All-Sky Monitoring with the Fermi Gamma Ray Burst Monitor

Colleen A. Wilson-Hodge for the GBM Earth Occultation Team, the GBM Pulsar Team, and the GBM team

We are currently monitoring the transient hard X-ray/soft gamma ray sky using the Gamma Ray Burst Monitor (GBM) on-board Fermi. The twelve GBM NaI detectors span 8 keV to 1MeV, while the two GBM BGO detectors span about 150 keV to 40 MeV. With GBM, we detect transient events on multiple timescales. Brief events, such as Gamma Ray Bursts, Solar flares, and magnetar bursts are detected with on-board triggers. On longer timescales, we use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. To date we have detected 7 sources above 100 keV. Transient activity from accretion-powered pulsars is monitored using epoch-folding techniques. With GBM we track the pulsed flux and frequency for a number of pulsars. We will present highlights of GBM observations on various timescales.
All-Sky Monitoring with the Fermi Gamma-ray Burst Monitor

Colleen A. Wilson-Hodge (NASA/MSFC) & Valerie Connaughton (UAH) for the GBM Earth Occultation, Pulsar, and Instrument Teams
Fermi Gamma Ray Burst Monitor (GBM)

- GBM
 - 12 NaI detectors
 - 8keV - 1 MeV
 - 2 BGO detectors
 - 150 keV - 40 MeV

Fermi Gamma Ray Burst Monitor (GBM)
Outline

• GBM Description
• GBM Earth occultation technique
 – Cyg X-1 state transition
• GBM accretion-powered pulsar monitoring
 – 4U1626-67 torque reversal
• Combined Occultation/pulsar results
 – GX 301-2 high spin-up state
 – A0535+262

• Summary
• GBM triggered observations
Earth Occultation Technique

- Measures fluxes using the change in count rate due to Earth occultation
- Uses known source positions from a catalog
- Main catalog includes 82 sources, primarily recently active X-ray binaries, 3 AGN, 2 SGRs, and the Sun
- Monitors flux in 8 energy bands in NaI or BGO detectors

- Over 85% of sky viewed every orbit
- Entire sky viewed every ~26 days
- Sensitivity exceeds CGRO/BATSE below 25 keV and above ~1 MeV
Cyg X-1 State Transition

- Dramatic flux drop observed with GBM in the 100-300 keV band
 - Decline began ~3 June 2010
 - Coincides with 2-10 keV flux increase in MAXI, RXTE/ASM, and Swift/XRT (Atel #2711, 2714, 2715, 2724)
- Leveling off ~3 July 2010
 - Consistent with radio observations confirming soft state ~11 Jul 2010 (Rushton et al. 2010).
 - Resembles 1996 transition when high energy flux declined for about 50 days (Zhang et al. 1997).
- GBM monitoring continues
GBM Accretion-Powered Pulsar Monitoring

- Daily blind search for pulsed sources
- Source specific analyses for monitoring known pulsars
- Currently monitoring 25 systems
- Typical exposure times are ~40 ks/day. It can be as high as 70 ks

Power spectrum from the GBM blind pulse search for 2010 Jan 8. Power plotted is the maximum over the 24 galactic longitude bins for each frequency.
4U 1626-67 A new torque reversal

- LMXRB
- $P_{\text{pulse}} = 7.66$ s
- Ultracompact 42 min orbit.
- Optical counterpart: KZ TrA ($V \sim 17.5$)
- 48 mHz QPO
- $B = (2.4-6.3) \times 10^{12} \text{G}$
- Distance 5-13 kpc

Torque reversal centered in 2008 Feb 4 lasting ~150 days

• GX301-2 comprises an early B-type companion and a 680 s pulsar
• GX301-2 typically has a bright flare near periastron and a weak flare near apastron.
• GBM detected an unusually bright flare near apastron in ~41.5 day orbit (Atel #2712)
• This flare coincides with the onset of rapid spin-up beginning 2010 June 25
• The spin period has changed by 3 seconds during the sharp rise.
• This episode of spin-up resembles two episodes observed with BATSE (Koh et al. 1997) and one with GBM in 2009 January.
• A 0535+26 is a transient Be/X-ray binary pulsar. The orbital period is \sim111 days and the pulse period is $\lesssim 10^3$ s in an eccentric orbit ($e \lesssim 0.47$).

• The optical counterpart is the O9.7 Iie star HDE 245770.

• The X-ray intensity of A 0535+26 varies: quiescence with flux levels below 10 mCrab, normal outbursts (10 mCrab-0.5 Crab), and very large (giant) outbursts.

• A 62 mHz QPO was detected by GBM in the 25-50 keV and 50-100 keV energy bands.

• A reduction in the EW of the Hα was observed during the Dec 2009 giant X-ray outburst (the circumstellar disk has grown to its full size before the 2009 giant outburst, and waited for the neutron star to arrive and begin accretion).
Transient Outbursts

Outbursts seen with Pulsed Detections

Outbursts seen with Earth Occultation

With GBM we see numerous outbursts from transients, including accretion-powered pulsars, black hole candidates, and neutron star binaries.
Summary

• Earth occultation monitoring
 – Of 82 monitored sources, 62 detected
 – Dramatic decrease in 100-300 keV flux from Cyg X-1 observed during soft state transition
 – Watch our website for new light curves
 http://gammaray.nsstc.nasa.gov/gbm/science/occultation/

• Pulsed source monitoring
 – 8 persistent sources detected
 – 12 transients detected, 5 (undetected) monitored
 – Rapid spin-up state observed in GX 301-2
 – http://gammaray.nsstc.nasa.gov/gbm/science/pulsar/
GBM Triggered Observations

Fermi GRBs as of 100406

427 GBM GRBs
56 Swift CRBs
16 LAT GRBs

Current GBM triggers: 503 GRBs, 23 Solar Flares, 81 Terrestrial Gamma Flashes, 169 Soft gamma repeater events