Core and Off-Core Processes in Systems Engineering

This methodology can reduce the difficulty of coordinating multiple systems-engineering activities.

NASA’s Jet Propulsion Laboratory, Pasadena, California

An emerging methodology of organizing systems-engineering plans is based on a concept of core and off-core processes or activities. This concept has emerged as a result of recognition of a risk in the traditional representation of systems-engineering plans by a Vee model alone, according to which a large system is decomposed into levels of smaller subsystems, then integrated through levels of increasing scope until the full system is constructed. Actual systems-engineering activity is more complicated, raising the possibility that the staff will become confused in the absence of plans which explain the nature and ordering of work beyond the traditional Vee model.

Core activities are those that produce a top-down decomposition and bottom-up integration of a system in order of increasing time. Examples of core activities are definition of requirements, design, acquisition, and integration. Because of ordering according to time, these activities are often readily understood and depicted by use of such elementary graphical aids such as timelines and Gantt charts.

Off-core activities are other systems-engineering activities that add desirable qualities to a system solution, but are not directly involved in decomposition and
integration. Examples of off-core activities are management of risk and opportunity, verification, validation, and troubleshooting. Because these activities are usually repeated many times and may not inherently be ordered in the same way as the core processes, they often cannot be represented by use of simple graphical aids. The complexity and difficulty of the task of representing off-core activities is increased by the fact that the timing and type of work involved in these activities are more unpredictable than are those of core activities.

In the present methodology, as applied to the development of a given system, the systems-engineering plan is organized to explicitly treat core and off-core activities separately. This approach to organization provides a conceptual framework that can facilitate and accelerate understanding, by members of the systems-engineering staff, of the relationships among many parallel activities. In so doing, this approach can reduce the difficulty of coordinating those activities.

This work was done by Julian C. Bredenthal of Caltech and Kevin Forsberg of the Center for Systems Management for NASA’s Jet Propulsion Laboratory. For more information, contact Julian Bredenthal at julian.bredenthal@jpl.nasa.gov. NPO-45745

Digital Reconstruction Supporting Investigation of Mishaps
Lyndon B. Johnson Space Center, Houston, Texas

In support of investigations of mishaps like the crash of the space shuttle Columbia, a process based on digital reconstruction from recovered components has been developed. The process is expected to reduce the need for physical reconstruction from recovered parts, reduce the time and cost of determining the cause of a mishap, and provide information useful in redesigning to prevent future mishaps.

The process involves utilization of pre-existing techniques, hardware, and software to capture sizes and shapes of recovered parts in sets of digital data. The data are manipulated to enable rendering of captured geometric information by use of computer-aided design (CAD) and viewing software. The digitization of a part and study of its spatial relationship with other parts is taken to one of three levels of successively greater detail, depending on its importance to the investigation. The process includes a trajectory-analysis subprocess in which information from the digital reconstruction is combined with locations of recovered parts to reduce the area that must be searched to find other specified parts that have not yet been recovered. The digital product of the process is compatible with pre-existing CAD and solid-model-rendering software.

This work was done by William D. Macy and Robert B. Luecking of The Boeing Co. for Johnson Space Center. For further information, contact the JSC Innovation Partnerships Office at (281) 483-3809.

Title to this invention has been waived under the provisions of the National Aeronautics and Space Act (42 U.S.C. 2457(f)), to The Boeing Co. Inquiries concerning licenses for its commercial development should be addressed to:
Terrance Mason,
Boeing Patent Licensing Professional
Mail Code 1650-7002
Boeing Management Co.
15460 Laguna Canyon Road
Irvine CA 92618
Phone No. (949) 790-1331
E-mail: terrance.mason@boeing.com
Reference Boeing ID 03-0354
Refer to MSC-23783-1, volume and number of this NASA Tech Briefs issue, and the page number.

Template Matching Approach to Signal Prediction

An improvement is made in accurate prediction of future behavior and early detection of system problems.

NASA’s Jet Propulsion Laboratory, Pasaden a, California

A new approach to signal prediction and prognostic assessment of spacecraft health resolves an inherent difficulty in fusing sensor data with simulated data. This technique builds upon previous work that demonstrated the importance of physics-based transient models to accurate prediction of signal dynamics and system performance. While models can greatly improve predictive accuracy, they are difficult to apply in general because of variations in model type, accuracy, or intended purpose. However, virtually any flight project will have at least some modeling capability at its disposal, whether a full-blown simulation, partial physics models, dynamic look-up tables, a brassboard analogue system, or simple hand-driven calculation by a team of experts.

Many models can be used to develop a “predict,” or an estimate of the next day’s or next cycle’s behavior, which is typically used for planning purposes. The fidelity of a predict varies from one project to another, depending on the complexity of the simulation (i.e. linearized or full differential equations) and the level of detail in anticipated system operation, but typically any predict cannot be adapted to changing conditions or adjusted spacecraft command execution. Applying a predict blindly, without adapting the predict to current conditions, produces mixed results at best, primarily due to mismatches between assumed execution of spacecraft activities and actual times of execution. This results in the predict becoming useless during periods of complicated behavior, exactly when the predict would be most valuable. Each spacecraft operation tends to show up as a transient in the data, and if the transients are misaligned, using the predict can actually harm forecasting performance.

To address this problem, the approach here expresses the predict in terms of a baseline function superposed with one or more transient functions. These transients serve as signal templates, which can be relocated in time and space against the