International Space Station Logistics Approach: Partnership and Dialog for a Successful Future

Presentation for the 35th Annual International Logistics Conference
August 6 – 10, 2000
New Orleans, Louisiana

By Natalie Banasik,
United Space Alliance,
International Space Station Program Office

Abstract

This article seeks to investigate trends and challenges for establishing a successful partnership in a multi-cultural Logistics environment. The U.S. - Russian relationship in the field of space studies is used as the model for this inquiry. Case studies of culture-specific responses to a variety of Logistics situations developed during the initial phase of this cooperation are discussed.

Introduction

The International Space Station is an unprecedented joint venture in human space exploration, an ambitious vision requiring the technical expertise of 22 nations. The future of interplanetary travel and technological advancement in the 21st century depends on its success. Logistics Processes take front seat in assuring smooth transition into the era of international space cooperation.

The veritable task of developing and fostering an environment of mutual trust, respect and collaboration is significantly complicated by the globalization of the workplace and the number of international participants involved. As the two main players, United States and Russia have been running highly visible and successful space exploration programs completely independently from each other for over thirty years. While in some cases the approaches used by both countries in resolving specific tasks are remarkably similar, the non-integrated development of these space programs and obvious lack of communication between U.S. and Russian scientists during the Cold War era contribute significantly to the complexity of the transition to a cooperative multi-national venture, and understandably restrain rapid achievement of joint Logistics goals and objectives.

U.S. – Russian Space Partnership Development in the last decade of the 20th Century.
The foundation for developing the International Space Station (ISS) was laid in the early part of the nineties, when the U.S. and Russia joined their efforts in a joint space research endeavor. A NASA program encompassing 11 U.S. Space Shuttle flights to the Russian Space Station “Mir” over a four-year period was the first step towards multifaceted space cooperation. This program, commonly referred to as ISS Phase 1, utilized assets of both countries, operating under a complicated logistical scheme. Between March 1995 and May 1998, the Mir Station hosted a series of NASA astronauts as crewmembers. In the 39-year history of human space flight, no previous program has required so many transport vehicles, so much interdependency between various organizations, and so much precise planning. ISS Phase 1 experience allowed NASA and its international partners to learn about all aspects of living and working in low-Earth orbit for an extended period, thus preparing successful transition to ISS assembly in Phases 2 and 3.

Space Station Logistics in the United States

The main logistics approach of the United States draws on this country’s political philosophy, its military logistics experience, and its space quests using the returnable Orbiter vehicle. In addition, a free enterprise system and mass production play a critical role. As the result, the U.S. version of the Space Station Logistics is developing as a new and independent branch of logistics science.

Political philosophy of a given society frequently determines the need for any exploration. The overall history of space research in the 20th century can be viewed as a good example of this determination.

Military logistics experience accumulated by the United States while developing space defense systems against Eastern Block countries proved a valuable and logical step in progression towards peaceful international space cooperation.

Since the Space Shuttle is presently utilized by the United States exclusively for fulfilling its space research needs, space logistics support to date has been predominantly Shuttle-based.

A typical Orbiter mission rarely lasts longer than two weeks. The relatively short duration of the on-board stay, combined with Shuttle’s large cargo carrying capacity and few launches per year, enables crews to have essentially all their logistics needs fulfilled prior to flight or carry enough spares on board for possible repairs. A Shuttle mission, in a way, could be likened to a two-day touring trip in an RV – plenty of opportunities to explore, but the vehicle is air-conditioned and filled not only with all the necessary items but with a few pleasant “extras” as well.

In contrast, the Space Station, with its constant human presence and long-duration flights, presents a different challenge. Moving from Shuttle to Station is like making a marathon runner out of a sprinter champion – it requires considerable determination. Planning and designing strategies become more important, since a short burst of energy would not suffice at a place where long endurance is necessary. Station logistics requires development and utilization of depots where spares can be stored and repairs performed, along with maintaining an extensive database of maintenance and resupply information.
Some of the Station hardware may come from various commercial manufacturers and be used in space either with prior NASA modifications or in "as is" condition, so called "Commercial Off-The Shelf" (COTS) products. A factor to consider here is a fine balance between buying too many spares "just in case" and possibly overcrowding the depot, or keeping a particular company (companies) on the vendor list and hope that it would not discontinue production of the needed item, or go out of business altogether.

The general mobility of the workforce adds to the complexity of the task. Rooted in individuality as the main U.S. founding principle, society encourages people to attempt various moves and changes in their career paths. This, in turn, necessitates a need to design positions that may be re-staffed relatively simply with proper on-the-job training provided. Thus, Space Logistics training and development becomes very important. All in all, replacing an experienced U.S. Space Logistician is quite difficult, but not impossible.

Logistics in Soviet and Post-Soviet Russia

In contrast, the driving force behind the Soviet and Post-Soviet space program appears remarkably different. The only definite common trait of Soviet and U.S. logistics approaches lies in its dependency on the political climate of its time.

From the beginning, all Soviet space endeavors were considered a matter of national pride and given highest priority and almost unrestricted funds. The infrastructure of the Soviet Union in all its 15 republics supported space research, development, procurement, production and storage of all items necessary for successful flights.

The official ideology of interdependence and teamwork in one big Socialist family of nations was clearly showcased in the Soviet Union space program. The otherwise somewhat leaky social net of services and government support was lavishly spread around Soviet rocket scientists and space researchers. The system of selection and education of young people with high potential for the benefit of the Soviet space program produced a plethora of talented specialists. The major drawback of such selection was its rigidity: at 17 or 18, a young person would have to decide which career path to select and to follow until retirement. Changing majors in college was not customary. However, excellence in the chosen task, such as space research, was usually highly rewarded. A 22-23 year old graduate of Moscow Technical University (a.k.a. "The Bauman College" in the Soviet time), or of the Moscow Aviation Institute, was virtually guaranteed a well-paid, high-esteem, secure position within the Soviet space industry.

With time, each specialist became a veritable conduit of knowledge and information in a particular field. Performing the same function for many years and knowing the system and its most intricate details made every researcher, developer and engineer irreplaceable and indispensable. Non-mandatory character of retirement, possibility to combine retirement pay with regular work compensation, and the exciting nature of the job led to "niche-marketing" and provided for a very difficult replacement procedure. In addition, performing the same function for several decades rendered several written documents obsolete: since the developer knew all the details and could recite them from memory on any given day, why bother to write them down? Similarly, no need for specific contracts with vendors and suppliers was ever demonstrated: the
infrastructure of the Soviet space industry was devoted solely to advances in Soviet space exploration. It was a miniature, self-sufficient “country” within a country.

Certainly, logistics responsibilities were part of the overall program, but logistics as a science was never considered. It was always too self-evident, too obvious: logistics tasks had to be completed during every flight, maintenance had to be performed, and spares had to be available. The “great oral tradition” of the Soviet space program stood in the way of developing streamlined logistics approaches.

Very early on, long duration flights became a priority for the Soviet space program. Consequently, sending humans into orbit for up to six months at a time required a philosophy of approach quite different from short-duration flights. Continuing the analogy of U.S. Shuttle flights being similar to and RV trip, a Soviet space station flight was more like a full-fledged hiking and camping expedition in the wilderness: only the most necessary items were taken, and ability to overcome unexpected difficulties were high in demand. Teamwork and interdependency were demonstrated in this setup as well. A “Soyuz” space vehicle is capable of carrying three cosmonauts, and every crew of three would undergo a careful psychological evaluation for compatibility prior to every recommendation to a flight.

The system worked like clockwork and produced impressive results – until the collapse of the Soviet Union. All of a sudden, the well-developed infrastructure began to crumble: the newly independent countries replaced the old republics, and nearly every one of them wanted to be immediately reimbursed for their contributions. Simultaneously, government support for space exploration was drastically reduced. To top everything off, the majority of the young, energetic engineers and scientists who started the program forty years ago were approaching retirement.

Merging Approaches: Working Together For Mutual Benefit

Understandably, joining forces after so many years of non-coordination was a complex and involved task. Several issues had to be addressed on all levels, from Governmental Agreements between U.S. and Russian Presidents, all the way down to the working group levels. Very frequently, especially in the early stages of the U.S. – Russian space cooperation, the feeling of strong national pride each country expressed in its own space program became a concern and sometimes delayed reaching common goals in a more expedient and efficient manner. The whole process was not unlike merging households of two independent, confirmed bachelors who decided to split the rent and utilities of a jointly owned larger house.

Contemporary advances in all branches of science make space research imperative. If humankind is ever to wander beyond the boundaries of Earth, projects like the Station are both necessary and logical. The currently flying Russian Space Station “Mir”, though fully functional, is well advanced in age, and cannot efficiently comply with all the technological requests required for the 21st century. A new station is needed to continue human presence in microgravity. Yet the International Space Station is simply too large for any one country to handle on its own. Thus, international space cooperation reaches paramount importance. U.S. – Russian relations are the first, very convincing step in this direction.
Fostering Logistics Understanding Among Russian Partners

One of the major problems encountered by both countries in the process of becoming partners was the initial Russian reluctance to accept Logistics as an independent discipline. Not surprisingly, this problem was largely terminological. When U.S. Space Logisticians succeeded in presenting their point of view in such a fashion that it became important to their partners in Russia, all further negotiations gained momentum. In addition, initial Russian perception of the joint Space Station logistics efforts being something frivolous, something reserved for people with larger funds, something requiring additional costs and labor without producing obvious benefits for Russia, also played a role in the joint Space Station Program discussion. Fortunately for both sides, after a long and sometimes very frustrating time, the common sense prevailed, and joint efforts for developing the first-ever International Space Logistics System are now underway.

Enriching Each Other’s Experience

Both countries are confident that there is much to give and to receive. One of the main questions, of course, is accessing each other’s resources without infringing on the partner’s know-how, intellectual rights and proprietary information. The road to success is still somewhat rocky, but after almost six exciting and trying years, the two countries have definitely developed an atmosphere of cooperation and mutual trust. This, by far, does not mean that U.S. and Russia agree on every aspect of space research. Sometimes the best anyone can do is to state the main points of disagreements and record them in a meeting protocol. But mostly, the U.S. – Russian cooperation has been very successful and served as an example for developing international space relationships for other participating countries. With every new Space Station launch, the world is coming closer and closer to a common understanding of many space-related issues, including Space Logistics. In essence, U.S. and Russia design and define the initial stage in the development of this exciting new discipline.
International Space Station Logistics Approach:
Partnership and Dialog for a Successful Future

Presentation for the 35th Annual International Logistics Conference
August 6 – 10, 2000
New Orleans, Louisiana
By Natalie Banasik,
United Space Alliance, LLC
Introduction

- International Space Station: a New Era of Cooperation
- International Space Relations
- Space Logistics Processes
U.S. – Russian Space Cooperation

- Foundation: Early Nineties
- Phase One Program
- Logistics Process Development
Space Station Logistics in the United States

• Political Philosophy

• Military Logistics Experience

• Space Quests
Logistics in Soviet and Post-soviet Russia

- Political Philosophy
- Interdependence and Teamwork
- Socialist Infrastructure
- Space Exploration Endeavors
- Post-soviet Situation
Merging Approaches: Working for Mutual Benefit

- Working Complex Issues
- Necessity of a Joint Station
- A New Task for Humanity
Fostering Logistics Understanding Among Partners

- Accepting Logistics As an Independent Discipline
- Terminology Issues
- Benefits to Russian Program
Enriching Each Other’s Experience

- Working Around Proprietary Issues
- Challenges
- Developing Space Logistics As a New Discipline
Information Release Request

Part B - Review and Clearance (Ref. Directive C-03)

(All signatures, names and title of reviewers should be printed to facilitate processing)

<table>
<thead>
<tr>
<th>11. Public Relations/Communications (Name/Title/Date)</th>
<th>12. Industrial Security (Name/Title/Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Export Control Office (Name/Title/Date)</th>
<th>14. Patents - Legal (Name/Title/Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Signature]</td>
<td>Michael A. Cooper, 8/2/00</td>
</tr>
</tbody>
</table>

15. Remarks

 [Remarks]

USA Space Alliance

Reference Material

USA 94-X-1 New 2.08 [Flow]
PUBLIC RELEASE CLEARANCE

The purpose of this form is to request review and approval for the public release of information. The author(s) of the document for which this release is requested shall attach a copy of the completed paper, presentation or abstract and shall complete items 1-8 of Part A and sign the designated portion of block 10. This form and the attached materials shall then be submitted to Division management for completion of blocks 9 and 10 of Part A and signature by the Immediate Supervisor and the Functional Division Head or Delegate in the appropriate spaces of block 10. After all signatures have been obtained in block 10, this form and the attached materials shall be submitted to the Communications/Public Relations and then to Industrial Security for review and signature in blocks 11 and 12 of Part B. The package shall then be forwarded to Export Compliance and the Legal/Patent Department in blocks 13 and 14 of Part B for final review.

NOTE: SUBMISSION AND APPROVAL OF AN ABSTRACT DOES NOT APPLY TO FULL PAPERS, EACH MUST BE SUBMITTED AND APPROVED FOR RELEASE USING FORM USA 94-X-1.

The following instructions should be carefully considered in completing the identified blocks in Part A. Ant failure to complete the blocks as instructed may result in a delay in processing of this Release or a denial of approval to release the information as requested:

BLOCK 1 - If any of the information contained in the attached material is derived from or relates to a Government Contract or Government Supplied data in accordance with items 1a, 1b and 1c, the item must be answered "YES" and the attached material forwarded for Government approval of the release if contractually required (refer to section of contract pertaining to public release of technical information). In that case, the request shall be submitted through the requester's contract organization to the Government agency having cognizance of the materials. Seven (7) copies of the material, along with a letter requesting approval for its release, shall be sent to the Public Information/Public Affairs Office of such cognizant agency. Since review and approval may take from six (6) to eight (8) weeks, the request for the release to such agency must be made in sufficient time prior to the publication/presentation date to obtain such approval and complete the processing of this release request. If the material contains technical data relating to equipment on the Munitions List and subject to export control by the Department of State, the answer to item 1d must be "YES" and Department of State approval obtained prior to release.

BLOCK 2 - This must be completed to indicate that U.S. Government agency approval for release has been obtained and to identify the sponsoring Government agency and the date of approval. This block must be completed prior to any signatures being obtained in block 10 and prior to review in accordance with Part B. Failure to complete this block will result in a denial of approval for release of the material accompanying this form.

BLOCKS 3 and 8 - If the material is related to a company-sponsored program, it must be identified in block 3. If that material is not generally available to the public, then it must be identified as proprietary, company restricted, or company official data in block 8. The presence of proprietary, company restricted, or company official data may require modification of the material prior to approval of its release.

BLOCK 9 - This block shall be completed by a member of Division Management.

BLOCK 10 - This signature of the author(s) and Immediate Supervisor in block 10 are assertions by those individuals that the information in Part A, blocks 1-8 is accurate and complete. The signature by the Functional Division Head or Delegate is an assertion that the information in block 10 is accurate and that the signing individual is not aware of any other information or facts contrary to those set forth in blocks 1-8.

BLOCK 11 - The package will be forwarded to Communication/Public Relations for review and signature in block 11. Communications is responsible for ensuring that the material doesn't conflict with company format requirements. The request package shall be forwarded to Industrial Security.

BLOCK 12 - Industrial Security will review and approve the requested package to ensure the material meets applicable Security Requirements. Upon signatures Industrial Security will forward the package request to the Export Compliance Office.

BLOCK 13 - The Export Compliance office will review material and approve package only if no export license or technical assistance agreement (TAA) is required based upon the content of the paper/abstract or the appropriate export license or TAA is already received from the Department of State or Department of Commerce as required and attached. The signature by the Export Compliance Officer confirms compliance with Export laws and regulations. The request package will be forwarded to the Legal/Patent Department.
Facsimile

To: Jennifer Mason-Korecki
Location: JSC
FAX: 281-483-1815
Talk: 281-483-2424
Pages: 2

From: Sherrill A. Neesmith
Location: USA
FAX: 281-212-6326
Talk: 281-212-6016
Date: 08-07-2000

This is the Legal signature requested for the Banasik Technology Paper.

8/7/00
Linda -
These are ready for Sue's sig. Please call Sherrill when complete.

Thanks - Jen

NOTICE OF CONFIDENTIALITY: The information contained in this FAX is confidential/or privileged. This FAX is intended to be reviewed initially by only the individual named above. If the reader of this TRANSMITTAL PAGE is not the intended recipient, or representative of the intended recipient, you are hereby notified that any review, dissemination, or copying of this FAX or the information contained herein is prohibited. If you receive this FAX in error, please immediately notify the sender by telephone and return this FAX to the sender at the address above. Thank you.
PART A - REQUEST

Title
International Space Station Logistics Approach: Partnership and Dialog for a Successful Future

Author(s)
Natalia Banasik

Div./Dept.
70340

Mailcode
USH-703N

Phone No.
281-244-7178

Date of Request
07-20-2000

This is a:
- [] Presentation
- [] Abstract of material to be disclosed/published
- [] In the United States
- [] In a foreign country

Sponsoring Group: (List Address-City, State, Country)
United Space Alliance

1a. Does the material include or was this material derived from information developed under Government contract? (If yes, complete e.)
- [] Yes
- [] No

1b. Does this material include or was this material derived from any information obtained from the Government or others and identified as military critical technology or technical data controlled by DOD Directive 5220.24 and 5230.25 restricting disclosure of unclassified technical data? (If yes, complete e.)
- [] Yes
- [] No

2. If any of the answers to 1a, 1b, or 1c above is yes, has the sponsoring Government Agency reviewed and approved this material for publication/presentation?
- [] Yes
- [] No

If yes, Approving Agency:
[]

Date of Approval:
[]

3. Was this material developed under or does this material relate to a company-sponsored program?
- [] Yes
- [] No

Program Name:
[]

Security Classification of Contract:
[]

GOI/SA No.:
[]

4. If this has been identified as Unclassified material, have you extracted data from unclassified pages of classified material?
- [] Yes
- [] No

Name of Material or Source:
[]

Classification:
[]

Pages Used:
[]

5. Are slides, graphs, charts, etc. to be used in connection with this material, which contain data not shown in the manuscript?
- [] Yes, furnish copies
- [] No

6. Does any portion of this material represent a significant advancement in the State of the Art or contain speculations of future applications?
- [] Yes
- [] No

7. Does material discuss capabilities of another USA division or another company.
- [] Yes
- [] No

Division(s) Company(s):
[]

Mentioned Page(s):
[]

8. Does material contain Proprietary, Company Restricted, or Company Official data?
- [] Yes
- [] No

9. Technical review for content, clarity, and significance has been completed. Name/Title/Date:

10. (To be answered by functional division head or delegate) Does the subject matter involve points on which:

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Our customers may be sensitive</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>b. An unresolved customer policy or issue is pending</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>c. The company is sensitive</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

If any part is answered "Yes", note briefly points and page number(s) of text involved below.

If "Yes", state journal's page rate or estimated cost.

AUTHOR(S) SIGNATURES

Natalia Banasik

IMMEDIATE SUPERVISOR (Name, Title, Date)

Manager

FUNCTIONAL DIVISION HEAD OR DELEGATE (Name, Title, Date)

Director, 7/31/00

USA 94-X-1 New 3-98 (Flow)

Information Release Request

PART B - REVIEW AND CLEARANCE (REF. DIRECTIVE C-03)

(In addition to signatures, names and title of reviewers should be printed to facilitate processing)

<table>
<thead>
<tr>
<th>11. PUBLIC RELATIONS/COMMUNICATIONS</th>
<th>12. INDUSTRIAL SECURITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Name/Title/Date)</td>
<td>(Name/Title/Date)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. EXPORT COMPLIANCE OFFICE</th>
<th>14. PATENTS - LEGAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Name/Title/Date)</td>
<td>(Name/Title/Date)</td>
</tr>
</tbody>
</table>

15. REMARKS