Lori Ploutz-Snyder¹,⁵, Jeff Ryder,⁴,⁵ Roxanne Buxton²,⁵, Elizabeth Redd²,⁵, Melissa Scott-Pandorf³,⁵, Kyle Hackney⁴,⁵, James Fiedler¹,⁶, Robert Ploutz-Snyder¹,⁶, Jacob Bloomberg⁷

Universities Space Research Association¹, Houston, TX; University of Houston², Houston, TX; Wyle Integrated Science and Engineering³, Houston, TX; Syracuse University⁴, Syracuse, NY; NASA Johnson Space Center Exercise Physiology and Countermeasures Laboratory⁵, Houston, TX; NASA Johnson Space Center Biostatistics Laboratory⁶, Houston, TX; NASA Johnson Space Center Neuroscience Laboratory⁷, Houston, TX.

Novel Analog For Muscle Deconditioning

Existing models of muscle deconditioning are cumbersome and expensive (ex: bedrest). We propose a new model utilizing a weighted suit to manipulate strength, power or endurance (function) relative to body weight (BW).

Methods: 20 subjects performed 7 occupational astronaut tasks while wearing a suit weighted with 0-120% of BW. Models of the full relationship between muscle function/BW and task completion time were developed using fractional polynomial regression and verified by the addition of pre- and post-flight astronaut performance data using the same tasks. Spline regression was used to identify muscle function thresholds below which task performance was impaired.

Results: Thresholds of performance decline were identified for each task. Seated egress & walk (most difficult task) showed thresholds of: leg press (LP) isometric peak force/BW of 18 N/kg, LP power/BW of 18 W/kg, LP work/ BW of 79 J/kg, knee extension (KE) isokinetic/BW of 6 Nm/Kg and KE torque/BW of 1.9 Nm/kg.

Conclusions: Laboratory manipulation of strength / BW has promise as an appropriate analog for spaceflight-induced loss of muscle function for predicting occupational task performance and establishing operationally relevant exercise targets.
Novel Analog For Muscle Deconditioning

Existing models of muscle deconditioning are cumbersome and expensive (ex: bedrest). We propose a new model utilizing a weighted suit to manipulate strength, power or endurance (function) relative to body weight (BW).

Methods: 20 subjects performed 7 occupational astronaut tasks while wearing a suit weighted with 0-120% of BW. Models of the full relationship between muscle function/BW and task completion time were developed using fractional polynomial regression and verified by the addition of pre- and post-flight astronaut performance data using the same tasks. Spline regression was used to identify muscle function thresholds below which task performance was impaired.

Results: Thresholds of performance decline were identified for each task. Seated egress & walk (most difficult task) showed thresholds of: leg press (LP) isometric peak force/BW of 18 N/kg, LP power/BW of 18 W/kg, LP work/BW of 79 J/kg, isokinetic knee extension (KE) isokinetic/BW of 6 Nm/kg and KE torque/BW of 1.9 Nm/kg.

Conclusions: Laboratory manipulation of relative strength/BW has promise as an appropriate analog for spaceflight-induced loss of muscle function for predicting occupational task performance and establishing operationally relevant exercise targets.