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The iPatch computer code for intelli-
gently patching surface grids was devel-
oped to convert conceptual geometry to
computational fluid dynamics (CFD)
geometry (see figure). It automatically
uses bicubic B-splines to extrapolate (if
necessary) each surface in a conceptual
geometry so that all the independently
defined geometric components (such as
wing and fuselage) can be intersected to
form a watertight CFD geometry. The
software also computes the intersection
curves of surface patches at any resolu-
tion (up to 10–4 accuracy) specified by

the user, and it writes the B-spline sur-
face patches, and the corresponding
boundary points, for the watertight CFD
geometry in the format that can be di-
rectly used by the grid generation tool
VGRID.

iPatch requires that input geometry
be in PLOT3D format where each com-
ponent surface is defined by a rectangu-
lar grid {(x(i,j), y(i,j), z(i,j)): 1 ≤ i ≤ m, 1
≤ j ≤ n} that represents a smooth B-spline
surface. All surfaces in the PLOT3D file
conceptually represent a watertight
geometry of components of an aircraft

on the half-space y ≥ 0. Overlapping sur-
faces are not allowed, but could be fixed
by a utility code “fixp3d”. The fixp3d
utility code first finds the two grid lines
on the two surface grids that are closest
to each other in Hausdorff distance (a
metric to measure the discrepancies of
two sets); then uses one of the grid lines
as the transition line, extending grid
lines on one grid to the other grid to
form a merged grid.

Any two connecting surfaces shall
have a “visually” common boundary
curve, or can be described by an inter-
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image 2 of any point on the plane in
image 1. Any feature pair that is incon-
sistent with the homography is thrown
out. The output of the process is a set of
feature pairs, and the homography.

The algorithms in this innovation are
well known, but the new implementa-
tion improves the process in several
ways. It runs in real-time at 2 Hz on 64-
megapixel imagery. The new Shi-Tomasi
corner de tector tries to produce the re-

quested number of features by automat-
ically adjusting the minimum distance
between found features. The homogra-
phy-finding code now uses an imple-
mentation of the RANSAC algorithm
that adjusts the number of iterations au-
tomatically to achieve a pre-set probabil-
ity of missing a set of inliers. The new in-
terface allows the caller to pass in a set of
predetermined points in one of the im-
ages. This allows the ability to track the

same set of points through multipleframes.
This work was done by Daniel S. Clouse,

Yang Cheng, Adnan I. Ansar, David C. Trotz,
and Curtis W. Padgett of Caltech for NASA’s Jet
Propulsion Laboratory. Further information is
contained in a TSP (see page 1).

The software used in this innovation is
available for commercial licensing. Please con-
tact Daniel Broderick of the California Institute
of Technology at danielb@caltech.edu. Refer to
NPO-46916.

Software was developed that automat-
ically detects minerals that are present
in each pixel of a hyperspectral image.
An algorithm based on sparse spectral
unmixing with Bayesian Positive Source
Separation is used to produce mineral
abundance maps from hyperspectral im-
ages. A “superpixel” segmentation strat-
egy enables efficient unmixing in an in-
teractive session.

The algorithm computes statistically
likely combinations of constituents
based on a set of possible constituent
minerals whose abundances are uncer-
tain. A library of source spectra from
laboratory experiments or previous re-
mote observations is used. A superpixel
segmentation strategy improves analy-
sis time by orders of magnitude, per-
mitting incorporation into an interac-
tive user session (see figure).

Mineralogical search strategies can be
categorized as “supervised” or “unsuper-
vised.” Supervised methods use a detec-

tion function, developed on previous
data by hand or statistical techniques, to
identify one or more specific target sig-
nals. Purely unsupervised results are not
always physically meaningful, and may ig-
nore subtle or localized mineralogy since
they aim to minimize reconstruction
error over the entire image. This algo-
rithm offers advantages of both methods,
providing meaningful physical interpre-
tations and sensitivity to subtle or unex-

pected minerals.
This work was done by Rebecca Castano

and David R. Thompson of Caltech and
Martha Gilmore of Wesleyan University for
NASA’s Jet Propulsion Laboratory. For more
information, contact iaoffice@jpl.nasa.gov. 

The software used in this innovation is
available for commercial licensing. Please con-
tact Daniel Broderick of the California Insti-
tute of Technology at danielb@caltech.edu.
Refer to NPO-47038.
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Here a Subwindow of Observation demonstrates superpixel segmentation. Left: original subimage.
Center: coarse segmentation, minimum region size 100. Right: fine segmentation, minimum region size 20.
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section relationship defined in a geome-
try specification file. The intersection of
two surfaces can be at a “conceptual”
level. However, the intersection is direc-

tional (along either i or j index direc-
tion), and each intersecting grid line (or
its spine extrapolation) on the first sur-
face should intersect the second surface.

No two intersection relationships will re-
sult in a common intersection point of
three surfaces.

The output files of iPatch are 
IGES, d3m, and mapbc files that 
define the CFD geometry in VGRID
format. The IGES file gives the
NURBS definition of the outer mold
line in the geometry. The d3m file de-
fines how the outer mold line is bro-
ken into surface patches whose
boundary curves are defined by
points. The mapbc file specifies what
the boundary condition is on each
patch and the corresponding NURBS
surface definition of each non-planar
patch in the IGES file.

This work was done by Wu Li of Langley
Research Center. Further information is
contained in a TSP (see page 1). LAR-
17685-1

The iPatch Computer Code converts conceptual geometry (left) to coresponding CFD geometry (right).

The Stereo Imaging Tactical Helper
(SITH) program displays left and right
images in stereo using the display tech-
nology made available by the JADIS
framework, which was described in
“JAVA Stereo Display Toolkit,” NASA
Tech Briefs, Vol. 32, No. 4 (April 2008),
page 63. An overlay of the surface de-
scribed by the disparity map (generated
from the left and right images) allows
the map to be compared to the actual
images. In addition, an interactive cur-
sor, whose visual depth is controlled by
the disparity map, is used to ensure the
correlated surface matches the real sur-
face. This enhances the ability of opera-
tions personnel to provide quality con-
trol for correlation results, as well as to
greatly assist developers working on cor-
relation improvements. While its pri-
mary purpose is as a quality control tool

for inspecting correlation results, SITH
is also straightforward for use as a basic
stereo image viewer. 

There are two modes for the image
display: stereo (left/right) through
hardware or anaglyph, and adjacent,
where the right image pane is placed to
the right or bottom of the left image
pane. The mode is switchable at run-
time. The application displays with left
and right images with an overlaid cur-
sor per image. The positions of the
image pane cursors will be related such
that, given the coordinates of the cur-
sor center on the left image, the posi-
tion of the right pane cursor will be the
mapped coordinates found in the dis-
parity file. In stereo mode, this consti-
tutes a stereo cursor.

In grid mapping, a flat grid is painted
over the left image, and on the right,

points from the left grid are mapped to
the corresponding point on the right
grid. This usually results in warping that
indicates a higher-level view of the corre-
lation result. As left and right images
may not be adequately aligned such that
they can be viewed comfortably, manual
disparity controls exist to allow the right
image to be shifted along the horizontal
and vertical axes to produce stereo re-
sults that are easier for the user to view. 

This work was done by Nicholas T. Toole of
Caltech for NASA’s Jet Propulsion Laboratory.
For more information, contact iaoffice@jpl.nasa.gov.

This software is available for commercial li-
censing. Please contact Daniel Broderick 
of the California Institute of Technology at
danielb@caltech.edu. Refer to NPO-46669.
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The Aerial Onboard Autonomous Sci-
ence Investigation System (AerOASIS)
system provides autonomous planning
and execution capabilities for aerial ve-
hicles (see figure). The system is capable
of generating high-quality operations
plans that integrate observation requests

from ground planning teams, as well as
opportunistic science events detected
onboard the vehicle while respecting
mission and resource constraints.

AerOASIS allows an airborne plane-
tary exploration vehicle to summarize
and prioritize the most scientifically rel-

evant data; identify and select high-
value science sites for additional investi-
gation; and dynamically plan, schedule,
and monitor the various science activi-
ties being performed, even during ex-
tended communications blackout peri-
ods with Earth.
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