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ABSTRACT

The International Space Station (ISS) relies on the Active Rack Isolation System (ARIS) as the central

component of an integrated, station-wide strategy to isolate microgravity space-science experiments. ARIS uses

electromechanical actuators to isolate an International Standard Payload Rack (ISPR) from disturbances due to the

motion of the ISS. Disturbances to microgravity experiments on ARIS-isolated racks are primarily transmitted via

the ARIS power and vacuum umbilicals. Recent experimental tests indicate that these umbilicals resonate at

frequencies outside the ARIS controller's bandwidth. at levels of potential concern for certain microgravity

experiments. Reduction in the umbilical resonant frequencies could help to address this issue.

This paper develops equations for the in-plane deflections and flexibilities of an idealized umbilical (thin,

flexible, cantilever beam) under end-point, in-plane loading (inclined-force and moment). The effect of gravity is

neglected due to the on:orbit application. The analysis assumes an initially straight. cantilevered umbilical with

uniform cross-section. which undergoes large deflections with no plastic deformation, such that the umbilical

terminus remains in a single quadrant and the umbilical slope changes monotonically. The analysis is applicable to

the ARIS power and vacuum umbilicals. under the indicated assumptions.
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NOMENCLATURE

Lower case

C -- Cosine of angle i

p Modulus of elliptic integral

s Distance alon g umbilical from cantilevered end

s= Sine of angle

Y Position coordinate

yC Position coordinate of umbilical terminus (point C)

Position coordinate

zC Position coordinate of umbilical terminus (point C)

a„ a,; Normalized loads

R, Flexibility integrals

rl	 Shape kernel

Angle of umbilical tangent at arbitrary point R

4C	 Angle of umbilical tangent at terminal point C

Amplitude of elliptic integral

Upper case

C,	 Integration constant

E	 Young's modulus of elasticity

EI	 Flexural rigidity

F (p.	 Legendre's incomplete elliptic integral of the I" kind

I	 Area moment of inertia with respect to beam neutral axis

K(p)	 Legendre's complete elliptic integral of the I S` kind

L	 Umbilical len;-th

M	 Internal moment
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M,	 Terminally applied moment about the x-axis

O,	 Terminally applied force,y-direction

-P„ Q=	F erminally applied force, direction

R	 Arbitrary point along umbilical

INTRODUCTION

The Acti,e Rack Isolation System (ARTS) serves as the central component of an integrated, station-

wide strategy to isolate microgravity space-science experiments on the International Space Station (ISS).

ARIS uses el&t electromechanical actuators to isolate an International Standard Payload Rack (ISPR)

from disturbances due to the motion of the ISS: eleven ARTS racks are being developed for the ISS.

Disturbances to microgravity experiments on ARIS-isolated racks are primarily transmitted via the

(nominally thirteen) ARIS umbilicals, which provide power, data, vacuum, cooling, and other

miscellaneous services to the experiments. The two power umbilicals and, to a lesser extent, the vacuum

umbilical, sere as the primary transmission path for acceleration disturbances. Experimental tests

conducted b ,, the ARIS team (December 1998) [1] indicate that looped power umbilicals resonate at

about 10 Hz: unlooped power umbilicals resonate at about 4 Hz. In either case, the ARIS controller's

limited band y idth (about 2 Hz) admits onl y limited active isolation at these frequencies. Reduction in the

umbilical resonant frequencies could help to address this problem.

Analytica l. studies of the nonlinear bending and deflection of a flexible cantilever beam (originally,

horizontal) have been conducted for a variety of loading conditions, including concentrated terminal

transverse (vertical) 16ading [2, 3, 4, 51: uniformly distributed vertical loading [2, 6, 7]: uniformly

distributed normal loading [8]: concentrated terminal inclined loading [9. 10]: multiple concentrated

vertical loads [ 1 I ]; and concentrated terminal vertical and moment loading [ 1 1 ]. (See the thesis of

Christopher Rojahn [12] for a thorou gh summary of the history up to 1968.) Typical exact solutions

involve complete and incomplete elliptic integrals [e.g., 2, 11, 4, 5].
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Equations for the case of general terminal in-plane loading (i.e., includin g both inclined-force and

moment loads) have apparently not been determined. These and the corresponding in-plane flexibility (or

stiffness) equations would be of particular interest to\^ard umbilical design for microgravity- isolation

purposes. The equations could be used to help optimize umbilical flexibilities and resonant frequencies

for microua^ ity applications.

This paper develops equations for the in - plane deflections and flexibilities of an idealized umbilical

(thin, flexibie. cantilever beam) under terminal in-plane loading ( inclined-force and moment). The effect

of gravity can be neglected due to the on -orbit application. The analysis is applicable to an initially

straight, cantilevered umbilical with uniform cross-section, which undergoes large deflections with no

plastic deformation, such that the umbilical terminus remains in a single quadrant and the umbilical slope

changes monotonically. The analysis would be applicable to the ARIS power and vacuum umbilicals,

under the indicated assumptions.

PROBLEM STATEMENT

Consider an idealized umbilical of length L with end-points O and C and arbitrary intermediate point

R (Figure 1). Let R be located at distances along the umbilical, measured from the cantilevered end, with

coordinates (: , A: the coordinates of point C are (-^C, y'J. The coordinates have been chosen to be

consistent v ith the coordinate system in use for the existing analyses of ARTS, for dvnamic-modelin)- and

controller-design purposes, point O. then, is the umbilical point -of-attachment to the ISS. and point C is

the point-of-attachment to the ISPR. Let ^ be the an g le, at R. of the tangent to the umbilical, and let

'7C represent the end-point angle, at C. Assume a specified flexural rigidity El.

This paper accomplishes the following fundamental tasks: ( 1) to derive equations for the umbilical

length, coordinates at arbitrary point R. and terminal coordinates (at C); and (2) to use these equations to

F_

derive useful equations for the six in-plane umbilical flexibilities. These nine equations will be expressed

in terms of the angle ^c , and of the in-plane loads at C. These loads are as follows: forces O,.and O_ ,
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in the positivey- and	 directions. respectively, and counter-clockwise (positive) moment M C , about the

positive x-axis.

Figure 1. Flexible Umbilical under End Loading

EQUATIONS OF UMBILICAL GEOMETRY

At R the moment equation is 	 M = EI ds = M r 	 + O-(y, — A- OY (z, — z).	 (1)

Differentiating twice, observing that 	 dds = —sin :, 	 (2)

CL
and	 = cos,	 (3)

ds
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and using the shorthand notation s - = sin S and c. = cos ,^ , one obtains

ds' El	 E1

l_^

Integration of Equation (4) yields 
I d J 

= E1 (O l,s_ — Q_ C;:)+ C t ,	 (5)

where Ct is an integration constant. At point C, Equation (1) becomes

e
M r — EI y	 (6)

ds 
R—>C

Applying this boundary condition to Equation (5), one has

=—
1 

( Mx )2 
1

Ct
2 E1	

EI — Y 11 — — c ),	 ( )

so that Equation (5) can now be solved for 
d^
^
ds

t/3

ds — EI L
Qy ^^^ — s-

' )— O_ (c_ — c_ )^+ EI
	

= —rl t ' •	 (8)

J

2	 -)Q:	 pit )
where the radicand	 tl = ^ (S_ — S =i )

_ 
EI (c_ — c: )+ EI
	

(9)

Equation (8) applies under the assumption that the radicand 7 is nonne gative, or equivalently, that d^ is
ds

nonpositive

From Equation (8),	 ds = — q -t "dS.	 (10)

which can be integrated to yield an expression for the umbilical length:

tea_ ( ^ 	 '^`	 tiz

L = Jo 
ds = J, — I- d; = j c r^ - d<, .	 (11)

From Equation (2),	 dv = S TI -t /-`d^,	 (12)
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so that	 y — 
f27r  

T, 2 S,d4 and yC _ —
ran 

r1 -1/2 s,d; .	 (13, 14)

	

2;r
	

an
Likewise, Equation (3) yields = = J Ti t " c`d^ and _ C = r

	
T1 	 (15, 16)

Together, Equations (I I) and (13) through (16) describe the umbilical geometry as functions of the

terminal angleS c ; terminal loads Ov , Q_ .and M C ;and integration-, or "shape" kernel q.

VALIDATION (SPECIAL CASES)

The umbilical geometric equations, (11) and (13) through (16), can be used to derive equations for

umbilical in-plane flexibilities. First, however, it will be shown as a check of the mathematics that the

geometric equations simplify in some special cases to known forms [ I I].

Horizontal Cantilever with Vertical Point Load at Free End

Consider the case where Oy and ALI C are both zero: this is Frisch-Fay's "basic strut" [I I, p. 41].

Define, for convenience,	 P_ _ —O_ .

1/2

Equation (1 1) becomes	 L = 
EI	

^^ (c. — c^ rt/2 d4 ,

	

2P	 Jy

	

1/2	 1/2

which can be rewritten as 	 L = EI	 stn 2	 — sin 2 2	 dr, .

	

8P_	

f,	
2	 2 )

Let	 P = sin -`

x
and select ^ such that	 p sin O = sin 

2
	 (21)

Taking the differential of the above,	 p cos ^ do = cos 
2 

4 .	 (22)

(17)

(18)

(19)

(20)

From Equations (20) and (21), 	 sin 2 c — sin - = p - (1 —sin 'sin ' ^);	 (23)
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n
as ^ varies from c^ to 2n, ^ varies from — to n. In this range,

2

	

-cosh=(1-sin- 
1/2 

and -cos4=(1- p^' sin ' c^ 	 (24,25)

-
so that	 da _	

2pcos^d^
^	

^ 1/2
	 (26)

(1- p - sin - ^)

Finally, using Equations (23) and (26) in Equation (19), and simplifying, one obtains the following result:

L = K(P)	 (27)

P_
where	 k, = EI .	 (28)

pia 

and	 K(p)=F(p,rcl2)=Jo (1-p 2 sin`C:	 dS.	 (29)

K(p) and F (p, ^), respectively, are Legendre's complete and incomplete elliptic integrals of the 13'

kind [11 7 p. 5].

Horizontal Cantilever with Inclined Point Load at Free End

Consider next the case where O_ and M Y are both zero. Equation (11) becomes

t;
^^

L = AEI	 r (s; -s_ )
-ii

^d4.	 (30)
Qy

Introduce 0 and positive parameter p such that p , = (1- sin 4j / 2	 (31)

1/2
1- sin c

and	 sin ^ =	 (32)
2p

Squarin g the aboveyields	 l - sin = 2 p sin	 (3)3)

Taking the differential. 	 cos 4 d4 = -4p 
2 

sin ^ cos di^ .	 (34)
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so that	 d _ — 4p 
Sill ^ cos ^ 

d^	
(,')

1—sin - ^

From Equation (33) one obtains 	 I + sin ='(1— p sin	 (36)

Equations (33) and (36) together yield

(1—sine 
l/ 

=2psin	 p2 sin 2 1/2 .	 (37)

As 4 varies from ^, to 2n, ^ varies from 
2 

to p^ . Using Equation (37) in (35) yields

—2pcos d^
di _

	

	 (38)
(1—p- sin - )

Obtaining expressions for sin 4, and sin y from Equations (31) and (33), respectively, and substituting

from these and Equation (35) into Equation (30), one obtains the following result:

1/2

L =

El
	

2, (1- p sin 
2 ^Y112 d^	

(39)
Qy	 ^' -	

JJ

where	 m =sin -1 1

p^.

In terms of elliptic integrals.

1/2

L = El	
[k(p)-F(p,	 (41)

Q),

the solution previously reported in [ I I]. page 42.

EQUATIONS OF UMBILICAL FLEXIBILITY

The Nature of the Dependencies on Flexural Rigidity EI

(40)
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It will now be shown that, for constant values of L, ^,, y,, and z, (i.e., umbilical length and

terminal geometry), the followin g expressions are also constants: Ot ^, and M ., .These facts will
EI E	 EI

have important implications for umbilical shapes and flexibilities.

Define the followin g, for two umbilicals (i = 1, 2) having the same flexural rigidity and terminal

angle. but with but different terminal loads:

L, = L(r1,) — ^ T ij-1i2 di > 0.	 (42)

yCi = yC 
(TI, 	

tl; v2C,d4 > 0,	 (43)
=J

,T
and	 ZCi = =' ( i) = J' ^; 

1/2

	

rl s d4 > 0 ,	 (44)

where	 q, = 2a i , (s_ — s_ )+ 2a,, (c_ — c. )+ a 2 t > 0,	 (45)

O .i
for	 all	

EI	
(46)

a,, _ Q-` .	 (47)
EI

and	 a3, — MX1 .	 (48)
EI

The terminal angle is assumed to be arbitrary, fixed between 7t and 2a. Then the following obtains:

a. II =a1,

Yci = yc2 I q II I =q2	 a,i = a„	 (49)

Z C1 _ ?  j	 ail = ±a32

The former "if-and-only-if' statement is true based on the orthogonality of the constant, cosine, and sine

functions. As for the latter, usin g, Equation (45),



rl i (=) = t1,	 V 	 ^^ < 271 a	 Ct = Ct2, ,	 and	 (10)

(X ?) I — Ct ll s 1 — Ct,^c=^ = Ct 2 , — Ct 12 S_ —Ct,2c.c.

The third ri ght-hand-side equation will be true if and only if	 C4	 = a ,,	 (51)
31	 3

since the first two right-hand-side 	
Q,

and-side equations must hold. Since 
EI , 

Q.

EI ' 
and 

E

M

I 
are constants (for

fined umbilical length and terminal geometry), changing the flexural rigidity by some factor •i changes all

of the terminal loads by the same factor. Further, from Equations (13) and (15) the umbilical shape will

also remain unchanged. The implications for in-plane umbilical stiffnesses will be explored in the next

section.

Basic Flexibilin , Equations

For given terminal geometry ( ^c , yc , and	 ). Leibnitz Rule can now be applied to Equations (1 1),

(14), and (16) to yield expressions for the six in-plane translational flexibilities. Applying Leibnitz Rule

to Equations (14) and (16). one obtains the following initial expressions for the translational tlexibilities:

C Vc	 1	 _3/2	 C 5c	 y	 EI O Sc

	

rl	 s. (S . - s. ^- µ ,	 dS +	 ,	 (a'-)
OQ ti. EI	 c01	 Mr OQ^.

O yC 	 - 1 	 -3/2	 O ^^	 EI O ^c

	

f tl	 s,- [(c .. -c: )+µ	 d+	 (^3)
c O_ EI J O Q-	 Ali, O O_

_ 1 f

C;,

 -3EIO4

O,Avl 	 EI 
	 / c .	

EI 
Y 

+ µ O M C dS + M C O till 
C ,	 (^ 1)

=1 ^- -3./2	 c	 EI 
Oc,[(s- -s-	 C

OQy. EI	 ^	 aQI	 Mr OQy

O^	 1	 '^ -3/2	 O	 EI O^

	

TI	 c. [(c.	 ]d	 (56)
O Q_	 EI	 c Q ti.	 IVI Y 0 Q y.



i

12

7	 II	 1
and	

a_^ = i	 -s/2c -^ .Y 

J
+ a 

M` 
di; E 

M	
(57)

a M Y EI	 J	 C	 S	 .0

where	 17 _ -Qy (s: —s: )— 2Q= (c_ —c- )+	
)').

MY	
(58)

EI	 EI ' " ^ EI

and	 u = c_ O +s^ 0-.	 (59)
Inc -- y	 -

The partial derivatives on the right-hand-sides of Equations (52) through (57) can be found by applying

Leibnitz' Rule to Equation ( I I ), to yield the follo ,y ing in-plane rotational flexibilities:

_M X 'z^- TI 3/1 (s, - s, , )d^

(EI)- 	 (60)
a Q - 1	 M, 

Lt	 TI -3/2 d

(EI) 2 	 ^^

- M 	 /,

(61)
a Q_ Y' 

Et	 TI
-3/2 

dS
(EI)

Lt

-3/2 d"
a	 (EI ) 3	

tl	 S

and	 (62)=
a M	 X11 .	 z

( EI)-	 J

Substituting from Equations ( 60) through ( 62) into Equations ( 52) through ( 57), one finall y obtains the

desired expressions for the translational flexibilities. For example, substituting from Equation (60) into

Equation (52) ^ ields

O V^	 I	 ('^ _3 ,
- — 

J	
l s, (s. - s= )d5

cO,	 EI	 11'	 "

M	 ,z
1-	

Y x	 r1-3/2 s dS
EI EI `	

_	
X-'/2 

	 )dS
MY X Lt -1 _3/2 

dY	
t	 r

1-
EI EI	 S

(63)
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Note that the expression in the curl y brackets is invariant with EI. Corresponding expressions for the

other tlexibilities can be found in similar manner, each will have a similar form [see Equations (75)

throLn_h (80) belo w.] The tlexibilities, then. are all inversel y proportional to the flexural rigidi-

Simplified Flexibility Equations

For conxemence define the following normalized loads and flexibility integrals:

a	
01'

i =El ,	 (64)

0-
C(

"
 

= EI ,
	 (65)

a3 = - M, .	 (66)

(67)

,z
-3i2d	 (68)

Sc

,n

P3 = f2,, T1	
-s.d	 (70)

3/1

P4R4 = J= T1	
-c_d4	

(71)

R;	 ,I-3/- c. s, d4,	 (72)

and	 P6 
_f'q,-3i?s?d4 	 (73)

w here	 fl = 2a i (s- — s, )— 2a, (c, — c_ )+ a 
2 (74)

Using these s,.mbols the in-plane flexibility equations are as follows:
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ay` = 1 (P6- 5;^.^ _)- (^_-S,.^i) 
1+a;a^^s	 (75)

a 0 Y	 EI	 l+ct;a.t(3i

aV C - —I	 I+a - P3

aQ-	 EI (P - —s;^.Ps)—(P2 —C;^Ri) I+a•a	
(76)

ay e 	— a;	 1 + a3C44P3

aAf,	 EI 
R, -Pt I +a;a4(3I	

(77)

aZ ' _-1
-	

1+C3Ctfl2 ^^
aQ.	 Er 

(R ; S; R,)-(R^ -S;^R^) I +a;a 4 (3 i JJ 
>	 (78)

Y

a.-	 1	 'r	 l+a•c4 (3,

a Q_
`= I
	 l 4 — c;.[32)—(Rz —C;,.Pt) 

I+a.a4	
(79)ARC ^]

a	 _ a;	 I + u 3 Ct fl,

amx EI R- -R ^ I+u,CO I	(80)

as C Ct

0Qy.	 EI 11+a3C44P1

^^	 1

a	 U,

c0_	 EI	 I+a3a4(3i	
(82)

a4C	 ;	 -^i
and	 = _C'

	 (8^)
Alf	 EI 1 +a3a4Ri

where ce; and the square-bracketed expressions are all invariant with El. This means physicall y that

chancing the flexural riaidiry by some factor ;/ changes all of the in-plane stiffnesses by the same factor.

IMPLICATIONS FOR UMBILICAL DESIGN

The foregoing equations can be used as an aid for designing umbilicals to minimize stiffness. First,

as previous], noted, each of the flexibility equations can be expressed in a form showing it to be inversely

proportional to the flexural rigidity [Eqs. (75) through (80)]. Consequently, reductions in flexural rigidity
r

(81)
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will produce proportional reductions in all in-plane stiffnesses. Second, it was shown that for a fixed

umbilical geometry, changes in flexural rigidity will produce proportional changes in all of the terminal

(in-plane) loads. Third, for given umbilical length L, and end-point conditions Z,, z c . and y^ ,

Equations (11), (14), and (16) can be solved for the loads Qy. , Q., and Alf,. These loads can be

determined and used iteratively in Equations (75) throu^zh (80) to maximize umbilical flexibilities (or.

equivalentl y , to minimize the corresponding stiffnesses) using L as a parameter. And fourth, the

umbilical designer can use the preceding equations to determine optimal L, ^, combinations. Although

the angle Sc is fixed at about 225° for ARIS (in the "home," or centered. position); L, jc optimization

could su ggest better angles for future designs.

CONCLUSION

This paper has presented equations for the shape and flexibility of an umbilical on orbit (i.e., such that

gravity can be neglected), under general, terminal, in-plane loading conditions of sufficient ma gnitude to

cause large deformations. The umbilical was assumed to be initially straight, to have a uniform cross-

section, and to undergo no plastic deformation. All in-plane stiffnesses were shown to be proportional to

the flexural rigidity EL An approach was offered for using umbilical length and terminal geometry (end-

point locations and slopes) to optimize these umbilical stiffnesses. The basic equations were shown to

reduce to pre%iously published results for special loading conditions.

For mane umblicals the assumption that the preloaded shape follows a circular arc, rather than a

straight line segment,; is more realistic. An analysis for such cases should incorporate the pre-bent

umbilical cunature as an optimization parameter. in addition to the length and terminal geometry.
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