Source of Acquisition
NASA Johnson Space Center

The X-38 Spacecraft Fault-Tolerant Avionics System
Coy Koubal, Deborah Buscherl, Joseph Busa’

1. NASA-Johnson Space Center, Houston, TX
2. Charles Stark Draper Laboratories, Cambridge, MA

ABSTRACT

In 1995 NASA began an experimental program to develop a reusable crew return
vehicle (CRV) for the International Space Station. The purpose of the CRV was
threefold: (i) to bring home an injured or ill crewmember; (ii) to bring home the entire
crew if the Shuttle fleet was grounded; and (iii) to evacuate the crew in the case of an
imminent Station threat (i.e., fire, decompression, etc). Built at the Johnson Space
Center, were two approach and landing prototypes and one spacecraft demonstrator
(called V201). A series of increasingly complex ground subsystem tests were completed,
and eight successful high-altitude drop tests were achieved to prove the design concept.
In this program, an unprecedented amount of commercial-off-the-shelf technology was
utilized in this first crewed spacecraft NASA has built since the Shuttle program.
Unfortunately, in 2002 the program was canceled due to changing Agency priorities. The
vehicle was 80% complete and the program was shut down in such a manner as to
preserve design, development, test and engineering data.

This paper describes the X-38 V201 fault-tolerant avionics system. Based on
Draper Laboratory’s Byzantine-resilient fault-tolerant parallel processing system and
their “network element” hardware, each flight computer exchanges information on a strict
timescale to process input data, compare results, and issue voted vehicle output
commands. Major accomplishments achieved in this development include: (i) a space
qualified two-fault tolerant design using mostly COTS (hardware and operating system);
(i1) a single event upset tolerant network element board, (iii) on-the-fly recovery of a
failed processor; (iv) use of synched cache; (v) realignment of memory to bring back a
failed channel; (vi) flight code automatically generated from the master measurement list;
and (vii) built in-house by a team of civil servants and support contractors.

This paper will present an overview of the avionics system and the hardware
implementation, as well as the system software and vehicle command & telemetry

functrons ential impr ents and lessops learned gu-this program SO
discussed l < / J‘)]l

5-19-03

I. AVIONICS ARCHITECTURE OVERVIEW

The X-38 V201 avionics architecture is a four string, two-fault tolerant avionics system.
The central part of the avionics architecture is the four Flight Critical Computer’s (FCCs)
and the Network Element Fifth Unit (NEFU). Each FCC consists of a Flight Critical
Processor (FCP), an Instrumentation Control Processor (ICP), a Network Element (NE)
card, two Multiprotocol/RS-422 cards, four Digital Output (DO) cards, an Analog Output
(AO) card, and an IRIG-B/Decomm card. A simplified view of the architecture is
pictured below.

Human Interface
Display

${ staton
Intertace

ELV
Interface

Human Interface
Display

ACRONYMS

CTC ~ Command & Telemetry Computer
FCC - Fiight Critical Computer

FTPP - Fault Tolerant Parallel Processor
GSE - Ground Suppon Equipment
NEFU ~ Network Element Fifth Unit

Power i i
Source
Low Power
Relays

Vehicle Equipment Vehicle Equipment asork

Figure 1: X-38/ V201 Avionics Architecture

The FCP is the main application processor. This board is a Radstone Power PC604R
single-board computer that runs the VxWorks operating system. This board contains
Draper’s Fault Tolerant System Services (FTSS) software, which provides scheduling
services, communication services, time services, Fault Detection and Isolation (FDI)
services, Redundancy.Management (RM) services, and system upport services. The
FTSS software in combination with the JSC-prowded V‘iyhlcle ission, and Power
Management software prqv1d§ba51c enyironment in whichjapplications, such as flight

control, can execute/and r[ee all necessary tlming requlle“m‘él}tts
ne

The ICP is the processor. This boatd is also @ Radstone Power PC604R single-board
computer that runs the VxWorks operating system. This board obtains the majority of its
sensor information from the Data Acquisition Units (DAUs) via an IRIG-B/Decomm

card and the Electromechanical Actuator (EMA) system via a 1553 card. The remainder
of the sensor information is obtained via 1553B data buses from the Space Integrated
GPS/INS (SIGIs), the Flush Air Data System (FADS), and the S-band Transponder, and
via RS-422 from the Altimeters. The ICP also outputs commands to the subsystems.
Commands to a few analog devices, such as the cabin fans, are issued via the AO I/F.
Commands to many digital devices, such as the power switches, are issued via the DO
I/F. EMA position commands are issued via the 1553 interface.

Communication between the FCP and ICP occurs over the NE, through a minimal
amount of information shared in the VMEbus shared memory space, and via a syncing
interrupt between the FCP and the ICP. The NE is developed by Draper Laboratories of
Cambridge, Massachusetts and provides, in combination with the FTSS software, the
exchange mechanism for input data and the exchange and voting mechanism for output
data.

The NEFU is a fifth computer that contains an ICP and an NE. The NEFU was added to
the architecture to provide two-fault tolerance.

The Command and Telemetry Computers (CTCs) serve as the vehicle’s primary
interfaces to machines and people outside of the vehicle. The two CTC machines
interface with the four FCPs via the multi-protocol card’s interface RS-422 lines. The
CTC machines receive remote commands from several sources, including the ground
control center and the Aft Flight Deck Portable Ground Support Computer (PGSC). The
CTCs send telemetry data to several destinations, including the ground control center and
the Aft Flight Deck PGSC.

II. HARDWARE IMPLEMENTATION

The X-38 flight computers are implemented using the industry standard VME64X
protocol. All circuit boards are ruggedized COTS catalog items, with the exception of
the Draper network element board. A few components were modified COTS to meet our
flight specifications, including the Decom board and the Reed-Solomon board. The
chassis enclosures, VME backplanes, and power supply modules were custom designed
and built.

The FCC chassis contained an 11-slot VME backplane with two redundant power supply
modules. The CTC and NEFU chassis utilized the same five-slot VME backplane with
three powersupply medules:(the CTC had only two pow. pply modules-populated).
The internal and external wiring was designed and built Fl‘_}?:u with D38999-series
connectors being used on the g!vsm fron panéls

A solid-state 5.1

SCS dI‘lVCwlS convécted to é__ach CTC to serve as the flight data
recorder. It

used-in-aremovable‘carricr to-facilitate offloading of data after a vehicle

3-4-03

test or mission. Each CTC continuously writes FTPP status data to these drives during
normal operation.

A number of FPGAs were utilized on the network element board (and many of the COTS
boards too). The NE had three Xilinx and Actel FPGAs to incorporate the state machine
design of the NE.

During the development of the X-38, these flight computers underwent a rigorous
qualification and acceptance program, including extensive functional testing (using both
flight software and special test routines), thermal-vacuum testing, vibration testing, and
radiation testing.

II1. FAULT-TOLERANCE PARALLEL PROCESSING SYSTEM

FTPP

The FTPP is a fault tolerant parallel processing Byzantine resilient system that is realized
by utilizing hardware components known as Network Elements (NE). These NEs act as
arbiters that connect a redundant set of computers, each considered fault containment
regions, to each other as well as to external systems in a manner that implements
Byzantine resilience in a parallel processing environment.

FTSS

The Fault Tolerant System Software (FTSS) is a software layer, woven around the OS
and works intimately with the FTPP, which allows the developer of the Flight
Application the ability to program as if they were running on one computer. The FTSS
handles the low-level ability to run this Application in parallel across separate processors,
in lockstep, leaving the developers no concern over this parallel nature or redundancy of
the system. The Flight Application simply reads from inputs, which the FTSS ensures is
congruent across all computers, then writes their output, which the FTSS votes on and
delivers. The developer is further relieved from performing health and monitoring of
these systems as FTSS performs intensive fault detection, isolation, and recovery.

Commanding/Telemetry

Commanding and Telemetry were dealt with in a different fashion than the rest of the
system. In a perfect world, the telemetry and commanding would have been pumped
through the Network Elements via the ICPs. However, telemetry and commanding in
combination at high data volume and a 10hz rate would have bogged down the system
and could have preempted high priority flight critical data. It was determined to be in the

best mter(q;s[_m take these data items off the Network-Element path yet-adhere, to all rules
governing the NE. The solution was to pull the comm sand d telemetry to/from a
separate I/O board called the 1Proto Control Co putér (MPCC), Bringing
commands into the Flight/Critical Computers was acco pllshkzd by reading the

commands from.the MPCC at 10hz from the redundant t, voting on the health of each
MPCEHt ct two-healthiest ones to smgl&seurc&exchange their commands to the
NE. It was decided to not vote the telemetry at all through the Network Element.

3-4-03

Theoretically the only difference in the data across the redundant computers was the
time-stamping itself of the data. The telemetry was simply pumped out the MPCC board
at 10hz to a recording device and eventually transmitted to the ground by a separate
system.

Asynchronous I/O in a Parallel Processing Byzantine Resilient Environment

In the X-38 architecture, Telemetry is sent down at 10hz. In general, all I/O performed
from the FCP should pass through the ICP via 50hz synchronous pipes and then
disseminated appropriately. This however, would create a major bottle-neck to
communication services (i.e. Network Element) and would stress the already heavily
loaded ICP. Instead, the FCP writes its telemetry to a separate board, known as the
MPCC, on the VME back-plane. The MPCC is then commanded to transmit the data
stream over RS-422 to a Command and Telemetry Computer (CTC), which in turn
transmits this data stream to the ground. Several issues arose in trying to successfully
bypass the ICP and thereby levy the load off the Network Element. In a full-up Quad
scenario, telemetry would be written to the MPCC across four different back-planes.
This, in itself, can be considered four asynchronous events absent the Network Element,
especially when moving large amounts of data. Complicating the matter further, an error
may occur during communication to the MPCC. This may cause a longer writing
duration in a re-send scenario or perhaps complete termination of the write altogether
which would cause the process to end early. In all, each FCP may return from the
telemetry write at different times and could cause loss of channel synchrony. The
Telemetry task residing on the FCP should never cause a loss of channel synchrony, as it
1s not considered a flight-critical process. The solution implemented was to begin by
getting an initial time-stamp from a highly accurate local clock on the FCP that is
synchronized with the Quad every 1hz. Then, execute the VME access. Finally, a spin-
lock is performed on the clock until a conservative pre-determined maximum timeout
value is reached.

Duration of asynchronous channel events are identical

AR
- -
B &L‘f(s | IS:iaTnep VME access |Si'|n40_ck_l
B csl‘(;:lis I Isg;:lepl VME access | Byl "‘illll'jl'lil

4
timeout sync point

Figure: Asynchronous I/O Events
As shown in the Figure above, in its worst case, this solution allows each of the channels

to perfo chronéuslf,’nnd then finally “synchroﬁize"when *he/ﬁme aPue is
\) \‘

reached. / \
“\‘]
A
Software — ‘7 { l—

The avionics software consists of five main functions: data acquisition of sensor
information, computer processing of sensor information, effector control, telemetry frame

I , 7
5-4-03

construction, and remote command reception and execution. The FTSS software in
combination with the JSC provided Vehicle, Mission, and Power Management software
provides a basic environment in which applications, such as flight control, can execute
and meet all necessary timing requirements.

The NE interface between the ICP and FCP serves several functions, including the
exchange of sensor data from the ICP to the FCP. An example of a two round exchange
of a single piece of data from one ICP to four FCPs via the NEs is shown in the figure
below. All ICP data is treated as simplex data that is being passed to a quadraplex group.
This is due to the fact that the sensors and effectors are not redundant across the four
ICPs. Instead, the I/O profile of the X-38 201 vehicle is redundant and/or cross-strapped
in only the key areas necessary for vehicle flight, life support, and environmental control.

The figure below shows a single input value being read into the ICP and exchanged via a
two round exchange over the NEs to all four FCPs. If that single input value is “bad”
(i.e., the sensor has hard-over failed) that “bad” value would be exchanged via the NEs
just like any other value. It is up to the application software to determine if the value is
“bad.”

During the first round of the exchange, the data is sent from one NE to all of the NEs.
During the second round of the exchange, the data is sent from all five NEs to all five
NEs again. This two round exchange is necessary because 1) the ICPs are not synced
during the first exchange (i.e., all four ICPs are running independently and in simplex
mode) and 2) the second exchange is necessary to verify that the data exchanged in the
first round was received properly by all NEs.

Two Round Exchange Example -
On Input Data

Round 1 Round 2
3 3
3 NE NES S| S tor FCP #1
3
Single NE
Value > 3
3
3
3 3
NE NE |E——u FCP #2
3
3 3 3
3
4 NE 3 NE _3_, FCP #3
3
4
4
3 4 3
NE INE? i Pt b FCP #4
4
= 3
3
NE NE

Figure 2.2.2: Two Round Exchange Example - On Input Data

One of the primary jobs of the FCP computer is to run FC and NFC applications. These
applications each consist of several parts 1) sensor Subsystem Operating Procedure
(SOP) code, which contains sensor data conversion routines, sensor redundancy
management routines, and sensor fault detection, isolation, and recovery routines, 2)
application code, which takes these sensor inputs and uses them in equations to produce
effector commands, 3) effector reverse SOPs, which convert the commands from
engmeenng units to raw. effector units, and 4) code for proce551 g remote commands
coming from the ground ngineers or Shuttle crew. I'T

code procedure, a sensor SOP procedure, and an effector; SOP procedure. Sensor RM
and FDIRis.included in the sensor.SOP task. Each task will operate using a global
memory block, which is broken up into 50 Hz, 10 Hz, and | Hz data for each subsystem.
Only tasks within the same rate group can communicate directly and share data with

U—‘—r“‘() J

Each application progr vided up i to an mltlahza‘{lj"rr rocedure, an application
S

other tasks in that rate group. Data transfer between tasks in a different rate group is
performed via FTSS communication services sockets. Since FCP applications do not
have access to non-congruent data, FTSS communication services will by-pass the use of
the NEs.

The two figures below shows end-to-end how the ICP brings in sensor data, how the
application operates on that data and produces an effector command, and how the effector
command is output to the ICP.

Three Sensor Example

* FCP4 participates in the two round exchange which occurs over the
NE like in the previous example.

0x355, 0x356, and 0x355 @ @ + FCP4 does three reads - Read (SIGI3), Read (SIGI2), and Read (SIGI1).
* FCP4 now has 0x355, 0x356, and 0x355 as values for the three SIGI
NE

reads.

* Two round exchange occurs over NE like in previous example. A
E 0x355, 0x356, and 0x355
Read(SIGI1)
U Read(SIGI2)
B Read(SIGI3)

0x355, 0x356, and 0x355 NE SIGI 1
Read(SIGI1) 4—.<—@ 0x355

Read(SIGI2)
Read(SIGI3) % Send(SIGI1)
« ICPI obtains data via 1553 and performs a Send(SIGI1)
‘ * Two round exchange occurs over NE like in previous example.
NE * This is independent of the SIGI2 and SIGI3 exchange.
SIGI 3 NE * FCPI1 does three reads - Read (SIGI3), Read (SIGI2), and Read (SIGI1).
0x355 C * FCP1 now has 0x355, 0x356, and 0x355 as values for the three SIGI
Send(SIGI3) reads.

* ICP3 obtains data via 1553 and performs a Send(SIGI3)
* Two round exchange occurs over NE like in previous example. @ @
* This is independent of the SIGI1 and SIGI2 exchange.

* FCP3 does three reads - Read (SIGI3), Read (SIGI2), and Read (SIGI1).
* FCP3 now has 0x355, 0x356, and 0x355 as values for the three SIGI

* ICP2 obtains data via 1553 and performs a Send(SIGI2)
* Two round exchange occurs over NE like in previous example.
* This is independent of the SIGI1 and SIGI3 exchange.

ek Read(SIGI1) SIGI 2 * FCP2 does three reads - Read (SIGI3), Read (SIGI2), and Read (SIGI1).
Read(SIGI2) 0x356 * FCP2 now has 0x355, 0x356, and 0x355 as values for the three SIGI

Read(SIGI3) Send(SIGI2)
0x355, 0x356, and 0x355

reads.

+ anacis naified e sicaisray. L TEE Sensor Example, cntd.

* GN&C performs SOP function, FDIR, and RM. Decides solution
is really 0x355. * GN&C is notified that the SIGI data is ready.

* This value is used in a GN&C equation, which produces an EMA 5.1 A GN&C performs SOP function, FDIR, and RM. Decides solution

sition value of 5.1. : is really 0x355.

8 PT(;IC reverse SOP is called for output. WAtEHal) Read(EMAD, Ty value is used in a GN&C equation, which produces an EMA

* The application then does a Write(EMA1) to the NE. position value of 5.0.

* A single round voted exchange occurs, because all four FCPs * The reverse SOP is called for output.
are synced. The output is 5.0. Error in FCP4 is masked by voters in NE. The application then does a Write(EMAL) to the NE.

* FTSS FDIR will determine how to treat FCP4 (i.e., determine if this is a * A single round voted exchange occurs, because all four FCPs
transient error or permanent; RM will be dependent on Flt. Mgr defined are synced. The output is 5.0. FCP4 is masked by voters in NE.
RM policy in force for that particular mission phase. FTSS FDIR will determine how to treat FCP4 (i.e., determine if this

* All four ICPs and each FCP receive the broadcast output value and it is is a transient error or permanent; RM will be dependent on Flt. Mgr

the ICPs responsibility to determine which ICP is channelized to defined RM policy in force for that particular mission phase.)
which EMA controller. All four ICPs and each FCP receive the broadcast output value and

>

= it is the ICPs responsibility to determine which ICP is channelized
to which EMA controller. s
Wi
NE B rite(EMA1)

5.0

NE

Write(EMA1) D 50

| NE Read(EMA1)
Read(EMAI)

- : - * GN&C is notified that the SIGI data is ready.
* GN&C is notified that the SIGI data is ready. : 5 . = .
* GN&C performs SOP function, FDIR, and RM. Decides solution is NE {2 r(j:f;([:)xp;;;ﬂﬂns SOP function, FDIR, and RM. Decides solution is
really 0x355. R : s W

* This value is used in a GN&C equation, which produces an EMA / ;-xisli;:h:,i;:cu:cf‘; IS S D e
* ?l%s::‘e)gc\r,:u;glisi;oéallcd for output. R acretene S OIS TalieC SoR oRtput
. e @ @ *» The application then does a Write(EMAI) to the NE.

The application then does a Write(EMAT1) to the NE.
* A single round voted exchange occurs, because all four FCPs

.

A single round voted exchange occurs, because all four FCPs
are synced. The output is 5.0. FCP4 is masked by voters in NE.

are synced. The output is 5.0. FCP4 is masked by voters in NE. % : : ; = . e
* FTSS FDIR will determine how to treat FCP4 (i.e., determine if this is a FTSIS :?:]:(:/:'l)dc(cnnmc hox:' (Ro;f\':{Ei:::l'e“d‘let:::';r l;/:hls
transient error or permanent; RM will be dependent on Flt. Mgr defined it s i) : et halts
5.0 5.0 defined RM policy in force for that particular mission phase.

RM policy in force for that particular mission phase..

All four ICPs and each FCP receive the broadcast output value and
it is the ICPs responsibility to determine which ICP is channelized
to which EMA controller.

* All four ICPs and each FCP receive the broadcast output value and
Write(EMA1) Read(EMA1) itis the ICPs responsibility to determine which ICP is channelized
to which EMA controller.

Once the application has completed computation of the sensor data, the application
produces an effector command response. The figure below shows how all four FCPs
produce the EMA position command at the same time and a single round exchange
occurs via the NE. In this case, three of the four FCPs have produced a solution of 5.0.
A fourth FCP has produced a solution of 5.1. No FCPs have timed out, so all processors
are in sync. Upon the completion of the single round exchange, a voted output is sent
(i.e., 5.0) to all four ICPs. The 5.1 position that FCP #4 produced is masked out. The
voted output is broadcast to all FCPs and to all four ICPs. This voted broadcast allows
both the ICPs to receive the output command and the FCPs to 1) receive the output
command, which can then be placed in the telemetry stream, and 2) receive any
syndrome data on the output vote, which will in turn be used in FTSS FDI to determine
whether or not a processor or NE has a problem and needs to be voted out or powered
off. All of the ICPs receive all commands. This allows the FCP, for the most part, to be
independent from the effector configuration. It is the ICP’s responsibility to know their
own identity and what I/O devices are attached to them.

4 w - r) /\\\ * j]lf_ l,]

EMA Position 1 - Output Exchange

Round 1
ICP #1 <l NE 30 / NE 4_50__ FCP #1
5.0
5.1
5.0 5 5.0
ICP #2 o et NE NE L FCP #2
5.0
s
5.0
5.0 5.0
ICP #3 -— NE NE . FCP #3
5.0 s
5.0 D1
ICP #4 = NE A NE h——— FCP #4
3
2 5.0

NE

EMA Position 1 - Output Exchange

Round 1
ICP #1 4& NE 4 NE J_ FCP #1
5.0
5.0
5.0 .0 5.0
ICP #2 = NE NE P aaEn FCP #2
1
.0
5.0
5.0 Dl
ICP #3 - NE NE i FCP #3
.0
5.
< SHl
5.0
NE 5.0 NE <« FCP #5

Each FCP communicates with one CTC computer via two multi-protocol card RS-422
lines: one for command reading and one for telemetry writing. The figure below shows
the connectivity between the CTCs and the FCPs. Note: The FCP/CTC combination is
maximized to.minimize t chance of two failures (i:ey; two_EC o fault
contammént regions bn 1no n both CICs. The ch nnelization oft e C Csis
completed along wit er fau contauyélf-:nt region 11 es. j

There are three telemetry gathering (wtﬂch are known as|the data collector tasks) tasks
(50, 10;and-1 tasks)-and one-datalogger task (a-10-Hz-task) which-send the telemetry
frame to the CTC. The 50 Hz data collector task gathers all telemetry information at a 50

-03

Hz rate and passes it to the 10 Hz data logger task. The 10 Hz data collector task gathers
all telemetry information at a 10 Hz rate and passes it to the 10 Hz data logger task. The
1 Hz data collector task gathers all telemetry information at a 1 Hz rate and passes it to
the 10 Hz data logger task. The 10 Hz data logger task then constructs each telemetry
frame and, at a 10 Hz rate, outputs a telemetry stream of data to each CTC.

After the telemetry stream write is complete the FCPs read data from the CTC to which
they are attached. There will always be a command (even if it is a null command or a
repeated command) and status data available to be read.

IV. FUTURE WORK & CONCLUSIONS

The current configuration in the X-38 is fully Byzantine resilient up to the I/O Processor.
After that, due to cost and weight concerns, the flow beyond is susceptible to Byzantine
errors; though each hardware instance has a minimum of 1 fault tolerance. Improving
this system would include implementing the Byzantine philosophy throughout the entire
breadth of the system, beyond the Flight Critical components.

Potential improvements to the hardware could be:

(1) Removing the fiber optic links: these components are very fragile to handling
and are damaged easily. The fiber optic components also required us to significantly
increase the size of each flight chassis due to the minimum bend radius of each fiber

cable. An alternative would be to replace them with copper connects using optocouplers
to provide isolation.

(11) Improve the Network Element’s throughput to reduce the overloading
bottleneck. This would require a Draper design change.

(iii) Use faster FCP and ICP processor boards to also increase throughput

(iv) Implement greater radiation tolerance by upgrading certain parts on the
Network Element .

(v) Recent improvements in ruggedized COTS components could also lead to a
faster and smaller hardware implementation.

' F \ | 1 / j }
REFERENCES) / '\\
JSC29309, X-38 Vehicle EOI Softwareérchitecéure Def}nition Document, Version 2.3,

December-1999; Buscher,; Hump rvajaliste.

3-4-03

p Discrete outputs

p Analog outputs
p 1553 bus

IRIG-B PCM data

p Ethernet, RS-232, RS-422, health status

p Discrete outputs
- Analog outputs

p 1553 bus
IRIG-B PCM data

p Ethernet, RS-232, RS-422, health status

P Discrete outputs

p Analog outputs
p 1553 bus

IRIG-B PCM data
p Ethernet, RS-232, RS-422, health status

p Discrete outputs

p Analog outputs
p 1553 bus

IRIG-B PCM data

p Ethernet, RS-232, RS-422, health status

p Ethernet, RS-232, health status

Flight Data
Recorder #1
28V pwr N .
—
: 28V pwr
SCSI :
Ethernet, RS-232 €¢——
Be RS-422 CTC1 :
PLD umbilical q—1"" "0 Rs232 RS-422 -
) S TR :
health status g———]
7 S I 28V pwr
Ethernet, RS-232 4¢——»| CTC 2 e
Shand RS-422 L : 28V pwr
PLD umbilical q—1 - rs232 > - :
+“—r 5
health status g——— :
28V pwr > :
Scsl D
——1
: : Flight Data : > 5L o il 28V pwr
W S| Recorder #2 . ; l r"" X
SV ol — LEl;er tic Bus : b
B . VA U =
c C ',1: '\ o ;'.5"‘“ ; b]‘:“i \ d . B : 4
t Computer avionics oék 1ag @—— 28V pwr

QAN

2

J

