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ABSTRACT
Multivariate Time-Series (MTS) are ubiquitous, and are gen-
erated in areas as disparate as sensor recordings in aerospace
systems, music and video streams, medical monitoring, and
financial systems. Domain experts are often interested in
searching for interesting multivariate patterns from these
MTS databases which often contain several gigabytes of data.
Surprisingly, research on MTS search is very limited. Most
of the existing work only supports queries with the same
length of data, or queries on a fixed set of variables. In
this paper, we propose an efficient and flexible subsequence
search framework for massive MTS databases, that, for the
first time, enables querying on any subset of variables with
arbitrary time delays between them. We propose two al-
gorithms to solve this problem — (1) a List Based Search
(LBS) algorithm which uses sorted lists for indexing, and
(2) a R*-tree Based Search (RBS) which uses Minimum
Bounding Rectangles (MBR) to organize the subsequences.
Both algorithms guarantee that all matching patterns within
the specified thresholds will be returned (no false dismissals).
The very few false alarms can be removed by a post-processing
step. Since our framework is also capable of Univariate
Time-Series (UTS) subsequence search, we first demonstrate
the efficiency of our algorithms on several UTS datasets pre-
viously used in the literature. We follow this up with exper-
iments using two large MTS databases from the aviation do-
main, each containing several millions of observations. Both
these tests show that our algorithms have very high prune
rates (>99%) thus needing actual disk access for only less
than 1% of the observations. To the best of our knowl-
edge, MTS subsequence search has never been attempted
on datasets of the size we have used in this paper.
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1. INTRODUCTION
Many data mining application domains generate large mul-

tivariate time series (MTS) databases. Examples of such do-
mains include Earth sciences, music, video, medical monitor-
ing, and aeronautical and aerospace systems, and financial
systems. Domain experts are often interested in searching
for particular patterns—waveforms over subsets of variables
which may occur within some window of time of each other.

The motivation for this research comes from applications
in Aviation Safety. Consider a typical problem that a safety
analyst at an airline might want to address. Suppose that
the airline has a large database of one million flights of mul-
tivariate time series that show the settings of the control sur-
faces (usually discrete signals), the pilot inputs (discrete), as
well as the heading, speed, and readings from the propulsion
systems (all usually continuous). In many such databases,
the number of recorded parameters from a modern aircraft
is nearly 1000. The safety analyst may want to find all situa-
tions in the database that correspond to a“go-around”which
means that a landing has been aborted and the aircraft is
directed to circle back for another landing.

Such a situation would correspond to a query on a sub-
set of the fields in the time series database where the event
LANDING GEAR RETRACTED occurs just afterAL-
TITUDE descends below 2000 feet. This event is typical
of what happens when a landing attempt must be aborted
and the plane has to circle back to an appropriate point and
attempt to land again. Another search for indicators of an
“unstable approach” may include searching on parameters
including speed, descent rate, vertical flight path, and sev-
eral cockpit configuration parameters. Again, this search
would be done on about a dozen parameters out of the 1000
parameters that may be recorded on the aircraft. The events



would be separated in time and may or may not occur on a
particular flight.

Figure 1 shows an MTS from a real aviation dataset of
CarrierX 1. Each MTS contains the data collected from mul-
tiple sensors of an aircraft during a flight. In the figure,
the x-axis refers to the different parameters while the y-axis
refers to time of sampling the values. Typically, an ana-
lyst may be interested in only searching a subset of all the
variables available. Queries by the analyst may look like:

1. Return all the flights (a subset of the MTS) where the
altitude monotonically changes from 10000 ft to 5000
ft, speed varies between 300 knots to 200 knots, and
landing gear is down. Such combination of parameter
values may be precursors to unstable approaches while
landing.

2. Return all the flights where the aircraft is climbing at
100 ft/s with flaps not withdrawn. There may be a
time delay between these two sequences.
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Figure 1: Sample MTS dataset and query Q. x-
axis refers to different parameters and y-axis refers
to time. Components of query and time delays are
also shown.

Current research in MTS search [16][19][15][7] does not
support the types of queries described here. Current algo-
rithms in this area require that the query be of the same
length as all the MTS in the database and that all queries
be on a fixed set of variables (usually all the variables). Ad-
ditionally, current algorithms do not allow for any time lag
between the variables in the query.

Our primary application of interest is in the area of avi-
ation. Given a large database of flight recorded data we
wish to provide a search technology that allows analysts to
rapidly identify flights with particular characteristics (as de-
fined across a set of events on a subset of the multivariate
time series). Thus, user supplies a query consisting of wave-
forms over several variables — typically substantially fewer
than the total number of variables present in the database.

1We cannot release the name of the carrier due to the data
sharing agreement.

The user may choose how many and which variables to query
over every time, i.e., this need not be fixed in advance. Also
the query may cover any desired length of time up to the
maximum length of the available time series. The wave-
forms have some (possibly zero) time shifts between them.
The user also supplies a threshold for each variable describ-
ing the maximum allowable difference between the query
variable and the corresponding variable in any matches that
are returned. This threshold is in the same units as the cor-
responding variable to make threshold selection easier for
domain experts. The MTS search algorithm must return all
matches (with no false dismissals or false positives), consist-
ing of the matching MTS in the database and where within
the MTS the matching pattern was found (offset from the
beginning of the MTS), such that the time shift constraints
and the threshold constraints are satisfied.

There has been substantial research in making Univariate
Time Series (UTS) search very fast on very large databases
[5][14]. Therefore, one obvious approach to the MTS search
problem is to search for each query variable separately within
the database and then join the results while taking into ac-
count the time shift constraints. However, this may lead to
much more searching than is required, leading to a substan-
tial amount of processing time. For example, if the query
consists of five variables, but searching on two variables leads
to a small set of candidate matches, then a brute force search
on the remaining three variables within the small candidate
set would be much faster than a UTS search on the remain-
ing three variables in the entire database. We exploit this
fact in the novel algorithm that we present in this paper.
However we still leverage UTS search—by doing so, we uti-
lize existing work and advance the area of fast UTS search
and also retain the flexibility of allowing queries over any
desired subset of variables and with any desired time shifts
among the variables, unlike existing MTS search algorithms.
The specific contributions of this paper are as follows:

∙ We propose two algorithms a list based search algo-
rithm (LBS) and R-tree based search algorithm RBS
for efficient searching of UTS subsequences. Compared
with state-of-the-art existing method on UTS subse-
quence search, we have a higher prune rate for our
algorithms.

∙ Using these algorithms as the building blocks, we pro-
pose two novel MTS search algorithms which can search
for arbitrary multidimensional patterns (subsequences)
defined on a small subset of variables in massive MTS
databases.

∙ To the best of our knowledge, the datasets that we
have used for testing the performance of our MTS al-
gorithms are the bigger that those reported in the lit-
erature.

The rest of the paper is organized as follows. In Section 2,
we discuss in more detail related work in the areas of MTS
and UTS search. In Section 3, we describe the notations and
give a more precise definition of the MTS search problem.
In Section 4 we describe the UTS search algorithm that we
use as the core of our MTS search algorithm. This leads
into Section 5 where we explain our MTS search algorithm.
Section 7 describes our experiments with this algorithm and
comparisons with some existing work. We provide conclu-
sions and descriptions of future work in Section 8.



2. RELATED WORK
We divide this section into related work on UTS search

and MTS search.

UTS search: The topic of subsequence matching of time se-
ries has been an active area of research in the database/data
mining community. Depending on the application, time se-
ries matching can be of the following categories: (1) full
time series matching in which the queries are entire time
series sequences, and (2) time series subsequence matching
in which the queries can be of any size. Popular techniques
for performing entire length time series search include the
ones proposed by Keogh and Ratanamahatana [6], Sakurai
et al. [12], Shou et al. [13] and the references therein. Since
these techniques cannot be adopted to perform subsequence
search easily, we do not consider them further in our discus-
sion.

One of the early works of subsequence matching is by
Faloutsos et al. [2] in which the authors have proposed
a DFT/R-tree based indexing scheme. Input time series
is first broken into overlapping window sequences of fixed
length w and then six DFT coefficients are extracted from
each sequence. These 6-dimensional representations are then
packed into a minimum bounding rectangle (MBR) and in-
dexed using an R-Tree data structure. On receiving a query,
the same process is applied (extracting DFT coefficients)
and then the search is performed on R-Tree. Candidate
MBRs are then checked with the actual database to remove
the false alarms. A dual approach to this one, proposed by
Moon et al. [8], is to decompose the input time sequence
into disjoint sequences and the query sequence into sliding
windows. As a result, this technique can index data points
directly instead of MBRs and thereby reduce false alarms.
However, as the size of the time series increases to millions
of points, storing all the points in the index may still be
challenging.

To alleviate this problem, Traina et al. [14] recently pro-
posed a technique of using multiple reference points to speed
up the search. The idea is to randomly select multiple global
reference points from the dataset, find the distances of all
points from this reference point and index these distances in
a tree or other index method. It has been verified that us-
ing multiple reference points, the candidate set of the search
process can be significantly reduced. While our algorithm
resembles this philosophy, it has the following significant
differences: (1) [14] only talks about nearest neighbor and
range query on the database, we show how it can be used for
arbitrary subsequence matching, and (2) unlike [14] which
only works for univariate time series, we adopt it for mul-
tivariate subsequence search with arbitrary number of vari-
ables and arbitrary time delays among those variables.

Several other techniques exist for subsequence matching
in univariate time series databases. Due to shortage of space
we only present the references here — ranked subsequence
matching by Han et al. [4], disk resident pattern discovery
by Mueen et al. [9], subsequence retrieval under DTW [11],
and approximate embedding-based matching [1].

MTS search: There does not exist much work on multivari-
ate time series (MTS) search. Yang and Shahabi [16] present
a PCA-based similarity technique for comparing two MTS’s.
Given a database of MTS’s this technique first computes the
covariance matrix between two MTS. Then eigenvectors and

eigenvalues of the covariance matrix are used as a measure
of similarity between the MTSs. This work was extended in
[18] in which the authors proposed the use of kernel PCA
instead of traditional PCA which suffers from the curse of
dimensionality. The kernel trick helps to solve this problem
by not requiring one to explicitly compute the dot product
among feature vectors.

Distance-based index structure for MTS has been dis-
cussed by Yang and Shahabi [17]. The proposed indexing
scheme, known as Muse, builds a multi-level index struc-
ture. Unlike the PCA-based similarity index, Muse does
not use any weights (e.g. eigenvalues) while constructing the
index, obviating the need for changing the index whenever
the weight changes. At query time, the levels are combined
with the weights to generate the lower bound on the query
distance to the candidates.

The work by Lee et al. [7] addresses the problem of search-
ing in multi-dimensional sequences. The multi-dimensional
sequence is partitioned into sequences, packed into MBR
and then indexed using the R-tree scheme. The query is
processed in a similar fashion to find the intersecting MBR’s
after which exact calculation is done. Vlachos et al. [15] pro-
poses an index structure for multi-dimensional time series
(2-D trajectory data) which can handle multiple distance
functions such as LCSS and DTW. Similar to our proposed
technique, the index is built using R-tree and queried using
the minimum bounding envelope. This indexing and query-
ing scheme can, however, only address the nearest neighbor
query and not subsequence query which is the main focus of
our work.

To the best of our knowledge, there does not exist any
multi-dimensional search technique which (1) can perform
search on any arbitrarily chosen subset of variables, and (2)
take into consideration time delay between the variables in
the query, both important to our particular application.

3. BACKGROUND

3.1 Notations
Let D be a database consisting of multivariate time series

datasets MT1, . . .MT∣D∣ where eachMTi can be represented

as a matrix of row sequences MTi =
[

y
(1,⋅)
i y

(2,⋅)
i . . .

]T

whose

rows correspond to time instances and columns correspond

to attributes or features. Each y
(j,⋅)
i =

[

y
(j,1)
i . . . y

(j,n)
i

]

, as-

suming there are n features v1, . . . , vn consistent across all

the MT ’s. It is also assumed that each y
(j,ℓ)
i ∈ ℝ or {0, 1}.

For consistency, the set of values across the ℓ-th column

y
(⋅,ℓ)
i =

[

y
(1,ℓ)
i y

(2,ℓ)
i . . .

]

is referred to as the ℓ-th UTS in

the i-th MTS. Whenever appropriate we will drop the index
i. Let y(⋅,ℓ) and x(⋅,ℓ) be two UTS sequences. Then,

∙ L
(

y(⋅,ℓ)
)

denotes the length of y(⋅,ℓ)

∙ y([a:b],j) denotes the subsequence that includes entries
in positions a through b

∙ d(y(⋅,ℓ), x(⋅,ℓ)) denotes the distance between two uni-
variate sequences (when they are of the same length).

Let w be the size of a sliding window containing w consec-
utive samples of a UTS. We now define �-nearest neighbors
(�-NN).



Definition 3.1 (�-NN). Given a user defined thresh-
old �, and a univariate sequence q of length w, (which we
call the query), �-NN returns all the subsequences s of length
w from the dataset, such that, d(s, q) < �.

3.2 Problem definition
Before we present the formal problem definition, we present

the definition of a query.

Definition 3.2 (Multi-variate Query). A multivari-
ate query Q consists of the following components:

∙ Values specified for a subset of attributes Vq = {v1, v3, v4, . . . , }

i.e. q[t1:t2],1, q[t3:t4],3, q[t5:t6],4, . . . , and

∙ time delays �1, �2, �3, . . . such that t3−t2 = �1, t5−t4 =
�2, and so on.

Definition 3.3 (Multi-variate Search (MTS)). Given
a database of multi-variate time series D, a query Q and a
user-defined threshold �, a MTS returns all the MT ’s such
that for all j ∈ Vq,

∙ d(y
[a:b],j
i , q[tj :tk],j) < �, b− a = tk − tj

∙ the variables are delayed by �1, �2, �3, . . .

4. UNIVARIATE TIME SERIES SEARCH
When a query Q defined in Section 3.2 contains only one

variable, it becomes a univariate time series search. For
clarity and ease of exposition, we will start with solving this
problem. We assume there is a minimal length for all queries
and it is set to w. This value depends on different applica-
tions as we discuss in the experimental section. We first
discuss the List Based Search (LBS) algorithm in details
and then discuss the salient differences with our R∗-tree al-
gorithm (RBS).

4.1 Algorithm approach: basic idea
For a univariate query qv on the v-th variable, the brute-

force method to find all its �-NN is to compare it with all
subsequences of length L(qv) for every offset of time series

y
(.,v)
i (∀i = 1, 2, . . . , ∣D∣), which is time consuming and im-

practical.
A classic data mining solution to speed up this process is

to find a lower bound of distance measure and use this bound
to prune unpromising candidates. This lower bound should
be: (1) cheaper to compute than computing the distances
between all subsequences, otherwise we would spend more
time; (2) tight with respect to the original distance measure,
otherwise we cannot prune enough.

One such technique for deriving a lower bound, also used
in the literature [14][10], is by using a reference subsequence
and the triangle inequality. We will show later that our
framework to find the �-NN even does not require
calculating the lower bound one by one. Figure 2 il-
lustrates the basic idea of the pruning. First, we randomly
pick a subsequence R (of the same length as w), and calcu-
late its distance to all the remaining subsequences. Then,
we order them by their distance to R. S1 and S2 are only
shown for clarity in the figure. Note that these two steps
are done before the query qv comes and only need to be
done once. When a query qv comes, we calculate the dis-
tance d(qv, R). All candidates whose distances are not in

the range [d(qv, R)−�, d(qv, R)+�] (e.g. S2 in Figure 2) can
be pruned. This is due to the triangular inequality:

d(qv, S2) ≥ ∣d(q
v, R)− d(S2, R)∣ > �.

Finally, for all candidates in this range (e.g. S1 in Figure 2),
we do an exact calculation to remove the false alarms. In
order to reduce the number of false alarms, we use multiple
reference points to build several indices and then join the
candidates from these indices to get the final set of candi-
dates. We discuss this in details in the next section.

S2QS1R

- � + �

Figure 2: Candidate subsequences (S1, S2) ordered
by their distance to a reference subsequence R.
When a query Q comes, a range based on d(Q,R)
can be used to prune candidates.

4.2 Algorithm details
We first discuss the index building algorithm followed by

the search algorithm. Alg. 1 presents the pseudo-code of
LBS build index. The inputs are UTS Database and length
of the sliding window w. The output is a set of sorted
lists. In the first step, we select r subsequences R1, . . . , Rr of
size w from UTS Database which we call reference points.
Then, for each overlapping subsequence S of length w from
the i-th UTS in UTS Database, we find the Euclidean dis-
tance of S from the ri-th reference point Rri. We store
these distances (as the key) along with the offset and UTS-
id which generated this distance into a list called Indexri.
Thus at the end of this process, we build ∣r∣ number of
lists Index1, . . . , Indexr, one corresponding to each refer-
ence point. In the next step we simply sort these lists and
store them in the disks either as one long list or in parts,
depending on the size of the index.

Algorithm 1: Build Index for List Based Search (LBS)

Input: UTS Database, w
Output: Sorted lists Index1, . . . , Indexr

Initialization: Select r reference points R1, . . . , Rr;
begin

for ri = 1 to r do
for uts i in UTS Database do

for j = 1 to (L(uts i) - w + 1) do
Dist = d(Rri, uts i(j, j + w − 1));
New Entry = [uts i, j,Dist];
Indexri← Indexri

∪

New Entry;

Sort and save to disk Indexri;

end

When a query Q of length w is provided, we use the search
code shown in Alg. 2. The input in this case are the query
Q, the UTS Database, the set of indices, the set of refer-
ence points, w, and �. The output of �-NN search returns all



subsequences of length w such that the distance of this with
Q is less than �. First, for each reference point Ri, we find
the distance Disti of the query from it. Then we collect
those candidates from Indexi whose key (distance) lies in
the range Disti± �. We call this step the first level of prun-
ing since we apply the triangle inequality directly here. Still
many false alarms may be generated because the triangle
inequality is essentially a one-sided test i.e. if the distance
of any subsequence to any reference point is greater than �,
we can discard the former, but not otherwise, irrespective of
the actual distance of the subsequence to the query. In the
second level of pruning, we intersect the candidates found
similarly using different reference points. This reduces the
number of false alarms dramatically as we show in out ex-
periments. Once a compact candidate set is found, we do
a disk access to retrieve those candidates and remove false
alarms. Note that we obtain a different candidate set if we
use a different reference sequences. The size of candidate
set is crucial to the running time, since we have to access
the disk and perform the exact calculation to remove false
alarms and return all matching candidates.

Algorithm 2: LBS �-NN Search on UTS

Input: UTS Dataset, Q, Index1, . . . , Indexr,
R1, . . . , Rr, w, �

Output: Set of � nearest neighbors �-NN of Q
begin

�-NN ← ∅;
for ri = 1 to r do

Distri = d(Q,Rri);
Candri = {x ∈ Indexri∣Distri − � ≤ x ≤
Distri + �};

Candidates← {
∩r

ri=1 Candri};
for c ∈ Candidates do

Fetch c from disk ; // Actual disk access

Dist = d(c,Q);
if Dist ≤ � then �-NN ← �-NN

∪

{c};

end

We now discuss now LBS handles queries longer than w
in the following two cases:

L(Q) = nw (n > 1) : We first divideQ into n disjoint sub-
sequences of length w, and search the indices set for
each of them with the threshold �/

√

(n). Finally we
do an exact calculation of full length candidates (over
all n parts) to remove false alarms. The correctness of
this approach relies on the following theorem [2].

Theorem 4.1. If d(Q,S) < �, then for at least one
pair of disjoint sequences Qi and Si of length w, we
have d(Qi, Si) < �/

√

(n).

L(Q) = nw + v (0 < v < w) : Since we have solved the
previous case, this one becomes easy. We can ignore
the last subsequence of length v while searching in the
index, and only consider it when we perform the exact
calculation.

4.3 R∗-tree search algorithm (RBS)
Our detailed experimental results demonstrate that the

proposed LBS algorithm offers a high prune rate even with

a moderate number of reference points (e.g. 3). However
the index, being a sorted list of time series points, is often
huge (of the order of the number of points in the time se-
ries). This increases the storage costs. Our R∗-based search
algorithm solves this problem by avoiding the need to store
and index each point separately. Once a set of distances
to a reference point are computed as before, we store them
together into a Minimum Bounding Rectangle (MBR) and
index the minimum and maximum bounds of this rectangle
using a spatial indexing scheme such as R∗-tree. We have
used two packing methods proposed in [2]: (1) the I-fixed
method which combines a fixed number of points, and (2)
the I-adaptive method which optimizes a cost function to
find the optimal number of points per MBR. These result-
ing trees using multiple reference points become the Index ’s
for the RBS algorithm. When searching on Q, we perform
the same transformation as LBS and search for Disti± � in
the R∗-tree. This returns a set of candidate MBRs (for each
tree) which then needs to be joined to reduce false positives.
Each element from the joined candidate set is retrieved from
the disk to remove the false alarms. We do not present the
pseudo-code here due to shortage of space.

5. MULTIVARIATE TIME SERIES SEARCH

Algorithm 3: MTS Build Index using LBS

Input: MTS Database(D), w
Output: Index for MTS search

Initialization: Select R
(ℓ)
1 , . . . , R

(ℓ)
r for uts ℓ;

begin
Convert entire MTS Database into uts1, . . . , utsd;
for f = 1 to d do // all features

for ri = 1 to r do // all ref pts

for uts i=1 to ∣D∣ do // across all files

for j = 1 to (L(uts i) - w + 1) do
Dist = d(Rri, uts i(j, j + w − 1));
New Entry = [uts i, j, Dist];

Index
(f)
ri ← Index

(f)
ri

∪

New Entry;

Sort and save to disk Index
(f)
ri ;

end

Algorithm 4: MTS �-NN Search using LBS

Input: D, Q, Index, R1, . . . , Rr, w, [�1, . . . ,]
Output: Set of � nearest neighbors �-NN of Q
begin

�-NN ← ∅;
Cand1← FindCandidates(Q(1));

Cand2← FindCandidates(Q(2));
Cand12← JoinCand(Cand1, Cand2, �1);
for c ∈ Cand12 do

Fetch c from disk ; // Actual disk access

Dist1 = d(c(1), Q(1)), Dist2 = d(c(2), Q(2));
if Dist1 ≤ �1 and Dist2 ≤ �2 then

CandA← CandA
∪

{c};

�-NN ← �-NN
∪

{disk-based search of remaining
variables in Q using CandA and �2, . . . };

end



6. ANALYSIS OF ALGORITHMS
State the diff between this method and FRM (FRM uses

DFT for 6-d indexing while we use in 2-d..so it is cheaper
and scales well)

We combine ref pt with R-tree for better performance
and accuracy...also increasing the no of ref pts increases the
prune rate which they cannot do

7. EXPERIMENTS
To validate the performance of the LBS and RBS algo-

rithms, we ran a variety of tests on different datasets, both
univariate and multivariate. All experiments were run on a
64-bit 2.33 GHz quad core dell precision 690 desktop running
red hat enterprise linux version 5.4 having 2GB of physical
memory. The algorithms were implemented in Matlab and
run on version R2007b. In all our experiments we have mea-
sured the following four quantities:

∙ ! = set of nearest neighbors within radius � of query
Q, derived from the actual database

∙ C = candidate set returned by FRM , LBS and RBS

∙ L = length (# samples) of any UTS

∙ T = total number of sliding window sequences of any
UTS

Using these, we derive and report the following quantities
as done in the literature [2][8]:

∙ Selectivity S = ∣!∣
T

∙ Prune rate � = 1− ∣C∣
T

Intuitively, selectivity refers to the true fraction of nearest
neighbors for the chosen query Q and threshold �, while
prune rate � refers to the fraction of candidates that can
be ignored as having distance greater than � even without
accessing the database. Note that for an MTS of size ∣D∣
(files), the following two relations hold between any UTS of
total length L (over all MTSs) and total number of sliding
window sequences T :

L =
n
∑

i=1

Li, T =

∣D∣
∑

i=1

(Li − w + 1) = L− ∣D∣(w − 1)

where Li is the length of any UTS in the i-th MTS.
In order to keep the comparison independent of the imple-

mentation across different platforms, we have not measured
the actual running time of these algorithms. Note that all
of these algorithms guarantee no false dismissals (but false
alerts). Thus, actual running time is going to be propor-
tional to the number of candidates returned, since each of
these candidates need to be retrieved from the actual time
series databases, and checked if their actual distance to the
query (Q) is less than �.

We first present results on univariate datasets, followed
by results on multivariate datasets.

7.1 Univariate dataset experiments

Datasets Length (time points)

Stock market data 329,112
Random walk data 500,000

Periodic data 1,000,000

Table 1: Description of the univariate datasets used
for comparing the performance of FRM, LBS and
RBS.

7.1.1 Dataset description and experimental setup
We have used three univariate datasets for testing our al-

gorithms shown in Table 1. These datasets have been used in
the literature ([2] and [8]) for finding subsequences from time
series databases. Figure 3 shows a plot of these datasets.

The first dataset is the stock market dataset having 329,112
entries2. The second dataset is the random walk dataset
generated synthetically. The first value is set to 1.5 and the
subsequent values are obtained by adding a random value
in the range (-0.001, 0.001) to the previous one. The last
dataset is a pseudo periodic time series dataset3 in which
each value is between -0.5 and +0.5. This dataset appears
highly periodic, but never repeats itself.

For all the univariate experiments, we have used the length
of sliding window w=512 and length of query sequences the
same as the length of sliding window. We perform experi-
ments with several selectivities ranging from 10−6 ∼ 10−1

[2]. The desired selectivities were achieved by modifying the
threshold � of each query. We tested three algorithms on
these datasets: (1) the FRM algorithm using the adaptive
MBR approach, details of which can be found in [2], (2)
list based method (LBS), and (3) the R∗-tree based method
(RBS), the last two introduced in this paper. The number
of reference points used is given as an argument for LBS and
RBS e.g. RBS(5). To avoid the effects of noise and gen-
erate statistically significant results, we experimented with
ten randomly generated queries each having length of w.
Unless otherwise stated, we have used three to five reference
points for the LBS and RBS methods. In the next section
we present the thresholds, selectivities, and results on these
three datasets.

7.1.2 Results
We summarize the results of FRM, LBS and RBS in Ta-

ble 2 for the stock dataset. We varied � from 0.01 to 1.0 to
generate selectivities in the range of 10−6 ∼ 10−2. The table
shows the prune rates and the number of nearest neighbors
found in the datasets for each of these selectivities averaged
over ten queries. Also shown in this table are the number
of MBRs and average points per MBR for the RBS(5) algo-
rithm. We have used the I-adaptive MBR creation heuristic
as discussed in [2], in which more points can be packed in a
single MBR with larger �, thereby reducing the total num-
ber of MBRs. For all the thresholds, we see that the prune
rate of LBS(3) is the best for all the thresholds. Also, the
prune rates of RBS(5) tend to be very close to the FRM
algorithm.

We have similar results for the random walk dataset in
Table 3. In this case also, the selectivity ranges from 10−6

2Available from ftp://ftp.santafe.edu/
3Available from http://archive.ics.uci.edu/ml/
datasets/Pseudo+Periodic+Synthetic+Time+Series
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Figure 3: Plots of univariate time series datasets used in our experiments.

�
Prune rate (�)

#MBR Pts/MBR ! S
FRM LBS(3) RBS(3) RBS(5)

0.01 0.9762 ± 0.02 0.9995 ± 0.001 0.994 ± 0.001 0.9948 ± 0.002 2136 154 1 3.04E-06
0.1 0.9607 ± 0.03 0.9901 ± 0.007 0.9727 ± 0.005 0.9753 ± 0.015 2732 601 213 6.52E-04
0.5 0.92 ± 0.059 0.9508 ± 0.036 0.9195 ± 0.016 0.9213 ± 0.051 1253 1311 14094 4.29E-02
0.75 0.8969 ± 0.075 0.9246 ± 0.055 0.8957 ± 0.021 0.8974 ± 0.066 1007 1631 23510 7.16E-02
1.0 0.871 ± 0.083 0.9017 ± 0.067 0.8683 ± 0.026 0.8689 ± 0.084 861 1908 31433 9.57E-02

Table 2: Results of LBS and RBS on stock data (in bold). Shown are the mean and standard deviation of �
over ten queries. In all cases, LBS shows the highest prune rate while the prune rates of RBS are comparable
to FRM . Note that RBS does not require analysis in the DFT domain which cuts down index building time.
Also RBS can produce better prune rates by increasing the number of reference points.

to 10−2. As before, LBS(3) performs the best, for all the
thresholds while RBS(5) performs better than FRM as the
threshold is increased. For the RBS algorithm, we note that
prune rate for threshold 0.01 is very close to the maximum
value of 1.0 and differs from the FRM prune rate only in
the third place of decimal.

The results on the periodic dataset present an interesting
phenomenon. As before, the snapshots of the results are
presented in Table 4. The LBS approach has the highest
prune rate for all the thresholds. However, the RBS(5) tech-
nique in this case performs poorly compared to the FRM
technique. This can be explained noting that FRM builds
MBR’s in the DCT domain while RBS directly works in
the input space. It is well-known that for periodic signals,
DCT/DFT can extract most of the energy in the first few
coefficients. Thus, the MBR’s constructed by the FRM
algorithm using only the first three DFT coefficients are
highly condensed and informative. On the other hand, as
pointed out by Moon et al. [8], adjacent values of the pe-
riodic dataset are relatively large. Hence adjacent windows
have large distance to the reference points. When these are
combined to form MBR, many windows far apart can be
included in the same MBR, thereby increasing the number
of candidates and false alarms. Note that the number of
candidates can be reduced by increasing the number of ref-
erence points. Using around eight reference points, RBS(8)
has lesser number of candidates compared to FRM for this
dataset. However, for fairness of comparison, we have used
three reference points for both LBS and RBS when exper-
imenting with the multivariate datasets.

To sum up, both the LBS algorithm and the RBS al-
gorithms offer an excellent prune rate for univariate time
series search. LBS offers the best prune rate of all the three
algorithms compared here, but as discussed before, suffers
from large storage cost — O(n), where n is the number

of elements in the timeseries. For a large n, this may be
very expensive. On the other hand, RBS uses MBR’s to
group similar points and hence can reduce the storage cost
dramatically. For example, the number of MBR’s for the
periodic dataset having 1 million data points is only about
6000, thereby reducing the search space by several orders of
magnitude. However, since the unit of search is an MBR
(containing several points) and not individual points, all the
points in the selected MBR’s need to be visited. Hence,
the prune rate of RBS is lower than LBS. Nevertheless,
both these algorithms have a better prune rate compared to
FRM .

7.2 Multivariate dataset experiments

7.2.1 Dataset description
We have used two large multivariate datasets for demon-

strating the search capabilities of LBS and RBS in the
multivariate domain. These datasets that are relevant to
the NASA Integrated Vehicle Health Management (IVHM)
project. To the best of our knowledge, these multivariate
datasets are by far much bigger compared to the datasets
used in the literature for multi-dimensional time series search.
The datasets are described next.

C-MAPSS dataset: The first dataset is simulated com-
mercial aircraft engine data. This data was generated us-
ing the Commercial Modular Aero-Propulsion System Sim-
ulation (C-MAPSS) [3]. C-MAPSS is a high-fidelity sys-
tem level engine simulator designed to simulate nominal and
fault engine degradation over a series of flights. The dataset
contains 6875 full flight recordings sampled at 1 Hz with
29 engine and flight condition parameters recorded over a
90 minute flight that includes ascent to cruise at 35000 feet
and descent back to sea level. This dataset has over 32 mil-



�
Prune rate (�)

#MBR Pts/MBR ! S
FRM LBS(3) RBS(3) RBS(5)

0.01 0.9913 ± 0.008 0.9992 ± 0.001 0.9915 ± 0.007 0.9928 ± 0.007 14920 167 1 2.00E-06
0.05 0.9772 ± 0.021 0.9931 ± 0.007 0.9737 ± 0.016 0.9765 ± 0.01 5258 475 31 6.19E-05
0.1 0.9603 ± 0.028 0.9832 ± 0.012 0.956 ± 0.024 0.9613 ± 0.027 3575 699 539 1.07E-03
0.2 0.934 ± 0.042 0.9623 ± 0.024 0.9151 ± 0.04 0.9323 ± 0.041 2401 1040 9756 1.95E-02
0.4 0.8919 ± 0.066 0.8978 ± 0.057 0.8135 ± 0.068 0.9054 ± 0.068 1670 1496 37326 7.47E-02

Table 3: Results of LBS and RBS on randomwalk data (in bold). Shown are the mean and standard deviation
of � over ten queries. In all cases, LBS shows the highest prune rate while the prune rates of RBS are
comparable to FRM . Note that RBS does not require analysis in the DFT domain which cuts down index
building time. Also RBS can produce better prune rates by increasing the number of reference points.

�
Prune rate (�)

#MBR Pts/MBR ! S
FRM LBS(3) RBS(3) RBS(5)

0.05 0.9749 ± 0.012 0.9983 ± 0.001 0.889 ± 0.024 0.9119 ± 0.017 6441 775 56 5.57E-05
0.1 0.9599 ± 0.017 0.9928 ± 0.003 0.8639 ± 0.032 0.8918 ± 0.019 5080 984 347 3.47E-04
0.2 0.928 ± 0.025 0.9772 ± 0.009 0.8141 ± 0.048 0.8506 ± 0.029 4098 1220 4131 4.14E-03
0.6 0.8068 ± 0.046 0.8956 ± 0.023 0.6694 ± 0.106 0.7266 ± 0.084 2971 1682 60191 6.02E-02

Table 4: Results of LBS and RBS on periodic data (in bold). Shown are the mean and standard deviation of �
over ten queries. In all cases, LBS shows the highest prune rate while the prune rates of RBS are comparable
to FRM . Note that RBS does not require analysis in the DFT domain which cuts down index building time.
Also RBS can produce better prune rates by increasing the number of reference points.

lion tuples. Since some of the variables do not show much
variability, we have tested our algorithm on a subset of 16
variables only. Table 5 presents the salient features of this
dataset. Interested readers can download this dataset from:
Dashlink4.

US Regional carrier dataset (CarrierX): The second
dataset is a real life commercial aviation dataset of a US re-
gional carrier consisting of 3573 flights. Each flight contains
46 variables. Domain experts identified a subset of 9 vari-
ables combination of which are critical to assess the health
of such aircraft systems. The entire dataset contains more
than 22 million tuples.

For all the multivariate experiments, we have used sliding
window size and length of query equal to 256. For LBS
we have used three reference points, while for RBS we have
used five reference points for building the indices. These
choices are based on the prune rates of these algorithms on
univariate datasets.

Datasets # MTS ∣D∣ Features L

CMAPSS 6875 16 32,640,967
CarrierX 3573 9 22,207,852

Table 5: Description of the multivariate datasets
used for demonstrating performance of LBS and
RBS.

7.2.2 Results
Table 6 presents three sets of thresholds for each of the

variables of the CMAPSS and CarrierX dataset. The choice

4https://dashlink.arc.nasa.gov/data/
c-mapss-aircraft-engine-simulator-data/

Data set Variable Number
Thresholds

�1 �2 �3

CMAPSS

2 100 300 500
4 1 5 10
5 0.5 1 2
6 50 100 200
8 0.02 0.04 2
15 0.1 0.5 1
18 0.1 1 5
20 0.01 0.02 0.03
22 0.2 0.5 5
23 0.3 0.5 0.8
24 5 20 40
25 0.2 0.5 1
26 0.0001 0.0005 0.001
27 2 5 10
28 5 10 20
29 0.5 1 2

CarrierX

6 10 15 20
7 10 30 50
8 1500 2500 3500
23 2 4 6
27 100 500 1000
28 1000 1500 4000
29 100 300 500
30 10 50 100
38 2 3 3.5

Table 6: Thresholds for the variables of CMAPSS
and CarrierX dataset.



of these thresholds is such that the selectivities of each vari-
able independently ranges from 10−6 ∼ 10−2.

The performance results of LBS and RBS on CMAPSS
and CarrierX are presented in Table 7. The first column
denotes the dataset. The second column refers to the five
different queries we have run along with the variables for
each query. We have run each query with three different
thresholds (hence the three rows for each query) presented
in the table in increasing order. For example, using Ta-
ble 6, it can be concluded that �1 = (0.2, 2, 1) for the first
query of CMAPSS. The next three columns show the num-
ber of candidates generated for the first variable (C1), the
second variable (C2), and after joining these two candidate
sets C12 both for LBS and RBS. The join on the candidate
set is performed based on two criterion: (1) the time delay
between any two candidates must conform to the ones spec-
ified in the query, and (2) they should be generated from the
same MTS. Generating C1 and C2 is the first level of filtering
while generating C12 refers to the second level of filtering.
Column Ce is the actual number of these candidates which
are found to be less than the threshold after doing the ex-
act calculation. So smaller the size of C12, the lesser the
number of actual disk elements that need to be accessed. !
column refers to the actual number of nearest neighbors of
the query after taking all the variables and time delays into
consideration. The last two columns show the prune rate
� = C12/T and selectivity S = !/T respectively.

These results show that for the two large multivariate
datasets, querying with different queries and thresholds, the
prune rates are very high ∼ 99% implying that only less
than 1% of the candidates need to be retrieved from the
database for exact calculation. Also, we notice that the sizes
of the candidate sets are smaller for LBS than RBS for all
the queries thereby raising lesser number of false positives.
However, the storage requirements of LBS is non-trivial.
For example, for CarrierX, we need to index approximately
22 million distances using each reference point per UTS. The
total storage requirement for the index will be

22, 000, 000 × (4 + 4 + 4)/(1024 × 1024) ≈ 250 MBytes,

for each UTS, assuming we store {distance, MTS id, Off-
set} for each window sequence as a float of (4+4+4) bytes.
For RBS, let’s assume that (1) we have M MBR’s on av-
erage for each reference point, and (2) we store {min MBR,
max MBR, MTS id, Offset} for each MBR. In our experi-
ments we have M = 5174619. Then the total storage re-
quirements (assuming 4 bytes for each) will be:

5, 174, 619× (4 + 4 + 4 + 4)/(1024 × 1024) ≈ 78 MBytes.

Hence the storage requirements of RBS is much less than
LBS. From these results we conclude that:

∙ query execution time of LBS is expected to be much
faster than RBS due to higher prune rate

∙ RBS has relatively higher rate of false positives com-
pared to LBS

∙ the index storage requirements of LBS may be signif-
icantly higher compared to RBS

8. CONCLUSION
In this paper we present two algorithms LBS andRBS for

finding multivariate subsequences from large MTS datasets.

Both these algorithms guarantee no false dismissals. To
demonstrate the prune rate, first we have run experiments
on several UTS datasets used in the literature for subse-
quence search. The results show that LBS offers the best
prune rate of all the three algorithms compared in this pa-
per. RBS has a lower prune rate due to the search unit being
an MBRs and not individual points, but builds smaller in-
dices. Experiments on two commercial aviation related MTS
datasets each having millions of tuples show that both these
algorithms offer excellent prune rates (greater than 0.9)>
The latter implies that we need to retrieve only a small per-
centage (< 1%) of all the candidates for post processing in
order to eliminate false positives. To the best of our knowl-
edge, this is the first algorithm which allows extremely fast
and flexible pattern/subsequence search in massive multi-
variate time series datasets on any subset of variables with
time delays between them. Also the CMAPSS and Carri-
erX datasets that we have tested are the much bigger than
any of the MTS datasets used in the literature for multi-
variate subsequence search. As a future work, we plan to
develop a parallel and fully decentralized implementation of
this MTS search technique on a Map-Reduce framework for
better scalability.
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