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Development of a Catalytic Coating for a Shuttle Flight 
Experiment 

David A. Stewart,* Tahir Gökçen,† Steven E. Sepka,‡ Daniel B. Leiser,§ and Marc D. Rezin**  
NASA Ames Research Center, Moffett Field, CA 94035 

A spray-on coating was developed for use on the shuttle wing tiles to obtain data that 
could be correlated with computational fluid dynamics (CFD) solutions to better understand 
the effect of chemical heating on a fore-body heat shield having a turbulent boundary layer 
during planetary entry at hypersonic speed.   The selection of a spray-on coating was 
conducted in two Phases 1) screening tests to select the catalytic coating formulation and 2) 
surface property determination using both arc-jet and side-arm facilities at NASA Ames 
Research Center.  Comparison of the predicted surface temperature profile over a flat-plate 
with measured values obtained during arc-jet exposure (Phase I study) was used to validate 
the surface properties obtained during Phase II.  

I. Introduction 
HE effect of surface catalysis on heating to a vehicle entering the Earth atmosphere at hypersonic speed was 
first demonstrated during the catalytic surface effects Orbiter flight experiments conducted in the early 1980s.1–5 

These experiments, used a cobalt iron chromium oxide spinel, designated as C-742, mixed with a Polyvinyl acetate 
(PVA) binder.  It was sprayed on selected tiles over the lower surface of the fuselage and wing of the Orbiter.  
Surface temperature measurements were taken during the portion of the trajectory where the boundary layer was 
laminar (M∞ > 10).  This coating was referred to as CC-1.   The present boundary layer transition (BLT) experiment 
will investigate the effect of a high catalytic efficiency surface on heating during Earth entry with a turbulent 
boundary layer at Mach numbers near 18 using a similar spray-on coating to the CC-1.  Because the C-742 spinel is 
no longer available, candidate formulations with similar spinel structure and surface properties to the CC-1 coating 
were developed for the BLT flight experiment.  
 

The two coatings evaluated as a replacement for the CC-1 coating included a mixture of two spinels (15B) and a 
formulation of reacted oxides (15E).  Coating 15B was formulated by directly mixing a small amount of glass frit 
with a CoCr2O4 spinel and a CoFe2O4 spinel.  Coating 15E was formulated by first reacting the appropriate amount 
of chromium, iron, and cobalt oxides to create a single spinel having a similar structure to the C-742; then a small 
amount of silicon dioxide (Quartz frit) was mixed with the spinel powder. Polyvinyl acetate (PVA) was used as the 
binder for both coatings. 

II. Test Facilities 

A. Arc-jet Facility 
 The arc-jet tests were conducted in the Aerodynamic Heating Facility (AHF).6  A sketch of the AHF is shown in 
Figure 1a.  The facility uses a constricted arc-heater to provide high-energy dissociated hypersonic flow over a test 
model positioned downstream of the 8 degree half-angle conical nozzle. A large boiler plant is used to maintain the 
pressure ratio between the arc-heater and test-section required for steady-state hypersonic flow.  
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(a) Aerodynamic Heating Facility   (b) Side-Arm Reactor 
Figure 1.  Schematics of Test Facilities.  

 
Either nitrogen or air can be easily used as the test gas without altering the heater hardware.  This permits 

measurements of heat flux and temperature to be taken in consecutive order from a test model.  Surface conditions 
on the test model are varied by changing the 1) exit diameter of the nozzle, 2) reservoir pressure, and/or 3) electrical 
power dissipated in the heater. 
 

The geometric area ratio (nozzle exit to throat) of the facility can be varied from 64 to 400.  Heater pressure can 
be varied from 0.68 atm to roughly 5.5 atm and the maximum power dissipated in the heater can be increased up to 
20 MW.  Stagnation point enthalpy was determined using a facility system energy balance approach.7 It requires that 
the predicted enthalpy is compatible with all measured flow properties during each arc-jet test.   
  

A pyrometer, radiometer, and copper hemisphere were used to measure surface temperature, heat flux and 
pressure during each test. 

B. Side-Arm Reactor 
Figure 1b is a schematic of the side-arm-reactor used to obtain both the atom recombination coefficient for 

nitrogen and oxygen.  The data were obtained using a three-section diffusion tube (short sample of test material (L/D 
< 1) positioned between two sections of quartz tube) that was placed at the center of the clamshell tube furnace.  
This furnace enables the coefficients to be calculated from room temperature to 1200 K.   The test gas is dissociated 
using a microwave discharge upstream of the side–arm diffusion tube and the coefficients are calculated using 
measurements from laser-induced fluorescence  (LIF) diagnostic techniques to obtain the specie concentration 
profile along the tube centerline.8-9   The profile is obtained from the atom fluorescence measured through quartz 
lined optical access ports using four photomultiplier (PMT) equally spaced along the furnace.  

C. Test Articles 
Test articles used during this study are shown in Figure 2.  During Phase I, a disc-shaped test article coated with 

the reaction-cured-glass (RCG) over the front surface and approximately 1-inch down its sides, was installed into a 
flat-plate test fixture, Figure 2a. The fixture was made from a high-density fibrous insulation that was also coated 
with RCG glass. It had a nose radius of 2.2 cm (0.875 in), length of 16.5 cm (6.5 in), and width of 12.7 cm (5.0 in).  
Included in the figure is a sketch of the disk that was installed in the flat plate. It had two type-R thermocouples 
installed symmetric to the center of the disk.  The catalytic coatings were applied to the downstream half of the top 
surface of the disk.  During Phase II, the test articles used were a blunt 5° cone and a flat-faced cylinder, Figure 2b. 
During these tests, the catalytic coatings were applied over the front surface of the test article. Both Phase I and 
Phase II tests were conducted in the AHF using the 24-inch nozzle. 
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       (a) Flat-plate (b) Flat-face cylinder 
Figure 2. Arc-jet test articles used during Phase I and Phase II studies.  

 

D. Experiments 
The study was conducted in two Phases: 1) Screening tests were conducted to select one of two candidate 

coatings (15B and 15E) for use as the catalytic coating for the BLT experiment.  These tests were conducted using 
the flat plate at an angle-of-attack of 30°, Figure 2a.  One of the test articles used to obtain the surface properties of 
the coating was the flat-faced cylinder shown in Figure 2b.   Selection of the coating was based on the material 
stability during a nine-minute arc jet exposure at a surface temperature of 1589 K (2400 °F).  Data used in the 
selection were spectral reflectance, and surface chemistry measurements that were taken before and after arc jet 
exposure.  Also, photographs and scanning electron microphotographs (SEMs) of the samples were obtained before 
and after arc-jet exposure.  Room temperature spectral reflectance measurements were made using a BIO-RAD 
model FTS 40 (wavelength range 0.25 microns to 2.5 microns) and Perkin Elmer model 310 (wavelength range 2.5 
microns to 18 microns) spectrophotometers. Pre and post-test surface chemistry was determined using x-ray 
fluorescence elemental analyses.   In addition to the above data, atom recombination coefficients for both oxygen 
and nitrogen were calculated using arc jet and side-arm-reactor experiments for the selected coating. 

 

III. Results and Discussion 
The arc-jet test data taken during Phase I and II are summarized in Tables 1 and 2.  
 

   Table 1. Summary of Phase I test results. 
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Table 2. Summary of Phase II test results: surface characterization of coating CC-2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 The screening tests (Table 1) were conducted at a total enthalpy of 13.5 MJ/kg (5800 Btu/lbm), impact pressure 
of 0.012 atm. The dissociated species in the shock layer is given in terms of mole fraction, the oxygen was fully 
dissociated (0.247) and the nitrogen was partially dissociated (0.122).  In addition, roughly 0.22-mole fraction of 
argon was present. The measured temperature on the upstream RCG-coated surface of the disk was 1244 K (1780 
°F) and on the downstream catalytic coated surface of the disk it was 1589 K (2400 °F). The measured surface 
temperature on the RCG-coated portion of the flat-plate test article was 1244 K (1775°F). The calculated value was 
predicted using RCG atom recombination coefficients, the SCFC code, and assuming a Lee’s heating distribution 
from the stagnation point to the location where the measurement was taken on the disk.10,11  

 
The Phase II tests were conducted using both nitrogen and air at a free-stream Mach number over 8.0. The mole 

fraction of the dissociated nitrogen was 0.37 in the nitrogen environment and 0.16 to 0.21 in the air environments 
with the oxygen fully dissociated (0.25).  During these tests, the total enthalpy was 15.1 MJ/kg (6500 Btu/lbm) for 
the nitrogen test gas and ranged from 13.0 MJ/kg (5600 Btu/lbm) to 14.5 MJ/kg (6250 Btu/lbm) for air. The 
stagnation point pressure was roughly 0.006 atm during both test environments, and the surface temperature on the 
test articles ranged from 1361 K (1990 °F) to 1700 K (2600 °F).  A LI-900 test article with the CC-2 coating was 
exposed to the hypersonic stream for 3 minutes at 1700 K (2600°F) and showed no recession after exposure. Table 
II lists the calculated atom recombination coefficients for both nitrogen and oxygen obtained using the test data and 
the SCFC code. The coefficients for oxygen were 0.44 at 1561 K (TW = 2350 °F) and 0.5 at 1617 K (TW = 2450 °F). 
Coefficients for nitrogen were 0.5 at 1617 K (TW = 2450 °F) and 0.59 at 1689 K (TW = 2580 °F). Within this 
temperature range, the average total hemispherical emittance ranged from 0.72 to 0.74 based on the arc-jet data.  
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A. Phase I: Screening Tests 
 

            15B (spinel mixtures)                      15E (reacted oxides) 

 

a) Photographs of the test articles after a nine minute exposure, TW = 1589 K.  

                                                    Wavelength, λ, microns 

b) Spectral hemispherical emittance. 

Figure 3. Effect of arc-jet exposure on surface properties of the candidate coatings.  

 

 The photographs show that the surface color of 15E and 15B are closer to the RCG coating after arc-jet 
exposure.  Comparison of pre and post-test emittance for both coatings are shown in Figure 3b.  The emittance 
plotted was obtained from spectral hemispherical reflectance data applying ohm’s law, which assumes that the 
coating is opaque.  The emittance decreased between roughly 2.5 and 8-microns after arc-jet exposure.  The 
decrease in emittance is attributed to the loss of the PVA during the initial portion of the exposure.  
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Figure 4. Effect of arc-jet exposure on emittance after nine minutes at TW = 1589 K (2400°F).  

 Total hemispherical emittance is plotted for both coatings as function of temperature in Figure 4 

 The total hemispherical emittance was calculated from the spectral emittance values (Figure 4) by integrating 
between appropriate wavelengths. Pre-test values show close similarity between the two, however post-test values 
show that 15E is slightly lower than 15B after arc-jet exposure. 

Changes in morphology and surface chemistry of the two coatings were compared using Scanning Electron 
Microphotographs (SEM) and elemental analysis (X-Ray Fluorescence Analysis), as shown in Figures 5-6. These 
data indicted that the coating remained on the surface after arc-jet exposure (Note change in magnification between 
pre- and post-test data). The elemental analysis is plotted using an intensity normalized by the value for silica, 
because it is stable at this surface temperature. Data taken from 15E and 15B show the expected loss of carbon 
(removal of PVA binder). In addition, the data indicate the loss of all three oxides from 15E.  Data taken from 15B 
show little change in the relative intensity of the elements, which suggests that it remained chemically stable during 
the exposure to the dissociated hypersonic flow.  
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 Pre test                        Post-test 

 

 

 

 

   

 

 a) SEM                  50µ50µ50µ50µm ------                                100µµµµm ------ 

 

Energy, KeV  

Figure 5. SEM and X-ray florescence analysis of the 15E coating. 

 

 

 

 

 

 

  a) SEM                    50µµµµm -----                  100µµµµm ----- 

  Energy, KeV  

b) Elemental analysis. 

Figure 6. SEM and X-ray florescence analysis of the 15B coating.              
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From the screening tests 15B (spinel mixtures) was chosen was the coating for the flight experiment because it 
was more chemically stable during exposure to the high-energy hypersonic arc jet flow.  This coating was renamed 
CC-2 and is referred as such throughout the Phase II study and subsequent documentation (specifications, and so 
forth). 

B. Phase II: Surface Properties 
Figures 7 shows pre- and post-test photographs of the test article used in the Phase II study. Included in Figure 7 

is a photograph of the RCG reference model. The post-test photographs of the CC-2 coating were taken after a 3-
minute exposure at a surface temperature of 1617 K (2450°F) to the hypersonic air test environment. These post-test 
photographs show that CC-2 coating appears to be closer in color to the RCG reference model.  

        

a) RCG reference      b) Pre-test       c) Post-test, TW = 1617 K  

Figure 7.  Effect of arc-jet exposure on CC-2 coated blunt 5° cone. 

The color change is attributed to the loss of PVA from the surface of the test article.  

 Comparison of temperature-time histories of the CC-2 and RCG coated test articles obtained during runs 2 (air) 
and 4 (nitrogen) are shown in Figure 8. These data show that the temperature of the CC-2 coating reaches a steady-
state condition during the test in air, but it does not quite reach a steady-state condition during the exposure in 
nitrogen. The temperature data indicates a slightly higher difference between the RCG and CC-2 coated samples in 
nitrogen (500 °F) than in air (400 °F).  

 

Figure 8. Temperature-time history of RCG and CC-2 coated surface during arc-jet exposure. 

Pre and post-test SEMs and x-ray fluorescence analysis suggest that after exposure at 1617 K (2450 °F) in the air 
test environment, the coating remained intact but became slightly oxidized.  
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   Pre-test             Post-test 

    

 

 

 

      

            

 

a) SEM                  50µ50µ50µ50µm ------                                100µµµµm ------   

 

 

b) X-ray florescence analysis, exposure 3-minutes at TW = 1617 K 

Figure 9. Effect of arc-jet exposure on surface morphology and chemistry of the CC-2 coating.  

 Calculated pre- and post-test total hemispherical emittance (solid lines), using the reflectance data, are compared 
with the values (symbols) used in the SCFC code to predict the atom recombination coefficients, Figure 10.  

Figure 10. Effect of arc-jet exposure on the emittance of the CC-2 coating.  

 

The total hemispherical emittance derived from the arc-jet data are lower than values obtained from the room 
temperature reflectance data (roughly 0.73 compared to 0.79). 
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The atom recombination coefficients for both oxygen and nitrogen for the CC-2 coating are plotted in Figure 11.   
The high temperature coefficients (TW > 1256 K) were obtained using arc-jet data and the SCFC code.7 This code 
assumes frozen chemistry and incorporates Goulard’s theory as part of the nozzle program.  Coefficients at TW < 
1256 K were obtained from side-arm-reactor data using the basic diffusion equation with appropriate boundary 
conditions at the tube interfaces.10    Included on the plot are the corresponding Arrhenius expressions for the data 
from room temperature to 1700 K (2600 °F).  

Nitrogen:                 Oxygen: 

TW < 760 K                TW < 667 K     

   γΝ = 0.0032                    γΟ = 0.0045
 

TW > 760 K                 TW > 760 K  

     γΝ = 33.0ε
−7013/Τω                            γΟ = 12.0ε

−5263/Τω 

a) Nitrogen               b) Oxygen  

Figure 11. Atom recombination coefficients for the CC-2 coating. 

The data indicates that the coefficients for both nitrogen and oxygen atom recombination for the CC-2 coating 
are typically lower at surface temperatures below roughly 700 K and increase most rapidly at higher temperatures 
than the original CC-1 coating used on the early shuttle flight experiments reported at the Williamsburg Symposium 
in 1993.5    

C. Computational Simulations 
A full Navier-Stokes solver, DLPR code,12 is used to predict the surface temperature profile over the flat-plate 

test article used during the Phase I study.  The test article was exposed at an angle-of-attack of 30° to the high-
energy arc-jet flow.  The DPLR solution used surface properties calculated from the data obtained in the Phase II 
study.  

Figure 12 shows the computational grid and location of the RCG and CC-2 coatings. The predicted three-
dimensional surface temperature distribution and centerline temperature profile over the flat-plate are shown in 
Figure 13.  

The calculations were made by defining the flow properties at the sonic point in the nozzle throat and then 
processing downstream across the bow shock wave and over the test article surface. The measured surface 
temperatures taken from the flat plate agreed well with the predicted centerline temperature profile calculated from 
DLPR.  
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Figure 12. Computational grid used for flat-plate DLPR solution (RN = 0.022 m). 
 
 

  

(a) Computed temperature (b) Comparison of predicted and measured data 
Figure 13. Predicted surface temperature contours and centerline profile over the flat plate. AHF 24-inch 
nozzle flow: Heo = 12.3 MJ/kg, PCH = 1.72 atm  

 

Finally, Figure 14 indicates that the shear load during the Phase I study on the flat plate (roughly 30 Pa) was 
close to the value predicted for the laminar flight case, but roughly half that predicted for the turbulent flight case. 

 

 

 

RCG Coating 

Catalytic coating  
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(a) Computed surface shear (b) Predicted shear distribution along flat-plate 
Figure 14. Predicted surface shear contours and profile along model centerline.  

 

IV. Summary 
Results from the screening and surface characterization studies conducted the NASA Ames Research Center AHF 

showed: 

• Elemental analysis indicates that candidate coating 15E (reacted oxides similar to C-742) was not chemically 
stable after arc-jet exposure to 1589 K for nine minutes.  It should be noted that the CC-1 coating was never 
used in a flight experiment above 1422 K (2100 °F); therefore was not required to be stable above 1478 K 
(2200 °F).  

• Elemental analysis indicates that 15B (CC-2 coating) was chemically stable during a nine-minute exposure at 
a surface temperature of 1589 K (2400 °F) in the high-enthalpy hypersonic arc-jet stream.   Therefore, it 
was chosen as the coating for the flight experiment. 

• Total hemispherical emittance of the CC-2 coating at 1589 K (2400 °F) is somewhat lower than RCG (εth = 
0.85).   Emittance calculated from post-test reflectance data was 0.78 for TW = 1589 K.  

• Atom recombination coefficients have been calculated from both arc-jet test and side-arm-reactor data.   
Arrhenius expressions developed for surface temperatures from room temperature to 1700 K showed that in 
general the coefficients for CC-2 are higher than the CC-1 coating above 1000 K. 

• No noticeable recession was measured on the LI-900 blunt cone after a stagnation test at 1700 K for an 
exposure of 3-minutes.  
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A spray-on coating was developed for use on the Space Shuttle wing tiles to obtain data 

that could be correlated with computational fluid dynamics (CFD) solutions to better 

understand the effect of chemical heating on a fore-body heat shield having a turbulent 

boundary layer during planetary entry at hypersonic speed.   The selection of a spray-on 

coating was conducted in two phases: Phase I, screening tests to select the catalytic coating 

formulation; and Phase II, surface property determination using both arc-jet and side-arm 

facilities at NASA Ames Research Center.  Comparison of the predicted surface temperature 

profile over a flat-plate with measured values obtained during arc-jet exposure (Phase I 

study) was used to validate the surface properties obtained during Phase II.  

Nomenclature 

Ho  = total enthalpy, MJ/kg 

Heo  = total enthalpy at the boundary layer edge, MJ/kg 

Ix  = intensity of element x in x-ray florescence analysis, arbitrary scale 

M  = Mach number 

Mf  = Mach number at which the nozzle flow is assumed to be chemically frozen (in the SCFC code) 

M!  = free stream Mach number for the arc-jet models 

Po  = model stagnation pressure or pitot pressure, atm  

PCH  = arc-heater chamber pressure, atm 

p  = pressure, Pa 

RN  = model nose radius, m 

s  = arc length, m 

T  = temperature, K 

Tw  = wall temperature, K 

Tw RCG  = wall temperature of the reaction-cured glass article, K 

tau  = shear, Pa 

U  = velocity, m/s 

U!  = free stream velocity, m/s 

!th  = total hemispherical emittance 

"#  = nitrogen atom recombination coefficient  

"$  = oxygen atom recombination coefficient  

"!  = ratio of specific heats for the free stream gas (in the SCFC code) 

I. Introduction 

HE effect of surface catalysis on heating to a vehicle entering the Earth atmosphere at hypersonic speed was 

first demonstrated during the catalytic surface effects Orbiter flight experiments conducted in the early 1980s.
1–5

 

These experiments, used a cobalt iron chromium oxide spinel, designated as C-742, mixed with a Polyvinyl acetate 
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(PVA) binder.  It was sprayed on selected tiles over the lower surface of the fuselage and wing of the Orbiter.  

Surface temperature measurements were taken during the portion of the trajectory where the boundary layer was 

laminar (M! > 10). This coating was referred to as CC-1. The present boundary layer transition (BLT) experiment 

will investigate the effect of a high catalytic efficiency surface on heating during Earth entry with a turbulent 

boundary layer at Mach numbers near 18 using a similar spray-on coating to the CC-1.
6
 Since the C-742 spinel is no 

longer available, candidate formulations with similar spinel structure and surface properties to the CC-1 coating 

were developed for the BLT flight experiment.  

 

The two coatings evaluated as a replacement for the CC-1 coating included a mixture of two spinels (15B) and a 

formulation of reacted oxides (15E).  Coating 15B was formulated by directly mixing a small amount of glass frit 

with cobalt-chromium and cobalt-iron spinels.  Coating 15E was formulated by first reacting the appropriate amount 

of chromium, iron, and cobalt oxides to create a single spinel having a similar structure to the C-742; then a small 

amount of silicon dioxide (Quartz frit) was mixed with the spinel powder. Polyvinyl acetate (PVA) was used as the 

binder for both coatings. 

II. Test Facilities 

A. Arc-Jet Facility 

 The arc-jet tests were conducted in the Aerodynamic Heating Facility (AHF).
7
 A sketch of the AHF is shown in 

Figure 1a.  The facility uses a constricted arc-heater to provide high-energy dissociated hypersonic flow over a test 

model positioned downstream of the 8 degree half-angle conical nozzle. A large boiler plant is used to maintain the 

pressure ratio between the arc-heater and test-section required for steady-state hypersonic flow.  

 
 

 

 
 

(a) Aerodynamic Heating Facility   (b) Side-Arm Reactor 

Figure 1.  Schematics of test facilities.  

 
Either nitrogen or air can be easily used as the test gas without altering the heater hardware.  This permits 

measurements of heat flux and temperature to be taken in consecutive order from a test model.  Surface conditions 

on the test model are varied by changing the 1) exit diameter of the nozzle, 2) reservoir pressure, and/or 3) electrical 

power dissipated in the heater. 

 

The geometric area ratio (nozzle exit to throat) of the facility can be varied from 22 to 575.  Heater pressure can 

be varied from 0.68 atm to roughly 9 atm and the maximum power dissipated in the heater can be increased up to 20 

MW.  Stagnation point enthalpy was determined using a facility system energy balance approach.
8
 It requires that 

the predicted enthalpy is compatible with all measured flow properties during each arc-jet test.   

 

A pyrometer, radiometer, and copper hemisphere were used to measure surface temperature, heat flux and 

pressure during each test. 
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B. Side-Arm Reactor 

Figure 1b shows a schematic of the side-arm-reactor used to obtain the atom recombination coefficients for both 

nitrogen and oxygen.  The data were obtained using a three-section diffusion tube (short sample of test material, L/D 

< 1, positioned between two sections of quartz tube) that was placed at the center of the clamshell tube furnace.  

This furnace enables the coefficients to be calculated from room temperature to 1200 K. The test gas is dissociated 

using a microwave discharge upstream of the side–arm diffusion tube and the coefficients are calculated using 

measurements from laser-induced fluorescence (LIF) diagnostic techniques to obtain the species concentration 

profile along the tube centerline.
9-10

 The profile is obtained from the atom fluorescence measured through quartz 

lined optical access ports using four photomultiplier tubes (PMT) equally spaced along the furnace.  

C. Test Articles 

Test articles used during this study are shown in Figure 2.  During Phase I, a disc-shaped test article coated with 

the reaction-cured-glass (RCG) over the front surface and approximately 1-inch down its sides, was installed into a 

flat-plate test fixture, Figure 2a. The fixture was made from a high-density fibrous insulation that was also coated 

with RCG glass. It had a nose radius of 2.2 cm (0.875 in), length of 16.5 cm (6.5 in), and width of 12.7 cm (5.0 in).  

Included in the figure is a sketch of the disk that was installed in the flat plate. It had two type-R thermocouples 

installed symmetric to the center of the disk.  The catalytic coatings were applied to the downstream half of the top 

surface of the disk.  During Phase II, the test articles used were a blunt 5° cone and a flat-faced cylinder, Figure 2b. 

During these tests, the catalytic coatings were applied over the front surface of the test article. Both Phase I and 

Phase II tests were conducted in the AHF using the 24-inch nozzle. 

 

 

 
 

       (a) Flat-plate (b) Flat-face cylinder 

Figure 2. Arc-jet test articles used during Phase I and Phase II studies.  

 

D. Experiments 

The development of a spray-on coating for the boundary-layer transition experiment was made in two phases. In 

Phase I, screening tests were conducted in an arc-jet stream to select one of two candidate coatings (15B and 15E). 

These tests were run using a flat plate at an angle-of-attack of 30°, shown in Figure 2a.  One of the test articles used 

to obtain the surface properties of the coating was the flat-faced cylinder shown in Figure 2b.   Selection of the 

coating was based on the material stability during a nine-minute arc jet exposure at a surface temperature of 1589 K 

(2400 °F).  Data used in the selection were spectral reflectance, and surface chemistry measurements that were taken 

before and after arc jet exposure.  Also, photographs and scanning electron microphotographs (SEMs) of the 

samples were obtained before and after arc-jet exposure.  Room temperature spectral reflectance measurements were 

made using a BIO-RAD model FTS 40 (wavelength range 0.25 microns to 2.5 microns) and Perkin Elmer model 

310 (wavelength range 2.5 microns to 18 microns) spectrophotometers. Pre- and post-test surface chemistry was 

determined using x-ray fluorescence elemental analyses. Once the coating was selected as a result of Phase I study; 

in Phase II, both oxygen and nitrogen atom recombination coefficients for the selected coating were determined 

using arc jet and side-arm-reactor experiments. 
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Table 1. Summary of Phase I test results.  

 

Coating Performance  
Run No. Sample Coating PO  

 
atm 

Heo 

 
MJ/kg 

TW RCG 

Meas. 
K 

TW RCG 

Calc. 
K 

TW Cat 
Meas. 

K 

1 3608 15E 0.012 13.5 1244 1228 1594 

2 3610 15B 0.013 13.5 1250 1228 1589 

Calculated from SCFC code assuming !th = 0.85 and using RCG atom recombination coefficients for 

oxygen and nitrogen. 

Free-stream Properties 
AHF 24-inch nozzle exit 

PCH 

atm 
Mf M! T! 

K 
"! U! 

m/s 

1.7 1.8 8.03 608 1.37 4145 

 
Free-stream Flow Chemistry  

(mole fraction) 
N N2 O O2 NO Ar 

0.122 0.41 0.247 ---- 0.004 0.22 

 

 

 

Table 2. Summary of Phase II test results: surface characterization of the CC-2 coating.  

Coating Performance  

Run No. Sample Gas PCH 

 

atm 

PO 

 
atm 

Heo 

 
MJ/kg 

TW 

Meas. 
K 

TW 

Calc. 
K 

2,5 RCG Air 0.78 0.006 13.0 1361 1356 

2 FF (4-1) !th =0.74,Coefficients: "N = 0.5, "O = 0.44  
1564 

 
1561 

5 BC 3614 !th =0.72,Coefficients: "N = 0.5, "O = 0.44  
1617 

 
1622 

3,4 RCG Nitrogen 0.78 0.006 15.1 1378 1394 

3 FF (4-3)  Coefficient: "N = 0.5 1611 1617 

4 BC 3615  Coefficient: "N = 0.59  
1689 

 
1700 

5 BC LI-1500      
1700 

 
1689 

 
Free-stream Flow Chemistry  

(mole fraction) 

Run No. N N2 O O2 NO Ar 

2-5 0.16 0.40 0.25 ---- 0.004 0.19 

3-4 0.37 0.44 N/A N/A N/A 0.19 

5 0.21 0.36 0.24 ---- 0.003 0.18 
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III. Results and Discussion 

The arc-jet test data taken during Phases I and II are summarized in Tables 1 and 2, respectively.  

 

 The screening arc-jet tests (Table 1) were conducted at a total enthalpy of 13.5 MJ/kg (5800 Btu/lbm) and impact 

pressure of 0.012 atm. The dissociated species in the shock layer predicted by the SCFC code are given in Table 1, 

in terms of mole fractions: the oxygen was fully dissociated (0.247), and the nitrogen was partially dissociated 

(0.122).  In addition, roughly 0.22-mole fraction of argon was present. The measured surface temperature on the 

RCG-coated portion of the flat-plate test article was 1244 K (1780 °F), and the measured temperature on the 

downstream portion of the disk with the catalytic coating was 1589 K (2400 °F). The calculated value in Table 1 

was predicted using RCG atom recombination coefficients, the SCFC code, and assuming a Lee’s heating 

distribution from the stagnation point to the location where the measurement was taken on the disk.
10,11

  

 

        15B (spinel mixtures)                                         15E (reacted oxides) 

a) Photographs of the test articles after a nine-minute exposure, TW = 1589 K 

                                                    Wavelength, %, microns 

b) Spectral hemispherical emittance 

Figure 3. Effect of arc-jet exposure on surface properties of the candidate coatings.  

The Phase II tests were conducted using both nitrogen and air gas at a free-stream Mach number over 8. The 

predicted mole fraction of the dissociated nitrogen was 0.37 in the nitrogen environment, and it was 0.16 to 0.21 in 

the air environments with the oxygen fully dissociated (0.25).  During these tests, the total enthalpy was estimated to 

be 15.1 MJ/kg (6500 Btu/lbm) for the nitrogen test gas and in the range from 13.0 MJ/kg (5600 Btu/lbm) to 14.5 

MJ/kg (6250 Btu/lbm) for air. The stagnation point pressure was roughly 0.006 atm during both tests, and the 

surface temperature on the test articles ranged from 1361 K (1990 °F) to 1700 K (2600 °F).  The LI-900 test article 

with the CC-2 coating was exposed to the hypersonic stream for 3 minutes at 1700 K (2600 °F) and showed no 
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recession after exposure. Table 2 lists the calculated atom recombination coefficients for both nitrogen and oxygen 

obtained using the test data and the SCFC code. The coefficients for oxygen were 0.44 at 1561 K (TW = 2350 °F) 

and 0.5 at 1617 K (TW = 2450 °F). Coefficients for nitrogen were 0.5 at 1617 K (TW = 2450 °F) and 0.59 at 1689 K 

(TW = 2580 °F). Within this temperature range, the average total hemispherical emittance ranged from 0.72 to 0.74 

based on the arc-jet data.  

A. Phase I: Screening Arc-Jet Tests 

Figure 3a shows the photographs of the test articles after arc-jet exposure. The surface color of both 15E and 

15B coatings are similar to the RCG coating.  Comparison of pre and post-test emittance for both coatings are 

shown in Figure 3b.  The emittance plotted was obtained from spectral hemispherical reflectance data applying 

Ohm’s law, which assumes that the coating is opaque.  The emittance decreased between roughly 2.5 and 8 microns 

after arc-jet exposure.  The decrease in emittance is attributed to the loss of the PVA during the initial portion of the 

exposure.  

 

 

Figure 4. Effect of arc-jet exposure on emittance after nine minutes at TW = 1589 K (2400 °F). 

 

 Figure 4 shows the effect of arc-jet exposure on total hemispherical emittance as a function of temperature for 

both coatings. The total hemispherical emittance was calculated from the spectral emittance values by integrating 

between appropriate wavelengths. Pre-test values show close similarity between the two coatings. However, post-

test values show that 15E is slightly lower than 15B after arc-jet exposure. 

In Figures 5 and 6, pre- and post-test morphology and surface chemistry of the two coatings were compared 

using SEM and elemental analysis (x-ray fluorescence analysis). These data indicated that the coating remained on 

the surface after arc-jet exposure. Note change in magnification between pre- and post-test data. The elemental 

analysis is plotted using an intensity normalized by the value for silica since silica is stable at this surface 

temperature. The data taken both from 15E and 15B coatings show the expected loss of carbon due to removal of 

PVA binder. In addition, the data indicate the loss of all three oxides from 15E coating.  The data taken from 15B 

coating show little change in the relative intensity of the elements, which suggests that it remained chemically stable 

during the exposure to the dissociated arc-jet flow.  

From the screening tests 15B (spinel mixtures) was chosen as the coating for the flight experiment because it 

was more chemically stable during exposure to the high-energy hypersonic arc jet flow.  This coating was renamed 

CC-2 and is referred as such throughout the Phase II study and subsequent documentation (specifications, and so 

forth). 
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Pre-test 

 

Post-test 

 
a) SEM                                                                                                      

  

(b) Elemental analysis  

Figure 5. SEM and x-ray florescence analysis of the 15E coating. 
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Pre-test 

   

Post-test 

 

a) SEM                                                                                                   

  
(b) Elemental analysis  

Figure 6. SEM and x-ray florescence analysis of the 15B coating. 
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B. Phase II: Characterization of CC-2 Coating Surface Properties 

Figures 7 shows pre- and post-test photographs of the test article used in the Phase II study. Included in Figure 7 

is a photograph of the RCG reference model. The post-test photographs of the CC-2 coating were taken after a 3-

minute exposure at a surface temperature of 1617 K (2450 °F) to the hypersonic air test environment. These post-

test photographs show that CC-2 coating appears to be closer in color to the RCG reference model.  

 a) RCG reference      b) Pre-test       c) Post-test, TW = 1617 K  

Figure 7.  Effect of arc-jet exposure on CC-2 coated blunt 5° cone. 

The color change is attributed to the loss of PVA from the surface of the test article.  

 Figure 8 compares the surface temperature time histories of the CC-2 and RCG coated test articles obtained 

during Run 2 (air) and Run 4 (nitrogen). These data show that the surface temperature of the CC-2 coating reaches a 

steady-state condition during the test in air, but it does not quite reach a steady-state condition during the exposure 

in nitrogen.  Also, the surface temperature difference between the RCG and CC-2 coated samples is slightly higher 

in nitrogen (500 °F) than in air (400 °F).  

 

 

 
 

(a) Air  (b) Nitrogen  
Figure 8. Temperature-time history of RCG and CC-2 coated surface during arc-jet exposure. 

 

In Figures 9, pre- and post-test morphology and surface chemistry of the CC-2 coating were compared using 

SEM and x-ray elemental analysis. Pre and post-test SEMs and x-ray analysis suggest that after exposure at 1617 K 

(2450 °F) in the air test environment, the coating remained intact but became slightly oxidized.  

 Figure 10 shows the effect of arc-jet exposure on total hemispherical emittance as a function of temperature for 

the CC-2 coating. 
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Pre-test 

 

Post-test 

 

a) SEM                                                                                                   

  

b) X-ray florescence analysis, 3-minute exposure at TW = 1617 K 

Figure 9. Effect of arc-jet exposure on surface morphology and chemistry of the CC-2 coating. 

 

 
Figure 10. Effect of arc-jet exposure on the emittance of the CC-2 coating.  

 

Calculated pre- and post-test total hemispherical emittance (solid lines), using the reflectance data, are compared 

with the values (symbols) used in the SCFC code to predict the atom recombination coefficients, Figure 10.   
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The total hemispherical emittance derived from the arc-jet data are lower than the values obtained from the room 

temperature reflectance data (approximately 0.73 compared to 0.79). 

The atom recombination coefficients for both oxygen and nitrogen for the CC-2 coating are plotted in Figure 11.   

The high temperature coefficients (TW > 1256 K) were obtained using the arc-jet data and SCFC code.
11

 This code 

assumes frozen chemistry and incorporates Goulard’s theory as part of the nozzle program.  Coefficients at TW < 

1256 K were obtained from side-arm-reactor data using the basic diffusion equation with appropriate boundary 

conditions at the tube interfaces.
10 

   Included on the plot are the corresponding Arrhenius expressions for the data 

from room temperature to 1700 K (2600 °F).  

Nitrogen:                 Oxygen: 

TW < 760 K                TW < 667 K     

   "# = 0.0032                    "$ = 0.0045 

TW > 760 K                 TW > 760 K  

     "# = 33.0!&7013/'(                            "$ = 12.0!&5263/'( 

a) Nitrogen               b) Oxygen  

Figure 11. Atom recombination coefficients for the CC-2 coating. 

The data indicate that the coefficients for both nitrogen and oxygen atom recombination for the CC-2 coating are 

typically lower at surface temperatures below roughly 700 K and increase most rapidly at higher temperatures than 

the original CC-1 coating used on the early shuttle flight experiments reported at the Williamsburg Symposium in 

1993.
5
   

C. Computational Simulations 

Computational analyses of the arc-jet tests were performed through simulation of nonequilibrium expanding flow 

in the arc-jet nozzle, supersonic jet, test box, and simulation of the flow around the test articles. For all CFD 

calculations, the DPLR code,
13,14

 a code developed at NASA Ames, is used. For the present CFD simulations, the 

axisymmetric and 3-D Navier-Stokes equations, supplemented with the equations accounting for nonequilibrium 

kinetic processes, are used in the formulation. The present calculations employ a 6-species air model (N2 O2, NO, N, 

O, Ar) for arc-jet flow, and the thermal state of the gas is described by two temperatures: translational-rotational and 

vibrational-electronic, within the framework of Park's two-temperature model.
15

 The calculations were made by 

defining the flow properties at the sonic point in the nozzle and then processing downstream across the bow shock 

wave and over the test article surface. Computations are then used to predict the surface properties of the flat-plate 

test article, which was exposed at an angle-of-attack of 30° to the high-energy arc-jet flow.  The DPLR solution 

incorporated the surface properties (atom recombination coefficients and emissivity values) calculated from the data 

obtained in Phase II study.  
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Figure 12 shows the experimental infrared temperature data for the plug used on the flat-plate model. The 

temperature rise in the catalytic portion of the plug (CC-2 coating) with respect to that of the RCG coated section is 

clearly observed. Although the spacial orientation of IR camera with respect to the plug is not known accurately, the 

line on the figure approximately corresponds to the centerline of the plug on the flat-plate model. Increase in the 

surface temperature on the catalytic portion of the plug is clearly observed.  

 

 

Figure 12. Experimental IR temperature data for the flat-plate plug, AHF 285 Run 2.  

 

Computational simulation results are now presented for the flat plate model. Figure 13 shows the computational 

surface grid used for the flat-plate model and location of the RCG and CC-2 coatings.  

 

 

Figure 13. Computational surface grid used for the flat-plate model in DLPR simulation (RN = 0.022 m). 

 

The predicted surface contours of pressure, temperature and shear of the flat plate model and corresponding 

centerline profiles are shown in Figure 14. The predicted centerline temperature profile calculated from DLPR 

agreed reasonably well with he measured surface temperatures taken from the flat plate.  Finally, Figure 14c 

indicates that the computed shear load on the flat plate plug was roughly 35-40 Pa, which is close to the value 

predicted for the laminar flight case, but roughly half that predicted for the turbulent flight case. 

 

RCG Coating 

Catalytic coating  
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(a) Pressure  

 
 

(b) Temperature  

 
 

(c) Shear  

Figure 14. Predicted surface contours and centerline profile over the flat plate. AHF 24-inch nozzle flow: Ho 

= 13.5 MJ/kg, PCH = 1.72 atm.  
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(a) STS-5, x/L = 0.82 (CC-1) (b) STS-128, x/L = 0.80 (CC-2) 

Figure 15. Effect of the CC-1 and CC-2 coatings on heating over lower wing surface during shuttle Earth 

entry.  

 

D. Shuttle Flight Data 

Experimental data taken from the lower surface of the wing during STS-128 Earth entry are compared with 

previous data obtained from the same general area of the lower surface of the wing during the STS-5 flight.
5, 6,16

 

During the portion of the Earth entry in which the boundary-layer flow over the wing was laminar, the increase in 

the surface temperature as a result of the application of the CC-2 coating was roughly 360K (200 °F) which is 

similar to the increased temperature observed during flight STS-5.
2,5

   However, the data indicates that transition to 

turbulent flow over the wing on STS-128 occurred earlier in the flight (approx. 150 seconds) than during the STS-5 

flight.  In Reference 6, a detailed discussion of the STS-128 flight data is given relative to on-set of transition to 

turbulence and other flow field characteristics affected by the protuberance and catalytic coating applied 

downstream from it.   The CC-2 coating remained on the tile after the flight. 

 

IV. Summary 

Results from the screening and surface characterization studies conducted the NASA Ames Research Center AHF 

showed: 

• Elemental analysis indicates that candidate coating 15E (reacted oxides similar to C-742) was not chemically 

stable after arc-jet exposure to 1589 K for nine minutes.  It should be noted that the CC-1 coating was never 

used in a flight experiment above 1422 K (2100 °F); therefore was not required to be stable above 1478 K 

(2200 °F).  

• Elemental analysis indicates that 15B (CC-2 coating) was chemically stable during a nine-minute exposure at 

a surface temperature of 1589 K (2400 °F) in the high-enthalpy hypersonic arc-jet stream.   Therefore, it 

was chosen as the coating for the flight experiment. 

• Total hemispherical emittance of the CC-2 coating at 1589 K (2400 °F) is somewhat lower than RCG (!th = 

0.85).   Emittance calculated from post-test reflectance data was 0.78 for TW = 1589 K.  

• Atom recombination coefficients have been calculated from both arc-jet test and side-arm-reactor data.   

Arrhenius expressions developed for surface temperatures from room temperature to 1700 K showed that in 

general the coefficients for CC-2 are higher than the CC-1 coating above 1000 K. 

• No noticeable recession was measured on the LI-900 blunt cone after a stagnation test at 1700 K for an 

exposure of 3 minutes.  

• Flight performance of the CC-2 coating was very similar to the CC-1 coating used for the experiments on 

STS-5. 
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