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The launch vehicle dynamics affected by bending and sloshing modes are considered.  

Attitude measurement data that are corrupted by flexible modes could yield instability of the 

vehicle dynamics.  Flexible body and sloshing modes are reconstructed by sliding mode 

observers.  The resultant estimates are used to remove the undesirable dynamics from the 

measurements, and the direct effects of sloshing and bending modes on the launch vehicle 

are compensated by means of a controller that is designed without taking the bending and 

sloshing modes into account. A linearized mathematical model of Ares I launch vehicle was 

derived based on FRACTAL, a linear model developed by NASA/MSFC. The compensated 

vehicle dynamics with a simple PID controller were studied for the launch vehicle model that 

included two bending modes, two slosh modes and actuator dynamics. A simulation study 

demonstrated stable and accurate performance of the flight control system with the 

augmented simple PID controller without the use of traditional linear bending filters. 

Nomenclature 

    = pitch angle 

q     = pitch angle rate 

v    = translational velocity  

2 1i     = the i
th

 bending mode ( 1,..., )i n  

2 2 1i i     = the rate of the i
th

 bending mode  

2 1j     = the j
th

 sloshing mode ( 1,..., )j m  

2 2 1j j     = the rate of the j
th

 sloshing mode  

1 2 3 4 5, , , ,z z z z z  = the state variables of the actuator  

5z    = the state vector of the actuator  
1u    = the control function (the input of the actuator)  

kU     = the output of the actuator (the input of the vehicle model) 
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I. Introduction 

ue to significant structural mass constraints such that the payload mass ratio is maximized, launch vehicles tend 

to be highly flexible. In-flight winds cause bending moments that negatively affect vehicle strength, while 

bending motion coupled with sloshing of propellants produces stability problems. Much research in 1960s was 

directed at the control of launch vehicles for stable, high-performance atmospheric flight
1,2

. Traditional control 

designs have accommodated highly flexible launch vehicles, including the Saturn V
3
; while more recently, new 

approaches using H  theory have been applied for the Ariane launch vehicle.
4
 Attitude control of a flexible launch 

vehicle using adaptive notch filtering in a cascade with real-time PID control has also been addressed.
5
 The 

mentioned techniques are based on filtering the flexible mode components via shaping a frequency characteristic of 

the launch vehicle
1-4

 or notch filtering the excited oscillations.
5
 However, filtering for attenuation or phase 

stabilization of flex modes can add phase lag near the control frequency, affecting rigid body performance, and 

design of classical bending filters for robustness to large bending mode uncertainties is a significant challenge. 

 Completely new approaches based on estimating bending and sloshing modes with consequent “cleaning up” 

the corrupted measurements and compensating the coupling terms were proposed for the first time in the work by 

Shtessel and Baev.
13

 The proposed technique used a novel sliding mode observer that operates in parallel with a 

traditional PID controller. The first bending mode was taken into account while designing the flight control system. 

The proposed
13

 technique is extended in the present paper, the contribution of which can be outlined as follows: (1) 

two different sliding mode observation techniques are studied and used for observing bending and sloshing modes, 

(2) two bending modes and two sloshing modes are taken into account, and (3) the proposed techniques are applied 

to a coupled linear model of Ares I crew launch vehicle (CLV) that includes attitude dynamics, two bending and 

sloshing modes, and an actuator model.  Accurate performance of the proposed Ares I attitude control system that is 

robust to both two bending and sloshing modes as well as to the actuator dynamics has been confirmed via computer 

simulations. 

  

II. Concept 

 
 The idea of the proposed method is in estimating the bending and sloshing modes and using the estimate to 

generate the control. The proposed algorithm comprises the following steps: 

 (1) The measurements corrupted by bending mode deflections and rates are to be cleaned up so that primarily 

rigid body measurements remain, and the clean measurements are to be used in the controller. 

 (2) The coupling terms from bending and sloshing modes that affect the CLV dynamics are to be compensated 

via the control functions that use the coupling term estimates. 

As a result, the flexible CLV compensated dynamics are expected to behave as rigid body compensated dynamics. 

 Two different sliding mode observers are proposed. They are 

 (1) A sliding mode disturbance observer. In this case the bending modes are treated as disturbances, with 

unknown dynamics. The advantage of this approach is in its robustness to the bending mode dynamics. 

 (2) A sliding mode state observer. In this case all states, including bending and sloshing ones, are observed 

together, and then the necessary compensations are performed. The advantage of this approach is the capability to 

simultaneously clean up the measurements and compensate for the coupling. The disadvantage is in requiring the 

exact knowledge of the CLV dynamic model including the bending and sloshing modes. 

 

III. Fundamentals of sliding mode observers 

 

A. Classical state sliding mode observer
16

 

Consider linear time invariant completely observable system  

x Ax Bu

y Cx

 



                      (1) 

where , , , , ,n m m n n n mx y u A B n m       . The output y  is assumed measurable. The goal is to 

estimate x̂  so that x̂ x  as time increases. System (1) is transformed by a nonsingular transformation  

1x
Tx

y

 
  
 

                       (2) 

D 
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to a regular form 

1 11 1 12 1

21 1 22 2

x A x A y B u

y A x A y B u

  


  
                  (3) 

The following sliding mode observer (SMO) is proposed;  

1 11 1 12 1

21 1 22 2

ˆ ˆ ˆ

ˆ ˆ ˆ

x A x A y B u Lv

y A x A y B u v

    


   

                 (4) 

where mv  is the injection term that is to be designed, and ( )n m mL    is the matrix that is to be determined in 

order to provide 1 1 1ˆ ˆ0, 0ye x x e y y      . 

 The estimation error dynamics are derived as 

1 11 1 12

21 1 22

y

y y

e A e A e Lv

e A e A e v

  


  

                   (5) 

and the sliding mode injection term  

ˆ( ), 0, 1,2,...,i i iv Msign y y M i m                 (6) 

drives system (5) to the sliding mode ( 0ye  )  

 1 11 21 1

0y

e A LA e

e

  




                    (7) 

in finite time. The matrix L  is to be determined in order to provide desirable eigenvalues for the compensated error 

dynamics (7). Definitely, such matrix exists, since the system (1) is observable. 

 

Remark 1. The sliding mode observer (4) is equivalent to the Luenberger observer of reduced order. 

 

B. State and Disturbance Sliding Mode Observer
6
  

Consider a linear, time invariant, completely observable system  

1( , )x Ax Bu Df x t

y Cx

  



                   (8) 

where , , , , ,n m m n n n mx y u A B n m       , and 1( , ) kf x t   is an unknown bounded disturbance. 

The goal is to estimate x̂  so that x̂ x  as time increases, and reconstruct the disturbance 1( , )f x t . 

 System (8) is transformed by a nonsingular transformation (2) to a regular form 

1 11 1 12 1

21 1 22 2 2 1

x A x A y B u

y A x A y B u D f

  


   
                (9) 

It is assumed that the matrix ( ) ( )
11

n m n mA     is Hurwitz. 

Consider the SMO of the form 

1 11 1 12 1 12

21 1 22 2

ˆ ˆ ˆ

ˆ ˆ ˆ

yx A x A y B u A e

y A x A y B u v

    


   

                (10) 

The estimation error dynamics are derived as 

1 11 1

21 1 22 2 1y y

e A e

e A e A e D f v




   
                 (11) 

where 1 1 1ˆ ˆ,ye y y e x x     are the estimation errors.  

 The following sliding mode injection term 

 
, 0

y

y

L e
v

e





                     (12) 

drives 0ye   in finite time with 21 1 22 2 1yA e A e D f L   . 



 

American Institute of Aeronautics and Astronautics 
 

 

4 

Indeed, by introducing a Lyapunov’s function candidate for second equation of eq. (11) 

0.5 T
y yV e e                       (13) 

and requesting  

yV e  ,                      (14) 

we obtain by substituting the injection term (12) into the derivative of the Lyapunov’s function candidate: 

 
 

 

1

21 1 22 2 1

( , y yT T T T
y y y y y y y y

y

y y y

L e e e
V e e e A e A e D f v e L e v e L e

e

e L e L e



 


         

   

   (15) 

 

Remark 2. Fulfilling inequality (14) yields a finite convergence time ˆ 0ye y y   . 

 Therefore, the estimation error dynamics becomes in finite time 

1 11 1

0y

e A e

e





                      (16) 

and 1 0e   as time increases.  

 The disturbance term 2 1D f  can be easily reconstructed as time increases using a concept of equivalent control 

2 1eqv D f                       (17) 

where eqv   is to be estimated by low-pass filtering of the high frequency switching injection term 

ˆ ( )eqv LPF v                      (18) 

 

C. State and Measurement Noise Sliding Mode Observer
6
  

Consider the linear time invariant completely observable system with the measurement corrupted by the bounded 

noise 2( , ) mf x t   

2 ( , )

x Ax Bu

y Cx f x t

 


 
                    (19) 

where , , , , ,n m m n n n mx y u A B n m       . The goal is to estimate x̂  so that x̂ x  as time 

increases, and reconstruct the noise of measurement 2 ( , )f x t . 

System (19) is transformed by a nonsingular transformation (2) to a regular form 

1 11 1 12 12 2 1

21 1 22 2 2

x A x A y A f B u

y A x A y B u f

   


   
                (20) 

It is also assumed that the matrix ( ) ( )
11

n m n mA     is Hurwitz. 

Consider the SMO of the form (10). The estimation error dynamics are derived 

1 11 1 12 2

21 1 22 2y y

e A e A f

e A e A e f v

 


   

                 (21) 

The sliding mode injection term (12) drives 0ye   in finite time with 21 1 22 2yA e A e f L   . The observation 

error dynamics become, in the sliding mode 

1 11 1 12 2

2 21 1 eq

e A e A f

f A e v

 


  

                   (22) 

Excluding 1e  from eq. (22) we obtain a dynamic filter for 2f  reconstruction  

1
1

2 21 11 12( ) ( ) ( )eqf s sI A SI A A v s


    
 

             (23) 
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D. State observer and disturbance reconstruction: general case
12

  

Consider the nonlinear, minimum phase
15

 completely observable system with the bounded disturbance 

( ) mt   









)(

)()()(

xhy

txGxfx 
                   (24) 

where , , ( ) , ( ) ,n m n n mx y f x G x n m     . The goal is to estimate x̂  so that x̂ x  as time increases, 

and reconstruct the bounded disturbance ( )t . The state observation and the disturbance reconstruction technique, 

based on differential geometry
15

 and higher order sliding mode control (HOSM),
7
 is developed for system (24) in 

Ref. 14. 

 

IV. Linearized Mathematical Model of Flexible Crew Launch Vehicle 
 

 The linear model of the CLV used herein is derived from a subset of the linear stability analysis package 

FRACTAL
17

 (Frequency Response Analysis and Comparison Tool Assuming Linearity), developed for control 

design and sensitivity studies at NASA/MSFC. The FRACTAL model includes the effects of bending mode 

coupling with propellant slosh, interaction due to the motion of attached elements such as rocket nozzles, and a 

comprehensive aerodynamics model. 

 The model originates from a Lagrangian approach to the system dynamics which results in a set of coupled 

linear equations of motion describing vehicle motion with respect to a pseudo-inertial reference frame, with the 

assumption of small perturbations about an operating condition.  The fundamental assumptions are that the vehicle 

has tetragonal inertia symmetry, that it ascends on a gravity turn trajectory, that the roll rate is constrained to zero, 

and that mass properties are quasi-constant over the analysis interval, and that structural flexibility can be well-

represented via the superposition of a set of orthogonalized flexible modes with the rigid-body dynamics. 

 The derived model used for the present study is presented in a form of LTI system which accounts for pitch 

angle, pitch rate, translational velocity, n  bending modes with corresponding rates, and m  sloshing modes with 

corresponding states.  The model provides two outputs, a pitch angle ( )  and pitch rate (q), the measurements of 

which are corrupted by the bending mode dynamics. 

The model can be described by the LTI system  

x Ax BU

y Cx

 



                     (25) 

and the actuator dynamics are also presented in a form of an LTI system  

1 2

3

z z x u

U z

   


 
                   (26) 

where   2 2 3
1 2 2 1 2 1 2 2 1 2, , , , ,..., , , , ,..., ,

T n m
n n m mx q v          
   , 

Since both coordinates of interest (i.e. , q ) are available for measurements, the output vector 2y  can be 

presented as a superposition of these two coordinates and all aforementioned bending modes, such that 

1 1 2 2y C x C x                       (27) 

where    2 2 2 1
1 2 1 2 2 1 2 1 2 2 1 2, , , , ,..., , , , ,..., ,

TT n m
n n m mx q x v          
     .  

Remark 3. It is worth noting that 1C  is the identity matrix, and the first and last 2 5m   columns of the matrix 2C  

are  0,0
T

. 

The control input u  is a scalar output of a PID-like controller that is to be designed so that  

1 1( ) ( ) ( ) ( ) 0lim limc c
t t

y t y t t t 
 

     .             (28) 

 

V. Flexible CLV attitude control using sliding mode disturbance observer 
 

In this section we will design the sliding mode disturbance observer based control upon the following 

assumptions: 
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A1. Only one bending and one sloshing mode are taken into account 

A2. The dynamics of actuator are neglected.  

 The mathematical model (25) can be partitioned and rewritten as follows: 

(a) Vehicle attitude dynamics 

 

 
21 23 24 1 25 2 26 1 27 2 21 1

31 33 34 1 35 2 36 1 37 2 31 1

q

q a a v a a a a b u

v a a v a a a a b u



    

    

 


      


      

         (29) 

(b) Bending mode dynamics 

1 2

2 51 53 54 1 55 2 56 1 57 2 51 1 52 1a a v a a a a b u b u

 

     




       
       (30) 

(c) Sloshing mode dynamics 

1 2

2 71 73 74 1 75 2 76 1 77 2 71 1a a v a a a a b u

 

     

 


      

         (31) 

(d) Measurements 

14 1

25 2q

y c

y q c

  



 

 
                     (32) 

The problem can be formulated as 

(A) Given flexible CLV dynamical equations, design a simple PID controller that provides ( ) ( )ct t   as 

time increases without taking into account coupling terms from slosh and bending modes as well as 

neglecting bending mode effects on attitude measurements. 

(B) Design a Higher Order Sliding Mode (HOSM) disturbance observer that estimates bending modes and 

“cleans up” the measurements. 

(C) Improve the control system robustness to the perturbations by retaining the perturbed system stability and 

restoring the stability margins. 

 

A. PID controller design 

 The PID controller is designed for the simplified attitude dynamics given by eq. (29) assuming 

that 1 2 1 2 0v         . The ITAE-based controller that drives 0ce      as time increases in 

accordance with differential equation 
2 31.75 2.15 0n n ne e e e                        (33) 

is presented 

 2 3
1 21

21

1
1.75 1.75 2.15c n c n n nu a q e e dt

b
                     (34) 

 

It is worth noting that in order to implement the PID control law in eq. (34) the commanded pitch rate and 

acceleration terms ,c c   must be computed. It can be done either numerically or using HOSM differentiators
7
. 

 

B. Simulations of the compensated flight control system of Ares I without cleaning up the measurements 

 Simulation results of the system (29), (32), (34) with perfect measurements , qy y q    and no coupling 

between eq. (34) and eqs. (30), (31) with 1n   are shown in Figs. 1 and 2. 

 The results of the simulations of the coupled system (29)-(32), (34) with perfect measurements , qy y q    

and 1n   are shown in Figs. 3 and 4. 
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Fig. 1 Ideal output tracking  

 

 

Fig 2 Ideal control function 

 

Fig. 3a Output tracking in system with coupling and 

perfect measurements 

 

 

 

Fig. 3a Zoomed output tracking in system with coupling 

and perfect measurements 

 

 

Fig 4a Control function in system with coupling and 

perfect measurements 

 

 

 

 

Fig 4b Zoomed control function in system with coupling 

and perfect measurements 
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C.  Simulations of the compensated flight control system assuming exact rate measurements, i.e. qy q . 

 The results of the simulations of the coupled system (29)-(32), (34) that takes into account bending and sloshing 

mode effects with perfect rate measurement qy q  and corrupted attitude measurement while 1n   are shown in 

Figs. 5 and 6. The simulations of the coupled system (29)-(32), (34) that takes into account bending and sloshing 

mode effects with corrupted both attitude and rate measurements demonstrated instability. 

 

 

 

Fig. 5a Output tracking in system with coupling, exact rate 

measurement and corrupted attitude measurement 

 

 

 

 

 

Fig 5b Zoomed output tracking in system with 

coupling with coupling, exact rate measurement and 

corrupted attitude measurement 

 

 

Fig 6a The control function for system with coupling, exact 

rate measurement and corrupted attitude measurement 

 

 

 

 

 

Fig 6b Zoomed control function for system with 

coupling exact rate measurement and corrupted 

attitude measurement 

D. Bending mode observer design using sliding mode observation technique 

 In this section the bending mode in eq. (30) is treated as unknown disturbance for the CLV dynamics (29). 

Equation (29) is rewritten in a new basis 
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14 1 14 1 14 1

25 2 25 2 25 2q q q

y c y c y c

y q c q y c and q y c

v v v v v v

       

  

      
 

        
  

    

        (35) 

This is 

 

 

 

14 1 25 2

21 21 14 24 1 23 25 2 25 2 26 1 27 2 21 1

31 33 31 14 34 1 35 2 36 1 37 2 31 1

q

q

y y c c

y a y a c a a v a c a a b u

v a y a v a c a a a a b u







 

    

   

   


         


        

   (36) 

The state observer for system (36) is designed as 

1

21 23 1 2

31 33 2

ˆ ˆ

ˆ ˆ ˆ (.)

ˆ ˆ ˆ (.)

q

q

y y v

y a y a v v

v a y a v







  



   


  

                (37) 

where the terms     13123713621212271261 .,. ubaaubaa    are assumed to be known, and 1 2,v v  are 

injection terms that are to be determined so that ˆ ˆ ˆ, ,y y q q v v    as time increases. 

 The state estimation error dynamics is obtained by subtracting eq. (37) from eq. (36): 

 

 

 

14 1 25 2 1

21 21 14 24 1 23 25 2 25 2 2

31 33 31 14 34 1

q

q v

v v

e e c c v

e a e a c a a e a c v

e a e a e a c a







 

  



    


       


    

        (38) 

 The injection terms are designed in a second order sliding mode control format,
7
 in particular, in a super-

twisting form
8
 

1/ 2
1 1 1

1/ 2

2 2 2

( ) ( )

( ) ( )

ˆ ˆ ˆ, ,

q q q

q q q v

v e sign e sign e

v e sign e sign e

e y y e y y e v v

  

  

 

 

  

  

     

              (39) 

 The injection terms (39) guarantee convergence , 0qe e   in finite time. Therefore, in the sliding mode we 

obtain  

 

 

14 1 25 2 1

21 14 24 1 23 25 2 25 2 2

33 31 14 34 1 35 2

v

v v

c c v

a c a a e a c v

e a e a c a a

 

  

 

  

     


    

            (40) 

The bending mode estimates are derived from the error dynamics eq. (40) bearing in mind that . 

1
2

14 25

ˆ
v

c c
 


                     (41) 

 

 

1 23 31 14 34 33 21 14 24 33 1
24

2 33 2 25 2 25 33 25 2 33 25 2
24

1
ˆ ˆ

1

a a c a a a c a a
a

v a v c a a c a a
A

 

  

        

      

         (42) 

The coefficient  

 23 31 14 34 33 21 14 24 33
24

1
a a a c a a a c a a

a
                   (43) 

in eq. (42) is positive, which means that eq. (42) is unstable. Instability of eq. (42) adds difficulty in finding a 

solution of this equation, which gives the estimate of the bending mode 1̂ . In order to find a bounded solution of 

this unstable equation, the method of Stable System Center (SSC)
9-11

 is employed. The main result of the method of 

SSC is formulated in the following theorem.
10 
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Theorem. Given unstable differential equation 

mRftfQ  ,),(                    (44) 

 with the measurable input ( )f t , and the following set of conditions being met: 

(1) the matrix Q  in eq. (19) is nonsingular and non-Hurwitz; 

(2) the input function )(tf  can be piecewise represented by known linear exosystems with a characteristic 

polynomial given by  

01
1

1 ...)( pppP k
k

k
k  

  ,               (45) 

the state reference profile 
m

~
 can be generated by the matrix differential equation 

 fPfPfPccc k
k

k
k

k
01

)1( 
101

)1(
1

)( ...
~~

...
~~

 






        (46) 

where the constants 011 ,,..., ccck  are chosen to provide any desired eigenvalues (convergence rate) for  
~

, 

and the matrices 
mm

k PPP 
 011 ,,...,  are given by 

    IQpQpIQcQcIP k
k

k
kk 







1

0
1

10
1

11 ......  

   

   
 

.

1

01

1

00

2

0

1

11

2

0

1

11

)1(

10

1

121

)1(

10

1

122 ......



























QpIPQcP

QpQpIPQcQcP

QpQpIPQcQcP

k

k

k

kk

k

kk


  (47) 

 

The output filter (46) for the observer (42) is designed based on eqs. (45)-(47). 
2

1 3 2

4
2 2 2 2 2

0.755 0.242 0.602
ˆ ( ) 1.45 ( ),

3 3 1

( ) 3330 44.666 0.5 1.333 2.666 10

s s
s f s

s s s

f t v v



  

 


  

      

        (48) 

Next, the measurements (32) can be cleaned up using the estimated bending modes 

14 1

25 2

ˆ

ˆ

clean

qclean

y y c

y y c

 







 

 
                    (49) 

and the cleaned measurements are used in the control law (34) that becomes 

 2 3
1 21

21

1
1.75 1.75 2.15c n c clean n qclean n nu a y y e e dt

b
                  (50) 

where c cleane y   . 

 

E. Simulations of the compensated Ares I flight control system with the bending mode observer and cleaned 

up measurements 

 The results of the simulations of the coupled flight control system (28)-(32) with the bending mode observer 

(37), (39), and (48), cleaned up measurements (49), the PID controller (50), and 1n   are shown in Figs. 7 and 8. 

 The accuracy of the bending mode estimation is very high and is illustrated in Figs. 9, 10. 
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Fig. 7a Output tracking in system with coupling, bending 

mode observer and cleaned measurements 

 

 

 

 

 

Fig. 7b Zoomed output tracking in system with 

coupling, bending mode observer and cleaned 

measurements 

 

 

Fig 8a The control function for system with coupling, exact 

rate measurement and corrupted attitude measurement 

 

 

 

 

 

 

 

 

Fig 8b Zoomed control function for system with 

coupling, exact rate measurement and corrupted 

attitude measurement 

 

 

The output tracking with cleaned measurements (Fig. 9) is comparable to the one with exact measurements 

presented in Fig. 3. 
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Fig 9a The bending rate estimation 

 

 

 

 

Fig 9b Zoomed bending rate estimation 

 

 

Fig 10a   The bending position estimation 

 

 

 

 

 

Fig 10b   Zoomed bending position estimation 

 

 

F. Discussion of the obtained results 

Advantages: 

1. Use of sliding mode observers improves significantly the robustness of flight control of Ares I. 

2. The proposed approach is capable of working in concert with any controller, improving its robustness. 

3. The bending mode dynamics are treated as the external disturbance while being estimated by a sliding mode 

disturbance observer. It makes the proposed algorithm robust to the parameters of the bending mode 

dynamics. 

4. The proposed technique allows controlling the stability margins. Assuming the sliding mode observer 

estimates the flexible modes (treated as the external disturbances) exactly, control system completely 

compensates for the flexible mode effects on sensed data and flexible coupling between the attitude control 

channels. Therefore, only the PID controller runs a feedback and defines the stability/phase margins.  

5. The proposed techniques can be easily implemented in a gain scheduling fashion. 

Disadvantages 

1. Using the proposed sliding mode disturbance observer, it is possible to estimate one bending mode and the 

bending mode rate only, since the number of estimated disturbances must be equal to the number of 
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measurements. The higher order bending modes and sloshing modes cannot be estimated using the sliding 

mode disturbance observer. 

2. The coupling that involves the sloshing modes cannot be compensated by means of the control function, since 

the sloshing modes cannot be observed using the proposed sliding mode disturbance observer.  

3. We cannot enjoy full robustness to the parameters of the bending mode dynamics while estimating bending 

modes unless the sliding mode disturbance observer compensated dynamics are minimum phase. In our case, 

the nonminimum phase dynamics required employment of the method of stable system center.  This method 

requires partial knowledge of the bending mode dynamics. 

4. A possible disadvantage could be in high frequency control computational cycles to allow sliding mode 

observer to converge and provide a high accuracy of estimation. 

 

 In the next section, another approach based on a full state sliding mode observer is proposed. This observer 

estimates the states of the Ares I dynamics altogether with the dynamics of bending and sloshing modes. 

The expected advantages of the newly proposed technique are in the possibilities  

(1)  to address estimate multiple bending and sloshing modes; 

(2) not only to clean up the measurements but to fully compensate the coupling terms in CLV dynamics using 

feedforward patches in a simple PID controller. 

The possible disadvantage is in the requirement to know accurately the mathematical models of the CLV, bending, 

and sloshing modes. The deviation of the actual frequencies of bending and sloshing modes from the model values 

by up to 10% could be sufficient for obtaining reasonably accurate estimation and compensation. That yields the 

observer of a high order of that could be difficult to tune and is potentially sensitive to parametric uncertainty.  

 

VI. Flexible CLV attitude control using sliding mode state observer 
 

In this section we will design the state sliding mode observer and observer-based control while relaxing the 

assumptions A1 and A2. The new relaxed assumptions are 

 

A3. Multiple bending and sloshing modes are taken into account;  

A4. The dynamics of actuator are taken into account. 

 The Ares I linearized pitch plane flight dynamics are defined by eqs. (25): 

x Ax BU

y Cx

 



                     (51)  

and the actuator dynamics are presented in a form of LTI system of differential equation (26): 

1 2

3

z z x u

U z

   


 
                   (52) 

where 

1 2

11
1 2 3 4 1 2 3 4, , , , , , , , , ,

T T

T

x x

x q v        

 
 

  
 
 

 is a state vector of the Ares I pitch plane dynamics, 

5z  is a state vector of the actuator, 
6U   is the output of the actuator that is fed to the Ares I dynamics in eq. (51) through the distribution matrix 

11 6B  , and 
1u  is the control function that is the servo command input of the actuator (52). 

Remark 4. Since the entries of the vector U  represent the outputs of the actuator (some of them may be equal to 

zeros) that are acting on the inputs of the CLV, the distribution matrix B  in eq. (51) consists of “1” or “0” elements 

only. 

 The distribution matrix B  is defined as follows: 
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0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 1

B

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

 

 

A. PID controller design 

 The PID controller is designed for the simplified flexible CLV attitude dynamics given by eq. (25) that takes 

into account two bending and two sloshing modes. The tracking error dynamics are obtained after 2 differentiations 

of the ideal tracking error ce     while neglecting the actuator dynamics and assuming perfect measurements 

(this assumption is not realistic, since the measurements will be cleaned up).  Therefore, 

 2 3
1 4 1 4

21

1
1.75 1.75 2.15 ( , , ,..., , ,..., )c n c n n nu q e e dt v

b
                   (53) 

where 21b  is taken as in eq. (29), and  

1 2 3 4 1 2 3 4

2,1 2,2 2,3 2,4 1 2,5 2 2,6 3 27 4 2,8 1 2,9 2 2,10 3 2,11 4

( , , , , , , , , , , )q v

a a q a v a a a a a a a a

        

        

 

         
   (54) 

with the coefficients 2, 1,2,...,11ja j   taken from the second row of the matrix A . 

Remark 5. It is worth noting that compensating of the coupling terms collected in the function (54) becomes 

possible due to observing of all states of system (25) via a sliding mode observer that is presented later. 

 

B. Coordinate transformation 

 The mathematical model of a flexible CLV in eq. (51) is rewritten in a form suitable for the sliding mode 

observer design, where the first part of the state vector coincides with available measurements, i.e. with vector y :  

1 11 1 12 2 1

2 21 1 22 2 2

x A x A x B U

x A x A x B U

  


  
                 (55a) 

 1
1 1 2 2 1 1 2 2 1 2 2,y C x C x x C y C x C I

               (55b) 

where 11 12 21 22 1 2 1 2, , , , , , ,A A A A B B C C  are partial blocks of original matrices of eq. (51) of corresponding 

dimension. 

The goal of the basis transformation is to present system's dynamics in new basis  2,
T

y x as: 

11 12 2 1

2 21 22 2 2

y A y A x B U

x A y A x B U

   


  

                 (56) 

where  
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 

 

1
11 2 21 1 11 1

1
12 2 22 1 12 2 21 1 11 1 2

1
21 21 1

1
22 22 21 1 2

1 1 1 2 2

2 2

A C A C A C

A C A C A C A C A C C

A A C

A A A C C

B C B C B

B B









 

   



 

 



           (57) 

Remark 6.  In order to reduce complexity of the calculations while designing the sliding mode observer for system 

(56) we take into account the actuator dynamics (52) in a special way. The designed scalar control function u  in 

eqs. (53), (54) is assumed known and is to be fed through the actuator to generate the vector control U . This control 

U  is, in fact, the vector-output of the actuator and also assumed known. Assuming that actuator output is known 

means assuming there are sensors on the vehicle to measure them. This can add complexity to the controller 

implementation. The vector control U  is then distributed among flexible CLV dynamic equations (55a) by means 

of known matrices 1 2,B B , and the products 1 2,B U B U  are assumed known while designing the state sliding mode 

observer. 

 

C. State sliding mode observer design 

 The state sliding mode observer is designed based on the Ares-I dynamics written in a form (31).  Introduce the 

observer's dynamics: 

11 12 2 1

2 21 22 2 2

ˆ ˆ ˆ

ˆ ˆ ˆ

y A y A x B U g

x A y A x B U Lg

    


   

               (58) 

where 2ˆ ˆ,y x  are the observer’s states.  

 The design matrix 9 2L   is selected to ensure the desired rate of convergence 
2

, 0y xe e   in the sliding 

mode. The sliding mode injection term  
2 2

1 2,g g g   that drives the estimation errors 

2 2 2ˆ ˆ,y xe y y e x x     to zero (
2

, 0y xe e  ) as time increases is designed in accordance with super-twisting 

algorithm.
7,8

 The vector-control input U  and the output y  are available for measurements. 

 The observation error dynamics are identified 

2

2 2

11 12

21 22

( )

( )

y y x y

x y x y

e A e A e g e

e A e A e L g e

   


   

                (59) 

The injection super-twisting terms are designed. 

   

   

1/ 2

1 1 1 1 1 1 1
0

1/ 2

2 2 2 2 2 2 2
0

( )

( )

t

y y y y

t

y y y y

g e e sign e sign e d

g e e sign e sign e d

  

  


  



   


          (60) 

Remark 7. The super-twisting injection terms (60) are continuous functions. 

 The observation error dynamics in the sliding mode become 

 2

2 2 2

2 2

12

22 12

22

0 ( )

( )

x y

x x x

x x y

A e g e
e A e LA e

e A e L g e

  
  

  

 .        (61) 

The design matrix L  is to be selected to provide placement of desired eigenvalues of the matrix 
222 12xA e LA  in 

eq. (51). For the purpose of simulation, matrix L was evaluated to provide a pole distribution according to the 

Butterworth polynomial with 5  .  

 Finally, as soon as 2x̂  converges to 2x , the full state vector x  can be reconstructed as 
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 1
1 2 2

2

ˆ
ˆ

ˆ

C y C x
x

x

 
  
  

.                   (62) 

Thereafter, the estimated values of the states x̂  in (52) are to be used in the control law (53), (54). 

Remark 8. The estimated state sub-vector  1
1 1 2 2 2 2ˆ ˆ ˆx C y C x y C x     is, in fact, the cleaned up measurement 

vector y . 

 

D. PID controller augmented by state sliding mode observer. 

 In summary, the linearized pitch plane dynamics of a flexible CLV that takes into account 2 bending and 2 

sloshing modes as well as the actuator dynamics given by eqs. (51), (52) 

x Ax BU

y Cx

 



    

1 2

3

z z x u

U z

   


 
   

are controlled by the control law 

 2 3
1 4 1 4

21

1 ˆ ˆˆˆ ˆ ˆ1.75 1.75 2.15 ( , , ,..., , ,..., )c n c n n nu q e e dt v
b

                   (63) 

1 2 3 4 1 2 3 4

2,1 2,2 2,3 2,4 1 2,5 2 2,6 3 27 4 2,8 1 2,9 2 2,10 3 2,11 4

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ( , , , , , , , , , , )

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ

q v

a a q a v a a a a a a a a

        

        

 

         
   (64) 

with the states 

1 2

1 2 3 4 1 2 3 4, , , , , , , , , ,

T T

T

x x

x q v        

 
 

  
 
 

 estimated by the state sliding mode observer. 

 

E. Simulations of the compensated flight control system of Ares I with two bending modes, two sloshing 

modes, actuator dynamics, and the sliding mode observer.  

 The results of the of the simulations of the compensated flight control system (51), (52), (53)-(64) that 

comprises the Ares I pitch plane dynamics linearized at time 60sect  , two bending modes, two sloshing modes, 

actuator dynamics, and the sliding mode observer are presented in Figures 11-12. The following non-zero initial 

conditions are assigned to the state variables during the simulations. Angle states are given in radians, velocity is in 

feet per second, bending states are in units of generalized (modal) displacement, and slosh displacements are in feet. 

 

 

1 2 3 4 1 2 3 4

3 4 1 1 2 1 2 1 2 1 2

, , , , , , , , , ,

10 ,10 ,10 , 10 ,5 10 , 10 ,5 10 ,10 , 10 , 10 ,2 10

T

T

x q v        

          

 

      

   (65) 

 The time history of estimating the first bending mode and first bending mode rate are shown in Figures 11 and 

12. The time history of estimating the second bending mode and second bending mode rate are shown in Figures 13 

and 14. The time history of estimating the first sloshing mode and first sloshing mode rate are shown in Figures 15 

and 16. The time history of estimating the second sloshing mode and second sloshing mode rate are shown in 

Figures 17 and 18. After short transient responses ~ 4 5sec  the estimation accuracy is almost perfect. The time 

history of measured and “cleaned up” (estimated) pitch angle   and pitch rate q  are shown in Figures 19 and 20. 

After a short transient response ~ 1 2sec  the measured values, corrupted by the bending modes, are accurately 

cleaned up. The time history of estimating the translational velocity is shown in Figure 21. After a short transient 

response ~ 4 5sec  the estimation accuracy is almost perfect. The pitch angle tracking and a corresponding control 

function are shown in Figures 22 and 23. Practically no effects of bending and sloshing modes are observed. 

 In order to study effects of the external disturbances the flight control system was simulated upon the 

instantaneous change of the initial conditions for the pitch angle by 
33 10   at 40sect  . This initial condition 

approximately represents the vehicle state immediately after an external disturbance or attitude command such as a 

wind gust or maneuvering.  The results of the simulations are shown in Figure 24.  The pitch angle tracking recovers 

after a short transient ( ~ 4 5sec ).  
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Fig. 11a The time history of estimating the first bending 

mode 

 

 

 

 
Fig. 11b Zoomed time history of estimating the first 

bending mode 

 
Fig. 12a The time history of estimating the first bending 

mode rate 

 

 

 

 
Fig. 12b Zoomed time history of estimating the first 

bending mode rate 

 
Fig. 13a The time history of estimating the second 

bending mode 

 
Fig. 13b Zoomed time history of estimating the second 

bending mode 
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Fig. 14a The time history of estimating the second 

bending mode rate 

 

 
Fig. 14b Zoomed time history of estimating the second 

bending mode rate 

 

 

 
Fig. 15a The time history of estimating the first sloshing 

mode 

 

 

 
Fig. 15b Zoomed time history of estimating the first 

sloshing mode 

 

 

 

 
Fig. 16a The time history of estimating the first sloshing 

mode rate 

 

 

 

 

 

 

 
Fig. 16b Zoomed time history of estimating the first 

sloshing mode rate 
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Fig. 17a The time history of estimating the second 

sloshing mode 

 

 

 

 
Fig. 17b Zoomed time history of estimating the second 

sloshing mode 

 

 

 
Fig. 18a The time history of estimating the second 

sloshing mode rate 

 

 

 
Fig. 18b Zoomed time history of estimating the second 

sloshing mode rate 

 

 

 
Fig. 19a The time history of “cleaning up” (estimating) 

the measured pitch angle 

 

 

 
Fig. 19b Zoomed time history of “cleaning up” 

(estimating) the measured pitch angle 
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Fig. 20a The time history of “cleaning up” (estimating) 

the measured pitch angle rate 

 

 
Fig. 20b Zoomed history of “cleaning up” (estimating) 

the measured pitch angle rate 

 

 

 

 
Fig. 21a The time history of “cleaning up” (estimating) 

the measured pitch angle rate 

 

 

 

 
Fig. 21b Zoomed history of “cleaning up” (estimating) 

the measured pitch angle rate 

 

 

 

 
Fig. 22a The time history of the pitch angle tracking 

 

 

 

 

 
Fig. 22b Zoomed time history of the pitch angle tracking 
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Fig. 23a The control function 

 

 

 
Fig. 23b Zoomed control function 

 

 

 
Fig. 24a The time history of the pitch angle tracking 

upon instantaneous change of initial conditions 

 

 

 
Fig. 24b Zoomed time history of the pitch angle tracking 

upon instantaneous change of initial conditions 

 

 

VII. Conclusions 

 
 The attitude control dynamics of a flexible launch vehicle model are studied while taking into account bending 

and sloshing modes. The linearized mathematical model of the flexible Ares I CLV was presented, which took into 

account two bending and two slosh modes as well as the actuator dynamics. 

 A simple PID controller was designed and simulated for the vehicle dynamics model linearized at 60 sec of 

flight assuming (a) no coupling between the vehicle attitude dynamics and translational motion; (b) both two slosh 

and bending modes as well as actuator dynamics were neglected; (c) effects of the bending modes on the attitude 

sensors were neglected. 

 First, the compensated vehicle dynamics with a simple PID controller was studied for the Ares I model that 

included two bending modes, two slosh modes and the actuator dynamics, without compensation for the bending 

dynamics. The resultant behavior of the Ares I compensated by the standalone PID controller appeared to be 

unacceptable due to classic control-structure feedback instability.  

 In order to improve the flexible CLV attitude control system robustness to flexible body bending dynamic and 

propellant slosh modes, the sliding mode observers were designed.  

 The first sliding mode observer treated bending and sloshing modes as external disturbances. Only first bending 

mode and its rate were possible to estimate using this type of observer. As soon as the bending modes are estimated 

their effects on the attitude and attitude rate measurements were compensated. The cleaned up measurements were 

used by the controller. The coupling terms that describe influence of bending and sloshing modes on the Ares I 



 

American Institute of Aeronautics and Astronautics 
 

 

22 

dynamics were not compensated due to a lack of necessary estimates. However, it was demonstrated that the Ares I 

dynamics could be stabilized without using notch or phasing filters. 

 The second sliding mode observer proposed in this research is capable of estimating bending and sloshing 

modes together with the states of the flexible CLV. Effects of two flexible modes and two slosh modes on 

measurements and the coupling effects have been studied and compensated. The intensive simulation study 

demonstrated stable, accurate performance of the flight control system with the augmented PID controller. The 

compensated vehicle dynamics again became stable without using notch or phasing filters. The Ares I compensated 

dynamics demonstrates practically no bending and sloshing influence and is comparable to the rigid body 

compensated dynamics. 

 The proposed observers can operate with any controller and do not rely on classical bending filters. The 

application of the proposed observation technique can be accomplished in a gain-scheduled fashion to accommodate 

time-varying plant parameters.  

 Our approach assumed a linear perturbation model of the CLV, which effectively represents the actual behavior 

of the present vehicle under most operating conditions.
19

  In order to address nonlinear phenomena of the flexible 

CLV attitude dynamics, a nonlinear model could be used for designing the observers. Corresponding higher order 

sliding mode observation techniques have been developed recently.
12,18
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