
r-

Direct Simulation Monte Carlo Calculations in 
support of the Columbia Shuttle Orbiter Accident 

I nvesti gation 

Michael A. Gallis 

Sandia National Laboratories 

Gerald J. LeBeau & Katie A. Boyles 

NASA Johnson Space Center 

Fifth Biennial Tri-Laboratory Engineering Conference 

October 21 -23, 2003 

Santa Fe, NM 

Sandia Is a mulliprogram laboralory operated by Sandia Corporation. a Loc::kheed Martin Company, 
fO( the Ur1'led Slates Oepartmenl of Energy under conlract DE-AC04-94Al85000 . 

Source of Acquisition 
NASA Johnson Space Center 

......... .1..I."matical models for gas dynamics. 
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Kn=NL 
" : local mean free path 
L: characteristic length 

Navier-Stokes Conservation Equations 
Equations do not form a closed set 

Collision less 
Boltzmann Equation Boltzmann 

Equation 
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The Boltzll1ann Equation 

a _ a - a [a] - (nJ) + v · -=(nJ) + F · -=(n!) = -(nf) 
at or 8V at collision 

f : distribution function 
n : number density 
F: external force 

Microscopic description of gases 

• The rarefied regime is described by the Boltzmann equation 

• Particulate nature of gas 

• Gas is described by the position, velocity, energy of an ensemble of 
molecules in a statistical manner 

• The microscopic description describes physical processes regardless of 
the mathematical complexity of the problem 
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Direct Simulation Monte Carlo 
(DSMC) 
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Move phase (detenninistic) Collide phase (stochastic) 

a [a ] - (nf) = - (nf) 
at at collision 

DSMC l11.ethodology 

• Physical statistical simulation of real dilute gas flow 

• Millions of molecules representing real gas molecules modify 
their velocities and positions as they interact with each other 
and the boundaries 

• Discretization of time and physical space 

• Decoupling of the move and the collide phase 
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Features ofDSMC 

• The calculation is always unsteady. Steady state achieved as a 
long time state of the unsteady flow 

• There are no numerical instabilities 

• Fluctuations have the same physical characteristics as the real 
fluctuations 

• Physics and chemistry models are mere additions to the 
molecular model (surface interactions, energy exchange, 
chemical reactions) 

Application overview • 
Ultimate goal: to p rovide "piecewise integration ., o/key scenario 
Clients to determine th e plaUSibility or implausibility of rh e condidate 
f ailure scenarios 

Target of current analysis: Determine aerodynamic and heating 
behavior of the Shuttle Orbiter during aero braking maneuvers 

- Provide an independent assessment of the internal plume engineering 
model developed by Steve Fitzgerald (NASA JSC) 

Methodology: Direct Simulation Monte Carlo method 

- DAC implementation by LeBeau (NASA JSC) 

Results : Flowfield simulations at representative re-entry trajectory 
points 
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Modeling procedure 

Geometry Modeling 

- Surface grid: Triangulated 
unstructured constructed from 
Orbiter CAD model 

Gas phase grid: Cartesian (adapted 
where large gradients are present) 

3-D DSMC Analysis 

Code used: DAC (version 97) 

- Thermal and chemical non
equilibrium included 

Chemistry modeling: Finite rate 
chemistry model of Bird 

CAD model for the Orbiter 

DSMC analysis of tli.ght trajectory 

• DSMC simulations were performed at two points of the entry trajectory 

DSMC Point AA DSMC Point A 

El + 91 seconds El + 197 seconds 

Mach =25.1 Mach =27.0 

Altitude = 350,274 fl A Ilitu<ie = 300,003 ft 

AOA = 41 degrees AOA = 40 degrees 

Kn -0.02 Kn-O.OOI 

27 

DSMC/CFD Trajectory Points 
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Grids used for the sinlulations 

Adapted grid in the 
front part of the vehicle 

Adapted grid around 
the wing 

owfield ten1perature profile (350kft) 
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Flowfield tenJperature profile (300kft) 

Qr_CNlml) 
10000 
6951 .93 
4632.93 
3359.62 
2335.72 
1623.76 
1126.64 
764.76 
545.559 
379.269 
263.665 
163.296 
127.427 
66.5667 
61 .5646 
42.6133 
29.7635 
20.691 4 
14.3645 
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350 kft flowfield 
Surface heating 
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250000 
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81756.1 
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267362 
15289.4 
8743.39 
5000 
2859.3 
1635.12 
935.061 
534.724 
305.788 
174.868 
100 

300 kft flowfield 
Surface heating 

. en1perature profile at wing level 
(350 kft) 
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Temperature and density profiles 
61n fronl centerline . 

Wing geolnetry 

• 
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Wing leading edge geolnetry 

Vents 
(Area = 66 in2) 

Panel I ~f-, "" ~ 
-- . '-, 1/ 7{ ( 

Y~x 

Damage scenarios investigated 

Panel 22 

• What size plume can bum though wire(s) in 530 seconds 
from EI?: 

- Scenario A: Breach between RCC panels 9 and 10 

- Scenario B: 10 inch hole in RCC panel 8 
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Dmnage scenarios simulations 

Goal: Model the effects of a damage to the leading edge 

• 3-D representation of critical parts of wing leading edge 

• Boundary conditions from undisturbed geometry 
simulations 

• DSMC simulations performed with full chemical and 
thermal non-equilibrium included 

------- ---------

Danlage scenarjo A 
Flow through a sljt 

Inside Spar 

Inside RCC 'tl--x 

11 



Panel) 
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Panel) -4 
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Representative internal wing 
leading edge flow field 

24 26 28 
X (m) 

30 

T(K) 
1680.3 
1588.16 
1496.01 
1403.87 
1311 .73 
1219.58 
1127.44 
1035.29 
943.151 
851 .007 
758.863 
666.719 
574.575 
482.431 
390.287 

Representative intenlal wing 
leading edge spar heating 
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Panel 22 
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350kft 

Damage scenario B 
Panel 8, 10" hole 
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Nun1ber density in flowfield 
with strealulines 
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Reference heating distribution 
in RCC cavity 

350kft 
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Reference pressure distribution 
in RCC cavjty 
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Heating Distribution and 
Engineering Model Comparisons 

- Plume heating model was developed based on continuum flow 
assumptions, leading to slightly less diffuse plume structures 

- Results are favorable 

• Heating predictions within factor of 2 

• Similar predicted impingement location 
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Conclusions • 
• The Direct Simulation Monte Carlo method was used to provide 

3-D simulations of the early entry phase of the Shuttle Orbiter 

• Undamaged and damaged scenarios were modeled to provide 
calibration points for engineering "bridging function" type of 
analysis 

• Currently the simulation technology (software and hardware) 
are mature enough to aIIow realistic simulations of three 
dimensional vehicles 
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Extras 

Applications ofDSMC and typical 
length-scales 

o Hypersonics (m) 

o Microelectronics manufacturing processes (cm) 

o Physical, Chemical vapor deposition (cm) 

o MEMS (microns) 

o Non-equilibrium chemistry (atomic level) 

• 

• 
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The lilnitations of DSMC 

o The computational load increases with the density of the flow 

o Statistical error decreases as a function of the square root of the 
number of samples 

o DSMC can carry more information than actually needed for some 
applications 

o DSMC is an MMP empowered technology 

Calculations perfonned 

• 350 left 

- 2 levels of adaptation 

• I st level of adaptation: mean free path wide subcells 

• 2nd level of adaptation: 0.5 mean free path subcells 

• 300 left 

- 2 levels of adaptation 

• 2nd level of 3501eft adaptation 

• 3rd level of adaptation:(O.1 mean free path subcells) 

._ ----------- -- -
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Grid 6 lTI.eters fr01.n the centerline • 
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