Performance and Safety Tests on Samsung 18650 Li-ion Cells with Two Capacities

Yi Deng, Judith Jeevarajan, Raymond Rehm
Lochkeed Martin Space Operations
Bobby Bragg
NASA Johnson Space Center
Wenlin Zhang
Schlumberger Perforating and Testing

Abstract
In order to meet the applications for Space Shuttle in the future, Samsung 18650 cylindrical Li-ion cells with two different capacities have been evaluated. The capacities are 1800 mAh, and 2000 mAh. The studies focused on the performance and safety tests of the cells.
Performance and Safety Tests on Samsung 18650 Li-ion Cells with Two Capacities

Yi Deng, Judith Jeevarajan, Raymond Rehm
Lockheed Martin Space Operations

Bobby Bragg
NASA Johnson Space Center

Wenlin Zhang
Schlumberger Perforating and Testing
Introduction

In order to meet the applications for space shuttle in future, two types of Samsung cells, with capacity 1800mAh and 2000mAh, have been investigated. The studies focused on:

• Performance tests
 Completed 250 cycles at various combinations of charge/discharge C rates
 Discharge capacity measurements at various temperatures

• Safety tests
 Overcharge and overdischarge
 Heat abuse
 Short circuit: Internal and external short
 Vibration, vacuum, drop tests
Performance tests
Plot of CC/CV charge for 1.8 Ah Samsung Li-ion cells at two different rates
Plot of discharge of Samsung 1.8 Ah li-ion cells at various C rates
Cycle life tests for 1.8 Ah Li-ion cells at various C rate combinations of charge/discharge
Characterization of capacities of 1.8 Ah cells at various temperatures
Discharge capacity at different temperatures

| Test temperature (°C) | Capacity of discharge (Ah) | Capacity of discharge (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1.71</td>
<td>95.6%</td>
</tr>
<tr>
<td>25</td>
<td>1.79</td>
<td>100%</td>
</tr>
<tr>
<td>10</td>
<td>1.62</td>
<td>90.6%</td>
</tr>
<tr>
<td>-10</td>
<td>1.41</td>
<td>78.8%</td>
</tr>
</tbody>
</table>

2.0 Ah cells

| Test temperature (°C) | Capacity of discharge (Ah) | Capacity of discharge (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1.82</td>
<td>95.8%</td>
</tr>
<tr>
<td>25</td>
<td>1.90</td>
<td>100%</td>
</tr>
<tr>
<td>10</td>
<td>1.75</td>
<td>92.1%</td>
</tr>
<tr>
<td>-10</td>
<td>1.34</td>
<td>70.5%</td>
</tr>
</tbody>
</table>
Summary for performance tests

• In 250 cycles, the capacity drops with 100% DOD were 11%-12% both for 1.8Ah and 2.0Ah cells regardless combination of C rate at range from 1C to C/4.

• Comparing with 25 °C discharge capacities (100%) of cells, the 1.8Ah cell delivered 95.6% at 40 °C, 90.6% at 10 °C, and 78.8% at -10 °C. For 2.0Ah cell, it delivered 95.8% at 40 °C, 92.1% at 10 °C, and 70.5% at -10 °C.
Safety tests
3C high rate discharge of 2.0 Ah cell

![Graph showing voltage (V), current (I), and temperature (T) over time (Sec)]
Over-discharge of Samsung 2.0 Ah li-ion cell at 1C rate into reversal

Deep discharge to reverse 150% of 1C capacity
Over discharge 1.8 Ah cell to 0.0V

1C rate discharge to 0.0V and held at open circuit for two weeks
Deep discharge of 1.8Ah cell at 1C rate into reversal with two week open.

Cell reversal by removal 150% more than original capacity.
1C overcharge 2.0Ah cell to 5.0V
3C overcharge 2.0Ah cell to cut-off voltage at 12.0V max.
Heat abuse test
High temperature exposure and heat-to-vent

Voltage (V)

Temperature (°C)

Time (Sec)
Internal short circuit test
Short circuit: Internal short

![Graph showing voltage (V) vs. time (s) for a short circuit internal short.](image-url)
Short circuit: External short

2.0Ah cell with 0.05 mΩ load
Summary for safety tests

<table>
<thead>
<tr>
<th>Number of 1.8Ah cells tested</th>
<th>Number of 1.8Ah cells passed</th>
<th>Number of 2.0Ah cells tested</th>
<th>Number of 2.0Ah cells passed</th>
<th>Safety test</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>High rate (3C) charge to 4.2V</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1C rate overcharge to 4.5V</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1C overcharge to 5.0V</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>High rate (3C) discharge to 2.7V</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1C overdischarge to 0V and reverse 150% of 1C capacity</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>65°C heating test</td>
</tr>
<tr>
<td>2</td>
<td>0 Venting at 80°C</td>
<td>2</td>
<td>0 Venting at 150°C</td>
<td>Exposure at temperature higher than 65°C</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>Vacuum test</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>Drop test</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Vibration test at 0.1 g^2/Hz level</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>Short circuit: internal & external</td>
</tr>
</tbody>
</table>
Acknowledgment

Thanks Samsung for supplying the li-ion cell samples.