
  

  
Abstract—Presented here is a Predictor-Based Model 

Reference Adaptive Control (PMRAC) architecture for a 
generic transport aircraft. At its core, this architecture features 
a three-axis, non-linear, dynamic-inversion controller. 
Command inputs for this baseline controller are provided by 
pilot roll-rate, pitch-rate, and sideslip commands. This paper 
will first thoroughly present the baseline controller followed by 
a description of the PMRAC adaptive augmentation to this 
control system.  Results are presented via a full-scale, non-
linear simulation of NASA’s Generic Transport Model (GTM).  

I. INTRODUCTION 
he Integrated Resilient Aircraft Control project (IRAC)  
is a part of the NASA Aviation Safety program. A key 

focus of this project is to investigate adaptive control 
systems as a risk-mitigating technology for off-nominal 
conditions. This paper, based upon the research presented in 
[5], proposes a PMRAC adaptive control architecture as just 
such a candidate technology.  

To begin, section II presents the baseline control 
architecture and justifies the design selection. Section III 
then presents the PMRAC adaptive augmentation to this 
system. Here some of the fundamental stability proofs for 
the architecture are shown, but the interested reader is 
referred to specific publications for further detail. Section IV 
presents results from a full non-linear simulation of the 
control system, both with, and without the PMRAC adaptive 
augmentation. Finally, section V presents a brief summation 
of this paper’s contribution to the community.  
 The primary intentions of this paper are two fold: to 
present the PMRAC architecture for a complete nonlinear 
dynamic inversion baseline controller (a novel contribution 
to the community in as far as the authors are aware) and to 
demonstrate the PMRAC architecture on a non-linear flight 
simulation. Future work will be aimed at more thoroughly 
assessing the strengths and weaknesses of this control 
strategy.   
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II. BASELINE CONTROLLER: NONLINEAR DYNAMIC 
INVERSION 

A. Control Selection Justification 

The baseline controller for this work is a full non-linear 
dynamic inversion controller based in large part on [1], [2], 
and [3]. This control architecture is chosen for several key 
reasons. First, this control approach can be effectively 
implemented as evinced by the recent selection of a dynamic 
inversion controller for the F-35 aircraft. Second, and more 
importantly, a dynamic inversion controller offers a cost and 
time effective way to develop a control system; with 
appropriate modeling, a full-flight control system can be 
quickly and efficiently developed for research studies, as 
contrasted with a more time intensive traditional gain-
scheduled controller. This ultimately facilitates the rapid 
evaluation and testing of multiple adaptive control systems 
over a large range of flight conditions.    

B. Control Architecture 
The general (and well known) rigid body dynamics for an 

aircraft are presented below: 
 
 

€ 

τ = I ˙ ω +ω × Iω . (1) 
 
Here, ω is ∈ ℜ3X1 and represents a vector of the roll (p), 
pitch (q), and yaw (r) rates. By modeling the torques on the 
aircraft using traditional aerodynamic stability derivatives 
(including p, q, and r derivatives), (1) may be decomposed 
into the following convenient form: 
 
 

€ 

˙ ω = A(t)ω +G(t)z +B(t)u . (2) 
 
For this decomposition, the matrices A (∈ ℜ3X3), G (∈ 
ℜ3X7), and B (∈ ℜ3X3) are time-varying (from this point 
forward the time dependence of these variables will not be 
expressly shown). Moreover, the aircraft’s control allocation 
tables are incorporated into (1) such that the control vector u 
is ∈ ℜ3X1 and represents the three, non-dimensional lateral, 
longitudinal, and directional control signals (limited from -1 
to 1). The vector z represents a non-linear combination of ω, 
specifically pq, qr, pr, (p2- q2), (r2- p2), and (q2 - r2), as well 
as a bias term (which accounts for the dependence of τ on 
slowly changing variables, such as angle of attack and side-
slip). 
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A non-linear dynamic inversion control law is then: 
 

 

€ 

u = ˆ B (t)−1( ˙ ω d −
ˆ A (t)ω − ˆ G (t)z) . (3) 

 
For clarity, over-hats have been used to denote that 
parameters in the dynamic inversion control law are 
estimated; look-up tables provide these matrices in real-time 
operation. The reader should be careful not to confuse the 
dynamic inversion parameters with real-time, adaptively 
estimated parameters that will be introduced in later 
sections. Finally, the subscript d denotes a desired value. 
 To generate the desired values in (3), each of the three 
directional axes is treated independently. For the 
longitudinal and lateral axes, the pilot’s stick commands are 
interpreted as pitch and roll rate commands. These 
commands are then filtered to produce a tracking signal for a 
linear PI control law. The control signal is further 
augmented by a feedforward term from the filter states. The 
resulting control signals are the desired pitch and roll rates 
for the dynamic inversion in (3).  

For the directional axis, the pilot’s pedal inputs are not 
interpreted directly as yaw rate commands, but instead as 
sideslip commands. As a result, an additional dynamic 
inversion is employed to generate the necessary yaw rate 
command; this is similar to the work done in [4] in which a 
two stage slow and fast dynamic inversion architecture was 
proposed (in this work the fast dynamic inversion is similar 
to the dynamic inversion shown in (3)). More precisely, the 
pilot’s sideslip command is filtered to produce a tracking 
command for a proportional controller. This proportional 
control signal is augmented with a feedforward term from 
the filter states to generate a desired sideslip command. 
From this, a dynamic inversion is performed to generate a 
yaw rate command for the fast dynamic inversion in (3). The 
desired yaw rate command is then generated identically to 
the lateral and longitudinal axes, i.e. the desired yaw rate is 
generated from a linear PI controller augmented with a 
feedforward term.  

For the slow dynamic inversion, the following well-
known relationship is used as a starting point for derivation: 

 

 

€ 

˙ β =
1
mV

[Dsin(β) +Y cos(β)− XT cos(α )sin(β) +

mg(cosα sin β sinθ + cosβ sinφ cosθ −
sinα sin β cosφ cosθ + psinα − r cosα )] .

 (4) 

 
The above expression is simplified to the more tractable 
relationship shown in (5).  
 
 

€ 

˙ β ≈ p sin(α ) − r cos(α ) + (g /Vt ) cos(θ ) sin(φ ) . (5) 
 
The yaw rate command is then determined from (5), as 
shown in (6). 
 
 

€ 

r
com

= −( ˙ β 
d
− p sin(α ) − (g /V

t
) cos(θ ) sin(φ )) / cos(α )  (6) 

 
The complete architecture is presented in both Fig. 1 and 

Fig. 2.  Specifically, Fig. 1 illustrates the outer loop control 
architecture while Fig. 2 shows the fast dynamic inversion 
using all three of the pitch, roll, and yaw rate commands. It 
is worth noting that the desired angular accelerations for this 
architecture (as diagramed in Fig. 2) are given below in (7).  
 

 

€ 

˙ ω d = K p (ω f −ω ) +KI (ω f −ω )dτ
0

t

∫ + ˙ ω f  (7) 

Here, the output of the command filter is expressly 
represented with a subscript f. Moreover, it should be noted 
that both Kp and KI are constant diagonal, 3X3 matrices. 
 As a final note on the general architecture, the pilot’s 
commanded pitch rate is augmented by the level turn-
compensation term 

€ 

gsin 2 φ /V cosφ . Qualitatively, this helps 
keep the nose of the aircraft up during bank and roll 
maneuvers.  

III. PMRAC AUGMENTATION 
The PMRAC architecture adjusts a typical MRAC 

architecture by adding an additional, predictive training 
error. The following section will develop the traditional 
MRAC reference error as well as the PMRAC prediction 
error. It should be noted that the PMRAC augmentation is 
only applied to the inner most loop of this controller, i.e. it is 
applied to the fast dynamic inversion illustrated in Fig. 2.  

A. Preliminaries 
To begin defining the PMRAC adaptive augmentation, we 

manipulate the general system model of (2) by incorporating 
the true matrix values A, B, and G with their controller 
estimates.  

   
 

€ 

˙ ω = ˆ A ω + ˆ G z + ˆ B u + ΔAω + ΔGz + ΔBu  (8) 

 
Fig. 2.  Presented here is the inner-loop fast dynamics controller.  The 
D.I. block contains the equation presented in (3). 
 

 
Fig. 1.  High-level base-line control architecture. Here the 
dependency of the sideslip inversion on additional states (α, θ, ϕ, p, 
and Vt) is not illustrated.  
 



  

 
In (8), Δ denotes the difference between the true matrices 
and the estimated values used by the controller. To further 
develop the controller, the result in (8) is transformed into 
the more familiar adaptive controller A and B matrix form, 
as presented in (9). 
 
 

€ 

˙ ω = ˆ A ω + ˆ B (u + f ) (9) 
 
The term f is here introduced for convenience and comprises 
the model uncertainty g. It should be further noted that 

€ 

ˆ B  is 
assumed for a nominal aircraft and is thus taken as full-rank 
throughout the entirety of this paper. Comparing (8) and (9), 
the term f is then defined as  
 
 

€ 

f = ˆ B −1g + ˆ B −1 ˆ G z , (10) 
where 
 
 

€ 

g = (ΔAω +ΔBu +ΔGz). (11) 
 
In much of the adaptive control literature an additional term 
is added to (10) to approximate non-parametric uncertainty. 
This term is significant from a stability proof and analysis 
perspective, but is ignored here for the purposes of 
developing the correct control laws and PMRAC predictor 
system.  
 To facilitate further development, the command filter in 
Fig. 2 is represented in state space form as in (12).  
 
 

€ 

˙ ω f = Amω f +Bmr  (12) 
 
Here the reference input r is provided from the pilot 
commanded roll and pitch rates and the outer-loop side-slip 
controller. The filter is assumed to be a first order filter, as 
illustrated in Fig. 2. 

B. PMRAC Predictor System Development 
For the PMRAC development presented here, the 

predictor system is defined using the following state vector: 
 

 

€ 

x = ω f dτ
0

t

∫
 

 
 

 

 
 

T

ω f
T ωdτ

0

t

∫
 

 
 

 

 
 

T

ωT
 

 

 
 

 

 

 
 

T

. (13) 

 
Combining (3), (7), (12), and (13) as well as introducing a 
currently undefined adaptive control term, the control law is 
rewritten as 
 

€ 

u = Kx
T x + Kr

T r −Kz
T z − ˆ B −1uad , (14) 

where 
 

€ 

Kx
T = ˆ B −1KI

ˆ B −1(K p + Am ) − ˆ B −1KI − ˆ B −1(K p + ˆ A )[ ] , (15) 

 
 

€ 

Kr
T = ˆ B −1Bm , (16) 

 

and 
 

€ 

Kz
T = ˆ B −1 ˆ G . (17) 

 
It should be observed that x ∈ ℜ12X1, Kx ∈ ℜ12X3, Kr ∈ ℜ3X3, 
Kz ∈ ℜ7X3, uad ∈ ℜ3X1 , and u ∈ ℜ3X1. 
 The system in (9), given the above definitions, is now 
easily written as   
 
 

€ 

˙ x = A x + B mr + B [ K x
T x + K r

T r + ˆ B −1 (g− uad )]  (18) 
 
In (18), the following definitions have been introduced: 
 

 

€ 

A =

0 I 0 0
0 Am 0 0
0 0 0 I
0 0 0 ˆ A 

 

 

 
 
 
 

 

 

 
 
 
 

, (19) 

 
 

€ 

B m = 0 Bm
T 0 0[ ]T

, (20) 
and 
 

€ 

B = 0 0 0 ˆ B T[ ]T
. (21) 

 
To complete the manipulation of the system dynamics, we 
can rewrite the system as  
 
 

€ 

˙ x = Ar x + Br r + Bl (g− uad ) , (22) 
where 
 
 

€ 

Ar = (A + B K x
T ) , (23) 

 
 

€ 

Br = (B m + B K r
T ) , (24) 

and 
 
 

€ 

Bl
T = 0 0 0 I[ ],  Bl

T ∈ℜ3X12 . (25) 
 
It should be noted that the term g in (22) is time varying but 
that Ar and Br are constant (time varying elements of these 
matrices end up cancelling to 0). 
 The reference system for the control architecture is then 
the following: 
 
 

€ 

˙ x r = Ar xr + Br r . (26) 
 
Inspection of this system shows that the reference system is 
merely the true states following the filtered states in (12)  
(assuming identical initial conditions for both). Additionally, 
the system in (26) is a linear time-invariant system (LTI).  
     For the PMRAC architecture, following the approach in 
[5], the predictor system is now the following: 
 
 

€ 

ˆ ˙ x = A p ( ˆ x − x) + Ar x + Br r . (27) 
 
In (27), the matrix Ap is ∈ ℜ12X12 and can be decomposed 



  

into 4 sub-blocks that are each an element of ℜ6X6, as shown 
in (28). 

 

€ 

Ap =
Ap (1,1) Ap (1,2)
Ap (2,1) Ap (2,2)
 

 
 

 

 
 . (28) 

For this work, we define Ap as a positive multiplicative 
factor of Ar, which implies that Ap(1,2) is a 0 matrix.  

C. Adaptive Control Laws 
To complete the adaptive architecture, we begin by 

defining two error signals: 
 

 

€ 

e = xr − x
ˆ e = ˆ x − x

. (29) 

 
The respective error dynamics are then the following: 
 

 

€ 

˙ e = Ar e + Bl (uad − g)

ˆ ˙ e = A p ˆ e + Bl (uad − g)
. (30) 

 
 Inspection of (30) reveals that the error terms associated 
with the filter-states are identically zero. More precisely, the 
reference model and predictor model reproduce the filter 
states in x exactly (assuming identical initial conditions and 
that Ap(1,2) = 0), thus these error terms effectively cancel. 
The error dynamics can then be represented in a reduced 
form as  
 

 

€ 

˙ e r = Aeer + Be (uad − g)

ˆ ˙ e p = A pe ˆ e p + Be (uad − g)
, (31) 

where 

 

€ 

ˆ e P = ( ˆ ω −ω )
0

t

∫ dτ
 

 
 

 

 
 

T

( ˆ ω −ω )T
 

 

 
 

 

 

 
 

T

, (32) 

 

 

€ 

er = (ω f −ω )
0

t

∫ dτ
 

 
 

 

 
 

T

(ω f −ω )
T

 

 

 
 

 

 

 
 

T

, (33) 

 

 

€ 

Ae =
0 I

−KI −K p

 

 
 

 

 
 , (34) 

 
 

€ 

Ape = Ap (2,2), (35) 
 
and 
 

€ 

Be
T = [ 0 I ] . (36) 

 
In (32), 

€ 

ˆ ω  is the fourth state of the predictor vector 

€ 

ˆ x . 
Moreover, in (33) it is important to note that the filter states 
appear because the reference model specified roll, pitch, and 
yaw rates are precisely the filter states when the reference 
model and true system have identical initial conditions, as 
was discussed in the previous section.  

The term g (as defined in (11)) may now be expressed as 
a function of x, uad, r, z and a series of time varying weights. 
 

  

€ 

g =W1
T x +W2

T r +W3
T z +W4

T uad  (37) 
 
The adaptive control signal is now defined as below: 
 
 

€ 

uad = ˆ W 1
T x + ˆ W 2

T r + ˆ W 3
T z + ˆ W 4

T uad  (38) 
 
The adaptive control laws are given, once again following 
the work of [5], as in (39). 
 

 

€ 

ˆ ˙ W 1 = Γ1Proj( ˆ W 1,−x(er
T PBe + ˆ e p

T Pp Be ))

ˆ ˙ W 2 = Γ2Proj( ˆ W 2,−r(er
T PBe + ˆ e p

T Pp Be ))

ˆ ˙ W 3 = Γ3Proj( ˆ W 3,−uad (er
T PBe + ˆ e p

T Pp Be ))

ˆ ˙ W 4 = Γ4 Proj( ˆ W 4 ,−z(er
T PBe + ˆ e p

T Pp Be ))

 (39) 

 
In order to be precise on matrix dimensions, we note that W1 
∈ ℜ12X3, W2 ∈ ℜ3X3, W3 ∈ ℜ3X3, and W4 ∈ ℜ7X3. Moreover, 
as is consistent with most model adaptive control 
formulations, P and Pp are the solutions to the Lyapunov 
equations 

€ 

Ae
T P +PAe = −Q  and 

€ 

Ape

T Pp +PpA pe = −Qp  
respectively, where P, Pp, Q, and Qp are all positive definite, 
symmetric matrices with Q and Qp designer selected, tunable 
parameters. Finally, the “Γ” terms are the respective 
adaptive learning rates for each unknown parameter. It is 
here worth noting that the matrices in (34) and (35) are 
constant for the error dynamics, irrespective of the fact that 
the system is actually time varying. 

D. Theoretical Analysis 
To show the correctness of the development, three 

theoretical issues are addressed here: the model matching 
conditions of the general system in (22), the boundedness of 
the true and predicted system states, and the boundedness of 
the two error signals. As aforementioned, all uncertainty has 
been treated as parametric, thereby simplifying the 
presentation here. If non-parametric uncertainty were 
considered, the theoretical development would be further 
complicated.  
 

1) Model Matching Conditions 
The model matching conditions represent the necessary 

conditions for any control signal to fully cancel the system 
uncertainty g. If the model matching conditions are satisfied, 
it is possible for the system to perform exactly as specified 
in (26). In the current context, if (26) is realized the aircraft 
will behave as if the dynamic inversion is perfect; the 
system performance will be completely specified by the 
command filter in (12) and the choice of PI gains KI and Kp. 
The model matching conditions for this system can be 
determined by combining (10), (14), and (22) to obtain the 
proceeding result.  

 

 

€ 

˙ x = A x + B mr + B [ Kx
T x + Kr

T r − ˆ B −1uad

                             + ˆ B −1(Δ ˜ A x +ΔBu +ΔGz)]
 (40) 

 



  

In (40) the term 

€ 

Δ ˜ A  is introduced to ensure dimensional 
consistency and is defined as below. 

 
 

€ 

Δ ˜ A = 0 0 0 ΔA[ ]  (41) 
 
Using the definition of each of the Δ terms, the expression in 
(40) can be reduced to  
 
 

€ 

x = A x + B mr + Bl[(BK x
T +Δ ˜ A )x + BK r

T r −Buad + (G −BK z
T )z] . (42) 

 
Comparing (42) with (26) and temporarily assuming that the 
B matrix is known (this negates the need for the term 

€ 

ˆ W 4
T  in 

(38)), we see that the conditions in (43) must hold in order 
for the uncertainty to be fully canceled.  
 

 

€ 

A + Bl BK x
T + BlΔ

˜ A = Ar

B m + Bl BK r
T = Br

G −BK z
T = 0

 (43) 

 
More precisely put, there must exist gains Kx, Kr, and Kz 
such that the expressions in (43) are satisfiable in order for 
the reference model in (34) to be fully-achievable. These 
conditions are relevant to any adaptive control technology in 
that they explicitly indicate that the control objectives (to 
track the reference model) may not be achievable if the 
system’s B matrix is not of full rank (or the uncertainty is 
not in the span of B). However, because the B matrix is not 
known, the adaptive control signal includes itself and there 
is a fixed-point problem. This is commensurate with the 
development presented in [1]. It should be stressed that 
making specific assumptions about the uncertainty in B can 
eliminate the fixed-point problem.  
 

2) Bounded Error Dynamics 
The error dynamics are already presented in (30-36). To 

show that the error dynamics are bounded, we use the 
candidate Lyapunov function presented in (44). 
 

  

€ 

V = er
T Per + ˆ e p

T Pp ˆ e p + trace(ΔW1
T Γ1

−1ΔW1 ) +

       trace(ΔW2
T Γ2

−1ΔW2 ) + trace(ΔW3
T Γ3

−1ΔW3 ) +

       trace(ΔW4
T Γ4

−1ΔW4 )

. (44) 

 
Here, Δ denotes the difference between the predicted and 
true weight value. Examining (2), (11), and (37), it is clear 
that the unknown weights must be time varying. Taking the 
derivative of (44) and substituting the error dynamics in 
(30), as well as the control laws in (39) then yields 
 

 

€ 

˙ V = −er
TQer − ˆ e p

TQp
ˆ e p − 2trace(ΔW1

TΓ1
−1 ˙ W 1)

      − 2trace(ΔW2
TΓ2

−1 ˙ W 2) − 2trace(ΔW3
TΓ3

−1 ˙ W 3)

      − 2trace(ΔW4
TΓ4

−1 ˙ W 4 )

. (45) 

 
As a result of the time varying nature of the weights, the 
stability proof requires the existence of bounds on each of 
the weights as well as bounds on the derivatives of the 

weights. The use of the projection operator in the control 
laws then ensures that the Δ terms are bounded. More 
precisely, we must assume that 
 
     

€ 

W1 (t) ∈W 1,  W2 (t) ∈W 2,  W3 (t) ∈W 3,  W4 (t) ∈W 4  ∀t ,   (46) 
 
where 

€ 

W  denotes a known compact set and  
 
     

€ 

W1 (t) ≤ d1,  W2 (t) ≤ d2,  W3 (t) ≤ d3,  W4 (t) ≤ d4  ∀t . (47) 
 
If these bounds exist, the system errors (both the predicted 
and actual errors) are uniformly ultimately bounded. 
Moreover, because the reference system is bounded-input 
bounded-output stable, it follows that both the true system 
states and the predicted system states are bounded as well. It 
should be noted that the result in (45) is derived from the 
approach taken in [6] for an L1 adaptive controller.  

IV. SIMULATION RESULTS 
To investigate the functionality of the system, we use an 

up-scaled version of NASA’s Generic Transport Model 
(GTM - developed at NASA Langley Research Center); this 
model is intended to represent a scaled version of a two 
engine commercial transport aircraft [7]. Using real 
aerodynamic data, the above controller is simulated in a full-
nonlinear simulation environment. As an added caveat, data 
for the dynamic inversion is collected using the vortex-
lattice code base VorView [8]; this ensures a separation 
between the true aircraft model and the dynamic inversion. 
For the purposes of this paper, we consider an aircraft 
performing a doublet maneuver in roll, pitch, and sideslip. In 
one scenario, we consider a nominal aircraft; in the second 
scenario, we consider an aircraft having lost control of the 
left elevator and its stab. Presented in Fig. 3 are the complete 
results of this comparison; Figure 4 presents an enlarged 
view of the pitch tracking.  

 

 
Fig. 3. Damage and undamaged aircraft performing doublet maneuver 

with baseline controller. 



  

       
Fig. 4. Enlarged view of pitch tracking from Fig. 3. 

 
From the results presented in Fig. 3 and Fig. 4, it is now 

desired to arrest the pitch deviation at onset of the damage as 
well as return the undamaged tracking performance by using 
an adaptive PMRAC controller. For the purpose of 
comparison, results are also presented for an MRAC 
controller using identical adaptive learning rates to that of 
the PMRAC controller. Results are presented in Fig. 5-7.   

As can be seen from the results, the PMRAC augmented 
controller has demonstrably fewer oscillations than MRAC 
(at the given learning rates). Additionally, both controllers 
have reduced the initial pitch loss and recovered the pitch 
doublet tracking performance of the nominal aircraft. As is 
consistent with the literature, the control activity for 
PMRAC is also significantly reduced as compared to 
MRAC. It is worth noting that the MRAC performance may 
be improved with gain reduction and the inclusion of 
normalized learning rates. 

V. CONCLUSION 
This paper has presented a baseline nonlinear dynamic 

inversion controller with a PMRAC adaptive augmentation 
component. Simulation results have demonstrated that this 
architecture can improve tracking performance compared to 
both the un-augmented baseline controller and a traditional 
MRAC controller.  

 

 
Fig. 5. Results for GTM aircraft with adaptive control augmentation. 

 
 

 
Fig. 6. Enlarged view of roll tracking from Fig. 5. 

 

 
Fig. 7. Enlarged view of pitch tracking from Fig. 5. 
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