
r- - , <

I
I
I Source of Acquisition

NASA JolUlson Space Center

Architectures and Evaluation for Adjustable Control Autonomy
for Space-Based Life Support Systems

Jane T. Malin
Technical Assistant to Branch Chief
Automation, Robotics & Simulation Division
NASA Johnson Space CenterlER
Houston, TX 77058

Debra K. Schreckenghost
Research Scientist
Texas Robotics & Automation Center
NASA Johnson Space CenterlER
Houston, TX 77058

KEYWORDS

Automation, Autonomy, Fault Management, Fault Isolation, Detection and Recovery

ABSTRACT

In the past five years, a number of automation applications for control of crew life support systems have
been developed and evaluated in the Adjustable Autonomy Testbed at NASA's Johnson Space Center.
This paper surveys progress on an adjustable autonomous control architecture for situations where
software and human operators work together to manage anomalies and other system problems. When
problems occur, the level of control autonomy can be adjusted, so that operators and software agents can
work together on diagnosis and recovery . In 1997 adjustable autonomy software was develo·ped to
manage gas transfer and storage in a closed life support test. Four crewmembers lived and worked in a
chamber for 91 days, with both air and water recycling. CO2 was converted to O2 by gas processing
systems and wheat crops. With the automation software, significantly fewer hours were spent
monitoring operations. System-level validation testing of the software by interactive hybrid simulation
revealed problems both in software requirements and implementation. Since that time, we have been
developing multi-agent approaches for automation software and human operators, to cooperatively
control systems and manage problems. Each new capability has been tested and demonstrated in realistic
dynamic anomaly scenarios, using the hybrid simulation tool.

INTRODUCTION

In the past few years, ASA has been investing in research and development to produce safe,
autonomously operating life support systems. During manned exploration missions, intelligent
autonomous control of air and water processing systems will reduce crew workload and increase crew
independence from Earth-based support. In the Adjustable Autonomy Testbed, an intelligent layered and
distributed autonomous control architectures has been developed, demonstrated and used. The
autonomous control has been enhanced to be adjustable, so that the system and crew can work together

- ,

to resolve problems and perform maintenance tasks. Simulation-based methods have been used for
dynamic testing of intelligent control software in complex system-level scenarios.

AIR PROCESSING IN SPACE-BASED LIFE SUPPORT

Advanced Life Support for space systems is designed to maximize the recycling of resources from waste
products. The goal is to recover virtually all oxygen (02) from the carbon dioxide (C02) respired by the
crew of a spacecraft or space station node. Three major and interrelated subsystems have been used to
convert CO2 to O2 :

• Variable Configuration Carbon Dioxide Removal (VCCR) System: C02 is removed from the crew
cabin atmosphere by adsorption into a molecular sieve sorbant bed and then desorbed from the bed
under low pressure and stored in an accumulator for recovery of the O2.

• Carbon Dioxide Reduction System (CRS): reacts CO2 removed from the cabin atmosphere with
hydrogen (H2) to produce methane (CH4), which is vented, and water, which is transferred to the
Water Recovery System (WRS).

• Oxygen Generation System (OGS): Water from the WRS is reduced to O2 and H2 by electrolysis.
The O2 is returned to the crew cabin and the H2 is transferred back to the CRS where it is reused for
the CO2 reduction process.

A schematic of the flows of water and gases among the three ARS subsystems is shown in Figure 1.

Adjustable autonomy for control and fault management has been developed and demonstrated in the life
support domain. The software operates in the Adjustable Autonomy Testbed, which provides a dynamic
simulation of the subsystem hardware as well as the autonomous agents that control them. Scenarios for
demonstration have most often focused on the VCCR molecular sieve system. Figure 2 provides a high
level functional view of the subsystems of the VCCR system.

Carbon Dioxide
Removal
System

Water
Recovery
System

CO:z

A ir

~O

Carbon Dioxide
Reduction

System

Oxygen
Gene rat ion

System

FIG. 1 - SCHEMATIC OF GAS FLOWS
IN AIR REVITALIZATION SUBSYSTEM

Air
Humidifier

I_Air
··· ·C02

Temp
Control

C02
Extraction

FIG. 2 - SUBSYSTEMS OF VARIABLE
CONFIGURATION CO2 REMOVAL (VCCR)
SYSTEM

I~

I

EXTENDED OPERATIONAL TEST OF AUTONOMY

In 1997, adjustable autonomy software was developed and deployed to manage gas transfer and storage
in a closed life support test. Four crewmembers lived and worked in a chamber for 91 days, with both air
and water recycling. In addition to the physico-chemical systems for gas processing, wheat crops were
used to convert CO2 to 0 2, and an incinerator periodically processed biological waste, producing CO2.

Figure 3 shows the configuration of the chambers and gas storage and transfer during the test.

Air Revitalization System

c~ Accumula tor

Product Gas Transfer

c~

Exercise
Room

Incinerator

Variable Pressure Growth Chamber

20 Foot Chamber

FIG. 3 - PRODUCT GAS TRANSFER IN THE PHASE III TEST IN THE LUNAR MARS LIFE
SUPPORT TEST PROGRAM

AUTONOMOUS CONTROL ARCHITECTURES

An autonomous architecture developed for robotic control (Three Tier or 3T) has been modified to
support adjustable autonomy (l). 3T consists of three tiers of control processing that operate in parallel.
Control flows from the top tier (the Planner) down to the bottom tier (the Skill Manager) that commands
the system hardware. Contro l feedback flows in reverse, from the bottom tier up to the top tier, which
enables closed loop contro l at all tiers of the architecture. Each tier has the following capabilities:

Planner: Predicts activities to achieve control objectives.
Represents and assigns tasks to multiple agents.
Monitors plan execution, detects plan execution failure , and replans at failure.

Sequencer: elects and orders procedures to implement planned activities .
Chooses procedures reactively, based on current state of environment.

I --

Allocates procedure steps to specific skill managers.

Skill Manager: Implements procedure steps under closed loop control.
Skills are activated to issue commands to control instrumentation.
Events are activated to monitor sensor readings in response to control.

The version of this architecture that was deployed to manage product gas transfer (PGT) and storage for
the manned test in 1997 is shown in Figure 4.

Agent architectures generally include a goal-oriented deliberative planner and a task-oriented procedural
executive that manages low-level control. In our agent architecture research, we have integrated an
additional model-based module (Livingstone) that is a specialist in system level fault detection,
identification and recovery (2) . Livingstone uses abstract models of system device modes and patterns of
symptoms to diagnose failures and differentiate between failed parts and sensors. Livingstone can also
identify new recovery configurations after a failure, with the commands required to achieve the
configuration.

Incin Data A cq
(Lab View)

RPC Server (C)

• Iplant Data Acq (Basic) I

HP Unix

Air Revitalization
Sys tem (ARS)

Crew Chamber

GUI

yr Workstation

FIG. 4 - PGT CONTROL ARCHITECTURE

A version of thi s architecture that was used in the Adjustable Autonomy Testbed (AAT), with an
integrated model-based fau lt management modu le. is shown in Figure 5.

-~~ . ~-

Control Plans
AP

task status

, T~-;~ . rr=-r ... ~. ,. :/~ -""T' ~- ~;
reconfiguration
request

reconfiguration
goals

ft;{t' .',' • ., • " t
• ;,! 1 ,~!~~~_.~

Procedures
RAPS

Closed Loop Control
Skill Manager

failu re
states Fault Management

Living5lDue

task status ,
user belief queries

task status ,
l!:::::;;==l==:=;i===i::::==:!A st ates ofl ife supp ort system

actuati on

sensing

Simulated E nvironment

~L-__________ C_O_N_TI_G _________ ~

all
states

FIG. 5 - AAT CONTROL ARCHITECTURE

commands

User Monitoring
& Control

BENEFITS OF INTELLIGENT CONTROL OF PRODUCT GAS TRANSFER

Typically, in management of planetary systems such as life support systems, the intelligent software
concurrently performs multiple tasks . For example, the Product Gas Transfer System in the Lunar Mars
Life Support Project Phase III test in 1997 (3) perfo rmed the fo llowing tasks:

• Managed transfer of C02 and O2 between crew and plant chambers.
• Managed CO2 and O2 levels in the airlock and plant chamber before, during and after periodic
incineration (about every four days) , by reconfiguring gas flows.
• Maintained CO2 at appropriate leve ls fo r activities in the plant chamber.
• Maintained appropriate O2 levels in plant chamber and pressures in storage tanks. (Independent
conventional software managed the O2 levels in the crew chamber.)
• Detected alert and alarm situations and responded appropriately.

The e tasks were accomplished by reconfiguring gas flows and flow controllers, by inhibiting or starting
gas transfers, and by interacting with safety software and human operators.

For the test, the control software was operational on October 6, 1997. It successfully managed the
transfer of product gases round-the-clock until the end of test on December 19, 1997. Except when
integrating new capability, monitoring hazardous operations, or responding to an anomaly, the system
typically operated without human supervision or intervention.

The limited human role in operating the POT system contrasts significantly with the operation of the
more traditional process control software used with the other life support systems developed for the test.
Operating the conventional control software was manually intensive, requiring vigilance monitoring and
frequent manual adjustment of control parameters. One person was on shift for 16 hours daily to
perform these tasks . In contrast to this routine, operating the POT autonomous control typically required
6-8 hours weekly of shift work, with an additional 3 hours for each harvest and 6 hours for each
incineration operation (which required manual reconfiguration of skill interfaces to receive data from the
incinerator control software).

BENEFITS OF ADJUSTABLE CONTROL AUTONOMY IN ANOMALY
RESPONSE

In the adjustable autonomy concept of operations, routine operations are fully autonomous, including
response to expected failures. The human is not required to vigilantly monitor these operations. Activity
histories and event summaries are provided for remote, occasional monitoring by the human. When
interesting or anomalous events occur or a need for manual action ar~ses , the autonomous system
notifies the human. As a result, human intervention is perfomled by exception - during critical
operations, anomalies, or unusual situations. The adjustable autonomous software supports a range of
such intervention, from informing the autonomous system of changes to control parameters to taking
over control manually. Even in the most extreme case where the human takes over control, the
autonomous system continues to monitor operations to maintain knowledge of the current control state.

Figures 6a and 6b illustrate the interaction among the user and the different functional components of
the autonomous architecture during a failure situation in the VCCR system (4). In Figure 6a, the

FIG. 6A - EXAMPLE OF FAULT DIAGNOSIS FIG. 6B - EXAMPLE OF FAULT RECOVERY

r-- ---

autonomous system detects and isolates the cause of the failure without human intervention. In Figure
6b, however, the human participates during recovery response to validate the recovery plan constructed
by the autonomous system prior to its execution. This approach allocates the more routine fault detection
tasks to automation, and takes advantage of human knowledge about the underlying hardware systems to
guarantee that fault management procedures constructed on-the-fly have no unintended effects.

SIMULATION-BASED EVALUATION

Intelligent software for systems management is typically designed for flexible and robust operation.
Such software uses its resources to make the best of unexpected problems and opportunities. It can
autonomously assess a wide range of possible states and contexts and select appropriate procedure
variants that are consistent with goals. In anomalous fault management situations, it may use models of
expected system behavior to detect and diagnose degradations and failures. Planner and fault
management modules can identify appropriate recoveries, consistent with the situation and current goals .
The challenge is to evaluate this new behavior, to predict what might happen when the intelligent
software executes its reactive plans and tasks in a new situation.

A combination of test and evaluation approaches is needed for validation of such advanced software.
The joint behavior of the operating hardware and software is analyzed, to not only verify the software
requirements but also discover missing requirements. Many accidents and major losses have been due to
flaws in software requirements (5). Experience with evaluation of complex intelligent software has
shown that it can be difficult to envision effects of failures and recoveries in complex highly
interconnected systems. Consequently, software requirements may not be developed to handle some of
these situations (6).

An incremental scenario-based simulation approach is being used in the testbed to evaluate intelligent
software. Hybrid models of hardware and operations have been used to evaluate intelligent software for
autonomously managing advanced gas processing systems (7). Simulation-based evaluation of the PGT
intelligent software application for the Phase III Test was accomplished by running scenarios where the
software interacted dynamically with the simulation model. The CONFIG hybrid simulator was used to
model the life support hardware, controls and schedules, and plants and crew. CONFIG has been
developed in-house in Lisp, to extend discrete event simulation with capabilities for continuous system
modeling and qualitative modeling (8). CO FIG uses graph analysis to handle changes in the model
structure and associated pressures and flows during a simulation, as system reconfigurations cause
changes in the direction and activation of couplings between component models.

For software evaluation, an interface was established between the 3T reactive sequencer and the system
model , which included low-level controllers. ominal 120-day schedules were simulated, and PGT
performance was evaluated for each software task. CO FIG supports fast scenario-based simulation of
systems in operation. The ratio of simulated time to real simulator execution time was generally 20: 1.
Figure 7 shows a CO FIG graphical interface for the model of the system that was controlled by PGT
software in the Phase III manned test. Simulated hardware failures were inserted to test the sequencer
under each off-nominal condition specified in the requirements. Anomalous conditions and failures in
simulated hardware and control can lead to emergent software behavior. When the software appeared to

not be operating properly, the problem was investigated and fixed. This approach uncovered problems
that had been missed in more conventional software testing.

oJ -Fe Hv-02- 10 5

FIG. 7 - CONFIG MODEL OF PHASE III TEST HARDWARE, ENVIRONMENT, CREW AND
WHEAT PLANTS

In more recent work, the interface between the models and the intelligent software has been through the
low-level control layer. With this low level interface, it is not necessary to model the low-level control
software, and it is possible to test all the interacting modules of the intelligent software.

System-level validation testing of the software by interactive hybrid simulation has revealed problems
both in software requirements and implementation. This simulation approach has proved useful for
developing and demonstrating applications of the new architectures for control of complex systems with
embedded failures.

CONCLUSION: USES OF TESTBED SOFTWARE

An adjustable autonomy control architecture has been developed to support dynamic fault management
with human-in-the-loop operations. This architecture has been used to control space life support
systems, a type of advanced process control system. The Adjustable Autonomy Testbed software has
been useful in evaluating concepts of space operations using adjustable autonomy. It also is being used
to provide software. data. or an evaluation environment for a number of other NASA projects. It
provides simulated space system data for investigating concepts and prototypes for assisting ground

J

.- -~-----

control operators. It provides user interface software for control of life support hardware in the
Advanced Water Laboratory at Johnson Space Center. It is being used as a simulated space system for
evaluating the use of models of space flight crew activities. It · will be used as an environment for
evaluating concepts and prototypes for distributed crew interaction with space systems. It provides a
simulated autonomous system control for evaluation of machine learning algorithms for control. Domain
models of control from this test are being used to develop advanced model-based control software.

REFERENCES

1. Bonasso, R. P. , Firby, R. J. , Gat, E., Kortenkamp, D ., Miller, D. , and Slack, M."Experiences with
an Architecture for Intelligent, Reactive Agents," Journal of Experimental Theory of Artificial
Intelligence, Vol. 9, 1997,237-256.

2. Williams, B. C. and Nayak, P. P. "A Model-based Approach to Reactive Self-configuring
Systems," Proceedings of the 13th National Conference on Artificial Intelligence, AAAI Press,
Menlo Park, CA, 1996, 971-978.

3. Schreckenghost, D. Ryan, D. , Thronesbery, C. , Bonasso, P. , and Poirot, D . "Intelligent Control of
Life Support Systems for Space Habitats". Innovative Applications of AI, AAAI Press, Menlo
Park, CA, July 1998.

4. Schreckenghost, D., Malin, 1., Thronesbery, c., Watts, G., and Fleming, L. "Adjustable Control
Autonomy for Anomaly Response in Space-based Life Support Systems". Workshop on
Autonomy, Delegation and Control at Int'l Joint Conference on Artificial Intelligence, August,
2001.

5. Leveson, N. Safeware: System Safety and Computers. Addison-Wesley, Reading, Mass. , 1995.

6. Malin, 1. T , Fleming, L. , and Hatfield , T R. "Interactive Simulation-Based Testing of Product
Gas Transfer Integrated Monitoring and Control Software for the Lunar Mars Life Support· Phase
III Test." Proceedin~s of SAE 28th International Conference on Environmental Systems, SAE
Paper No. 981769, 1 98.

7. Malin, 1. , ieten, 1., Schreckenghost, D. MacMahon, M ., Graham, J., Thronesbery, C. , Bonasso,
P., Kowing, 1. , and Fleming, L. 2000. "Multi-agent Diagnosis and Control of an Air Revitalization
System for Life Support in Space" . IEEE Aerospace Conference, CD, March, 2000.

8. Malin, 1. T, Fleming, L. D. , and Throop, 0 R. "Hybrid Modelin& for Scenario-Based Evaluation
of Failure Effects in Advanced Hardware-Software Designs,' Model-Based Validation of
Intelligence, Technical Report SS-01-04, AAAI Press, Menlo Park, CA, 2001.

