.4A @ 2 min</td>
<td>3 hrs</td>
</tr>
<tr>
<td>Weekly Topping</td>
<td></td>
<td></td>
<td>0.24A @ 1.5 hour/week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-month Topping</td>
<td>CC/CV @ 2.4A to 1.44V, 1.44V to 0.24A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant Voltage</td>
<td></td>
<td></td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Intermittent maintenance interval ladder
 - None, weekly, mid-monthly maintenance groups (3 groups; one 5-cell stick each)
 - No maintenance with constant voltage charge @ 1.44V (1 group; one 5-cell stick)
Control for Continuous Charge Maintenance
Daily Charge, Capacity and On-Demand Power at 1.0V

Sanyo HR-SC 2400 NiCd Control

Sanyo HR-SC 2600 NiMH Control
Results of Control

- For capacity to 1.0V after 6 months of daily cycling NiMH is favored over NiCd

- For available pulse power at 1.0V after 6 months of daily cycling NiCd is favored over NiMH

- Rapid power fade with daily cycles for NiMH is attributed to increase of internal resistance
Continuous Charge Maintenance
Capacity and On-Demand Power at 1.0V

Sanyo CP-2400SCR NiCd Charged Maintenance

Sanyo HR-SC 2600 NiMH Charged Maintenance

- weekly dsch Capacity
- 3-mo dsch Capacity
- weekly dsch Power
- 3-mo dsch Power
- monthly dsch Capacity
- 6-mo dsch Capacity
- monthly dsch Power
- 6-mo dsch Power
Results of Continuous Charge Maintenance

- For capacity to 1.0V after 6 months for all continuous maintenance groups NiMH is favored over NiCd

- Capacity and power trends after 6 months appear stable for both chemistries

- For available pulse power at 1.0V after 6 months of continuous maintenance NiMH is slightly favored over NiCd
Periodic Charge Maintenance
Capacity and On-Demand Power at 1.0V

Sanyo CP-2400SCR NiCd Periodic Maintenance

Sanyo HR-SC 2600 NiMH Charged Maintenance Tests

<table>
<thead>
<tr>
<th>Capacities</th>
<th>Available Power</th>
<th>Elapsed Time (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Ah</td>
<td>Available Power W</td>
<td>0</td>
</tr>
<tr>
<td>Capacity Ah</td>
<td>Available Power W</td>
<td>0</td>
</tr>
</tbody>
</table>

- weekly top chg Capacity
- no top chg Capacity
- Daily top chg Capacity
- semi-monthly top chg Capacity
- cc/cv, no top chg Power
- Daily top chg Power
- weekly top chg Power
- semi-monthly top chg Power
- cc/cv, no top chg Power
- Daily top chg Power
- weekly top chg Power
- no top chg Power
- semi-monthly top chg Power
- no top chg Power
- cc/cv, no top chg Power
- Daily top chg Power
Results of Periodic Charge Maintenance

• For capacity to 1.0V and available power at 1.0V after 6 months, NiMH is strongly favored over NiCd

 – Capacity and power trends in all groups are decreasing for NiCd and stabilizing for NiMH
 – Power fade in periodic charge maintenance groups is predominantly attributed to decrease of capacity and voltage

• NiCd groups with no maintenance including the constant voltage charge failed to deliver 1.2 Ah after 4 months
Available Power and Capacity vs Regime
@ 6 months, Power at 1.0V/Cell

- NiMH Capacity
- NiCd Capacity
- X-38 Specification
- NiMH Power
- NiCd Power

<table>
<thead>
<tr>
<th>Capacity Ah to 1.0 Volts</th>
<th>Available Power W @ 1.0 Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily Average</td>
<td>Continuous Maintainance</td>
</tr>
<tr>
<td>Control</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Continuous Charge Maintenance @ C/110 after 6 months
 - For daily discharge intervals only NiCd delivered greater than 41.5W
 - For weekly monthly, quarterly and semiannual discharge intervals both NiMH and NiCd delivered greater than 41.5W
 - Continuous duty cycle regimes impractical due to contactor design

- Periodic Charge Maintenance after 6 months
 - Only the weekly topping for NiMH performed greater than 41.5W
 - All NiCd periodic groups failed to deliver needed power
 - No-topping group experienced one high impedance short in a NiCd 5-cell stick, raising concerns over charge regime stability
Acknowledgements

• Eric Darcy-NASA-JSC
• Brad Strangways and Tim Nelson- Symmetry Resources