Nonlinear Combustion Instability Prediction

Marshall Space Flight Center, Alabama

The liquid rocket engine stability prediction software (LCI) predicts combustion stability of systems using LOX-LH₂ propellants. Both longitudinal and transverse mode stability characteristics are calculated. This software has the unique feature of being able to predict system limit amplitude.

New methods for predicting stability have been created based on a detailed physical understanding of the combustion instability problem, which has resulted in a computationally predictive algorithm that allows determination of pressure oscillation frequencies and geometry, growth rates for component modes of oscillation, development of steepened wave structures, limit (maximum) amplitude of oscillations, and changes in mean operation chamber conditions.

J MISR INteractive eXplorer

NASA's Jet Propulsion Laboratory, Pasadena, California

MISR (Multi-angle Imaging Spectroradiometer) INteractive eXplorer (MINX) is an interactive visualization program that allows a user to digitize smoke, dust, or volcanic plumes in MISR multangle images, and automatically retrieve height and wind profiles associated with those plumes. This innovation can perform 9-camera animations of MISR level-1 radiance images to study the 3D relationships of clouds and plumes. MINX also enables archiving MISR aerosol properties and Moderate Resolution Imaging Spectroradiometer (MODIS) fire radiative power along with the heights and winds. It can correct geometric misregistration between cameras by correlating off-nadir camera scenes with corresponding nadir scenes and then warping the images to minimize the misregistration offsets. Plots of BRF (bidirectional reflectance factor) vs. camera angle for points clicked in an image can be displayed. Users get rapid access to map views of MISR path and orbit locations and overflight dates, and past or future orbits can be identified that pass over a specified location at a specified time. Single-camera, level-1 radiance data at 1,100- or 275-meter resolution can be quickly displayed in color using a browse option. This software determines the heights and motion vectors of features above the terrain with greater precision and coverage than previous methods, based on an algorithm that takes wind direction into consideration. Human interpreters can precisely identify plumes and their extent, and wind direction. Overposting of MODIS thermal anomaly data aids in the identification of smoke plumes. The software has been used to preserve graphical and textual versions of the digitized data in a Web-based database that currently contains more than 7,000 smoke plumes. This work was done by David L. Nelson of Columbus Technologies and Services; David J. Diner, Charles K. Thompson, Jeffrey R. Hall, and Brian E. Rhéangs of Caltech; Michael J. Garay of Raytheon; and Dominic Mazzoni of Google, Inc. for NASA's Jet Propulsion Laboratory. For more information, contact Sammy Nabors, M SFC Commercialization Assistance Lead, at sammy.a.nabors@nasa.gov. Refer to MFS-32549-1.

Characterization of Cloud Water-Content Distribution

NASA's Jet Propulsion Laboratory, Pasadena, California

The development of realistic cloud parameterizations for climate models requires accurate characterizations of sub-grid distributions of thermodynamic variables. To this end, a software tool was developed to characterize cloud water-content distributions in climate-model sub-grid scales.

This software characterizes distributions of cloud water content with respect to cloud phase, cloud type, precipitation occurrence, and geo-location...