This innovation represents a novel approach to I-V curve measurement that is in-situ and can be applied as a diagnostics instrument. This method has application in solar arrays for powering unmanned vehicles.

John H. Glenn Research Center, Cleveland, Ohio

This method has application in solar arrays for powering unmanned vehicles.

John H. Glenn Research Center, Cleveland, Ohio

This innovation represents a method and circuit realization of a system designed to make in-situ measurements of test solar-cell operational parameters on orbit using readily available high-temperature and high-ionizing-radiation-tolerant electronic components. This innovation enables on-orbit in-situ solar-array health monitoring and is in response to a need recognized by the U.S. Air Force for future solar arrays for unmanned spacecraft. This system can also be constructed out of commercial-grade electronics and can be embedded into terrestrial solar power system as a diagnostics instrument.

This innovation represents a method and circuit realization of a system designed to make in-situ measurements of test solar-cell operational parameters on orbit using readily available high-temperature and high-ionizing-radiation-tolerant electronic components. This innovation enables on-orbit in-situ solar-array health monitoring and is in response to a need recognized by the U.S. Air Force for future solar arrays for unmanned spacecraft. This system can also be constructed out of commercial-grade electronics and can be embedded into terrestrial solar power system as a diagnostics instrument.

This innovation represents a novel approach to I-V curve measurement that is in-situ and can be applied as a diagnostics instrument. This method has application in solar arrays for powering unmanned vehicles.

John H. Glenn Research Center, Cleveland, Ohio

This method has application in solar arrays for powering unmanned vehicles.