JSC Commercial Human Space Flight Symposium
October 13-14, 2010

Thermal Protection System (Heat shield) Development – Advanced Development Project
T. John Kowal
Orion Thermal Protection System Manager
Enable the CEV Project Office and the Prime to develop a CEV heat shield...

- A top risk identified at project initiation was the development of a heat shield capable of both LEO and Lunar return
 - Ablative TPS materials are required for LEO and Lunar missions
 - The US had focused little attention on ablative materials since Apollo era
 - Applicable ablative TPS materials were at low technology readiness levels (TRL ~ 3-4)
- In Oct 2005, the CEV Project commissioned the CEV TPS Advanced Development Project to address the heat shield development risk

... by initiating a Multi-Center Advanced Development Project to raise the TRL and reduce the risk of Lunar return capable ablative TPS materials and heat shield systems
CEV TPS Development Strategy
(Critical Path Item)

- **Baseline** Heat shield (Lunar and LEO return capable) by Orion IOC
- **Alternate** Heat shield (Lunar and LEO return capable) parallel development, maintained up through system decision
- NASA develops **Baseline & Alternate** heat shield designs up to Orion PDR
- Prime takes over responsibility of heat shields after CEV PDR – w/ NASA oversight
- Back shell TPS development controlled by Orion Prime – w/ NASA oversight

Centers Involved:
JSC, ARC, LaRC, GRC, JPL, KSC, GSFC
Scope of TPS ADP Primary Objectives

- **TPS materials fabrication and characterization**
 - Development of material constituent, processing and properties specifications
 - Detailed mechanical and thermal material properties testing

- **TPS materials thermal performance capabilities for LEO & Lunar returns**
 - Screening and comprehensive TPS materials thermal performance testing
 - TPS materials thermal response models
 - TPS thermal performance margins policy

- **TPS materials thermal-mechanical performance capabilities**
 - Ground, launch, on-orbit, nominal and emergency entry, descent & landing loads
 - Thermal-structural integrated (carrier structure + TPS) testing

- **Design for all heat shield components**
 - TPS acreage, carrier-structure, TPS bonding, compression pads, main seals, gap/seams, close-outs, repairs

- **Integrated heat shield design and performance capabilities**
 - Integrated FEM analysis and design of all components
 - TPS material thermal, MMOD and integrated sizing
 - Integrated thermal-structural analysis and design of complete heat shield

- **Manufacturing for an integrated 5 meter heat shield**
 - Infrastructure, staffing, resources and equipment for full-scale heat shield production
 - Demonstration of full-scale heat shield manufacturing procedures
Heat shield Thermal-Structural Test and Analysis

4-point Bend Flexure Test

Temperature Transients

Displacement Measurements

Pre-test Analysis Predictions

Testing performed primarily at LaRC

Thermal Vacuum Cycling-
Simultaneous thermal & vacuum exposure

Environmental Chamber Test
(-150 F to +250 F)
Heat shield Arcjet Testing

Heritage Avcoat

ADP Textron Avcoat

Gap & Seam Testing

Pre-test 100% N2 10% O2 23% O2 30% O2

Oxygen Sensitivity Testing

Model Correlation

Testing performed at both ARC & JSC
Direct Results of the Orion TPS ADP

Competitive materials R&D resulted in multiple viable materials & systems

Avcoat: Selected for the Orion

PICA: Selected for MSL & Dragon

TPS ADP Arcjet tests revealed catastrophic failure mode of initial MSL TPS

MSL shifts to a new TPS ADP developed TPS material

Large article arcjet testing demonstrated during TPS ADP is now a necessary TPS tool

• New NASA TPS experts
• Multiple TPS firms
• Large scale manufacturing
• TRL = 5-6 ablative TPS
• Promising new TPS concepts
• Technology transfer to commercial space industry
• The ADP matured two heat shield designs, Avcoat and PICA, to PDR status

• The final down-select between PICA & Avcoat proceeded as planned (3/31/2009)

• The TPS ADP terminated as planned on 3/31/09, and responsibility for the heat shield was transitioned to LM

• NASA continues to play a vital role in the Orion TPS design activities
 – NASA has substantial in-house capability in TPS, including expertise developed during Shuttle Return-to-Flight activities and the CEV TPS ADP, which is being leveraged for the CEV TPS development, design and certification
 – The Prime Contractor retains primary responsibility for the development, design, test, certification and delivery of the TPS
 – There are several critical areas where NASA has in-line responsibilities, including:

 Analytical
 • Ablation thermal response model development
 • MMOD-impacted TPS response models
 • Margin Policy development and buy-down
 • Compression pad analysis & design

 Testing
 • Arcjet and radiant heat
 • Thermal barrier
 • Material property
 • Tuneable beam shock
Conclusions from the Orion TPS ADP

- The Orion Thermal Protection System (TPS) ADP was a 3 1/2 year effort to develop ablative TPS materials for the Orion crew capsule
 - The ADP was motivated by the lack of available ablative TPS’s
 - The TPS ADP pursued a competitive phased development strategy with succeeding rounds of development, testing and down selections
 - The Project raised the technology readiness level (TRL) of 8 different TPS materials from 5 different commercial vendors, eventual down selecting to a single material system for the Orion heat shield

- In addition to providing a heat shield material and design for Orion on time and on budget, the Project accomplished the following:
 - Re-invigorated TPS industry & re-established a NASA competency to respond to future TPS needs
 - Identified a potentially catastrophic problem with the planned MSL heat shield, and provided a viable, high TRL alternate heat shield design option
 - Transferred mature heat shield material and design options to the commercial space industry, including TPS technology information for the SpaceX Dragon capsule
Capability: The development of Thermal Protection Systems (TPS), including thermal & structural analysis, design, materials & processes, and thermal (arcjet and radiant heat) testing

POC: Chris Madden, Chief – Thermal Design Branch

christopher.b.madden@nasa.gov
(281) 483-6463