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Strain–Gage Balance Load Calculation Methods
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The accuracy of iterative and non–iterative strain–gage balance load calcu-
lation methods was compared using data from the calibration of a force balance.
Two iterative and one non–iterative method were investigated. In addition,
transformations were applied to balance loads in order to process the calibra-
tion data in both direct–read and force balance format. NASA’s regression
model optimization tool BALFIT was used to generate optimized regression
models of the calibration data for each of the three load calculation methods.
This approach made sure that the selected regression models met strict statisti-
cal quality requirements. The comparison of the standard deviation of the load
residuals showed that the first iterative method may be applied to data in both
the direct–read and force balance format. The second iterative method, on the
other hand, implicitly assumes that the primary gage sensitivities of all balance
gages exist. Therefore, the second iterative method only works if the given bal-
ance data is processed in force balance format. The calibration data set was
also processed using the non–iterative method. Standard deviations of the load
residuals for the three load calculation methods were compared. Overall, the
standard deviations show very good agreement. The load prediction accuracies
of the three methods appear to be compatible as long as regression models used
to analyze the calibration data meet strict statistical quality requirements. Re-
cent improvements of the regression model optimization tool BALFIT are also
discussed in the paper.

Nomenclature

AF = axial force
B1 = square matrix that is used in the iteration equation of Iterative Method 2
B2 = square matrix that is used in the iteration equation of Iterative Method 2
C1 = square matrix that is used in the iteration equation of Iterative Method 1
C2 = rectangular matrix that is used in the iteration equations of Iterative Method 1 & 2
Fi = balance load
F◦ = F–Value of Regression of a regression model
F = part of matrix G that contains loads
G = load matrix
H = part of matrix G that contains absolute value and non–linear terms
i = dependent variable index -or- summation index
k = number of regression model coefficients (not counting the intercept term)
n = number of data points or observations of an experimental data set
NF = total normal force
N1 = normal force component at the forward gage of a balance
N2 = normal force component at the aft gage of a balance
m = number of independent variables
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p = distance between forward and aft normal force gage
PM = total pitching moment at the balance moment center
q = distance between forward and aft side force gage
SF = total side force
S1 = side force component at the forward gage of a balance
S2 = side force component at the aft gage of a balance
Ri = electrical output of a strain–gage
RM = total rolling moment
Syy = total sum of squares
SSE = sum of squares due to residuals
SSR = sum of squares due to regression
yi = measured dependent variable or response
ŷi = fitted dependent variable or response
Y M = total yawing moment

α = independent variable
β = independent variable
ΔR = delta bridge output vector or matrix
γ = dependent variable
ζ1, ζ2, · · · = coefficient used in regression model of strain–gage outputs (iterative methods)
ζ0 = intercept term
η1, η2, · · · = coefficient used in regression model of loads (non–iterative method)
η0 = intercept term
ξ = iteration step index
σ = standard deviation

I. Introduction

Different methods are used in wind tunnel testing in order to compute balance loads from measured
strain–gage outputs. These methods may be separated into two classes: iterative and non–iterative methods.
In principle, both classes of methods fit a given set of balance calibration data in the least squares sense and
use the result of the regression analysis for the prediction of balance loads during a wind tunnel test. The
two classes of methods, however, differ in the selection of the independent and dependent variables that are
used for the regression analysis of the balance calibration data.

Two iterative methods (method 1 and method 2) are currently being used in the wind tunnel testing
community. These iterative methods fit the gage outputs as a function of the applied calibration loads and
use an iteration equation in order to predict loads from gage outputs. The non–iterative method, on the
other hand, directly fits the balance calibration loads as a function of the measured gage outputs. Table 1
summarizes basic differences between the regression analysis of balance calibration data using iterative and
non–iterative methods.

Table 1: Differences between strain–gage balance calibration analysis methods.

ITERATIVE METHODS NON–ITERATIVE METHOD

(METHOD 1 & METHOD 2) (DIRECT–COMPUTE METHOD)

INDEPENDENT VARIABLE LOADS GAGE OUTPUTS

DEPENDENT VARIABLE GAGE OUTPUTS LOADS

It is often unclear how the choice of the balance calibration analysis method, i.e., the choice of the
load calculation method, influences the load prediction accuracy of the balance. In addition, the processing
of data in direct–read or force/moment balance format may also have an influence on the load prediction
accuracy. Therefore, it was decided to perform a study that would use a realistic balance calibration data
set in order find answers to some of these questions. Results of this investigation are discussed in great detail
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in the present paper.
During the study three load calculation methods were applied to balance calibration data that was

given in two load formats. Therefore, a total of six independent regression analysis cases were investigated.
The three different load calculation methods are explained in some detail in the next section of the paper.
Then, calibration data used in the present study is described and final results of the load prediction study
are presented and compared. Some recent improvements of a regression model optimization process are also
discussed as this optimization process was used to obtain regression models of the calibration data for the
current study.

II. Description of Load Calculation Methods

In general, iterative methods use a two–step approach in order to determine loads from measured gage
outputs. First, electrical outputs of balance strain–gages are fitted as a function of calibration loads. Then,
the loads are computed using an iteration equation that is derived from the global regression analysis of the
strain–gage outputs. The balance loads are the independent variables of the regression analysis problem.
The electrical outputs of the gages, on the other hand, are the dependent variables. Therefore, the regression
model of the gage outputs can be expressed as follows:

Ri = ζ0(i) + ζ1(i) · F1 + ζ2(i) · F2 + · · · + ζm(i) · Fm + · · · (1)

Detailed explanations of iterative methods are given in Refs. [1], [2], and [3]. For the present study
two iterative methods, i.e., Iterative Method 1 and Iterative Method 2 were selected. Iterative Method 1 is
described in great detail in Ref. [1]. Iterative Method 2 is explained in Ref. [3]. Figure 1 compares the
definition and initial guess of the iteration equations that the two iterative methods use (from Ref. [3]).

The Non–Iterative Method exchanges the independent and dependent variables that Iterative Method 1
and Iterative Method 2 use. Now, the strain–gage outputs become independent variables and the balance
loads are the dependent variables for the regression analysis of the balance calibration data. Therefore, the
balance loads are fitted as a function of the measured strain–gage outputs.

Fi = η0(i) + η1(i) · R1 + η2(i) · R2 + · · · + ηm(i) · Rm + · · · (2)

The Non–Iterative Method has the advantage that it is a one–step method. No iteration is needed in
order to compute loads from measured strain–gage outputs during a wind tunnel test. An analyst, however,
must not forget that the method ignores the fact that the balance loads are the “true” independent variables
of the calibration experiment as loads are “applied” and strain–gage outputs are “measured” during the
calibration of a balance. Therefore, the success of the Non–Iterative Method depends on the fundamental
assumption that an exchange of the independent and dependent variables of the calibration data set does
not negatively influence the mathematical description of the “true” physical behavior of the balance.

III. Description of Balance Calibration Data

Machine calibration data of NASA’s MC60D balance was selected for the present study. The balance
is shown in Fig. 2. It is a force balance that was manufactured by Triumph/Force Measurement Systems in
2008. Table 2 lists load capacities of the balance in direct–read format:

Table 2: Load capacities of the MC60D balance in direct–read format.

NF , lbs PM , in–lbs SF , lbs Y M , in–lbs RM , in–lbs AF , lbs

CAPACITY 5000 20000 2500 10000 5000 700

The balance calibration data was obtained in Triumph’s balance calibration machine (ABCS). The
supplied machine calibration data of the balance was already corrected for the weight of the balance shell
and other calibration fixtures. This characteristic was an advantage for the current study as the fitted
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balance loads were not influenced by tare load estimate differences that may be caused by small numerical
differences between the selected load calculation methods.

In general, it is important to assess the accuracy of a load calculation method at (i) data points that are
used to develop the regression model of the balance characteristics and at (ii) confirmation points that are
independent of the regression model. Therefore, it was decided to split the original machine calibration data
set of the MC60D balance into two subsets. The first subset (subset 1) was used to develop the regression
models for the three load calculation methods. The second subset (subset 2) contained confirmation points.
Table 3 below summarizes important characteristics of the balance and the calibration data set that was
used for the present study.

Table 3: Balance and calibration data set characteristics of the MC60D balance.

BALANCE NAME MC–60H-2.00D

BALANCE TYPE FORCE BALANCE

DIAMETER 2.0 [in]

GAGE DISTANCE (p, q) 6.0 [in]

CALIBRATION DATE DECEMBER 2008

CALIBRATION METHOD MACHINE CALIBRATION

TOTAL NUMBER OF CALIBRATION POINTS 1906

NUMBER OF DATA POINTS 953

NUMBER OF CONFIRMATION POINTS 953

LOAD FORMAT TARE CORRECTED LOADS

GAGE OUTPUT FORMAT GAGE OUTPUT DIFFERENCES

Balance load residuals are defined as the difference between the measured and fitted (predicted) loads.
Standard deviations of the residuals of both subsets were computed in order to compare the predictive
capability of the three load calculation methods. In addition, the load capacities listed in Table 2 were
used to express the standard deviation of the residuals in units of percent whenever data was processed in
direct–read format.

IV. Regression Model Optimization Process

It was decided to use only regression models of the calibration data for the current study that meet
strict statistical quality requirements. These regression models were identified using a regression model
optimization process that was implemented in a regression analysis tool called BALFIT (see Refs. [2], [3],
and [4] for a description of BALFIT’s optimization process).

BALFIT uses a candidate math model search algorithm during the optimization of the regression model
of a given set of multivariate experimental data. This optimized regression model is called “recommended
math model.” It is used for the final regression analysis of the experimental data set. In principle, the
search algorithm minimizes a search metric by testing only those math models that (i) do not have linear
or near–linear dependencies between terms and that (ii) satisfy a set of search constraints. The search
metric, for example, may be the standard deviation of the PRESS residuals of the dependent variable of the
regression analysis problem (see Ref. [5] for a description of different search metrics). Figure 3 summarizes
basic steps of the latest version of the candidate math model search algorithm that is used to obtain the
recommended math model. Different user choices (inputs) are listed on the left hand side of the flow chart
that is depicted in Fig. 3. Each user choice influences the search process and the final term combination that
the recommended math model will have.

Two significant improvements of BALFIT’s candidate math model search algorithm were made in 2010.
The first improvement is related to different search strategies that may be chosen during the regression model
search. Now, an analyst may use forward selection or backward elimination as a search strategy. Table 4
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below compares advantages and disadvantages of the two search strategy choices:

Table 4: Search Strategy Options.

ADVANTAGES DISADVANTAGES

FORWARD • Constraints can be enforced simultaneously • Benefit of term combinations may be overlooked

SELECTION • Only suited for automated search

BACKWARD • Benefit of term combinations is recognized in every step • Constraints cannot be enforced simultaneously

ELIMINATION • Suited for both automated and non–automated search

The primary search strategy, i.e., forward selection, has the advantage that both threshold based search
constraints (constraint 2 & 3 in Fig. 3) can be enforced simultaneously (i.e, in parallel). Forward selection,
however, may overlook benefits of certain term combinations as the regression model is built by adding
terms during the search. Forward selection is also only suited for an automated search. The initial number
of required math model tests is simply too large for a visual inspection of different statistical quality metrics
that may be used to interactively select terms of the regression model.

The alternate search strategy, i.e., backward elimination, recognizes the benefit of math term combina-
tions during every step of the search as the regression model is built by removing terms during the search.
Backward elimination, however, cannot enforce the threshold based search constraints (constraint 2 & 3 in
Fig. 3) simultaneously as a term selected for removal may not necessarily violate all constraints. Therefore,
it was decided to implement the search constraints in “series” if backward elimination is selected as the
search strategy. This implementation works in three steps. First, a regression model is tested using search
constraint 2 (near–linear dependency test) with a temporarily elevated threshold of 50. This test has priority
over search constraint 3 (test of the significance of a term) until search constraint 2 is no longer violated
during the search process. Then, search constraint 3 takes over. Now, search constraint 3 has priority over
search constraint 2. Finally, search constraint 2 takes over again using the thresholds of 5 (or 10) after search
constraint 3 can no longer be violated during the search process.

A second improvement was also implemented in the latest version of the candidate math model search
algorithm. Previously, only the minimum of the search metric was used to identify the recommended math
model after the completion of the candidate math model search. Now, it is also possible to use the
maximum of the F–Value of Regression of the candidate math models for this purpose. Table 5 below lists
the two identification metrics that an analyst may choose to identify the recommended math model after
the completion of the candidate math model search.

Table 5: Identification Metric Options.

DESCRIPTION

PRIMARY METRIC MINIMUM OF THE SEARCH METRIC

ALTERNATE METRIC MAXIMUM OF THE F–VALUE OF REGRESSION

The minimum of the search metric is still used as the default choice for the identification of the rec-
ommended math model. The new identification metric, i.e., the maximum of the F–Value of Regression of
the candidate math models, may also be selected. This alternate metric usually recommends a math model
that has fewer terms than the math model that the primary identification metric suggests. A more detailed
discussion of the new alternate identification metric is given in the appendix of the paper.

Experience with different types of experimental data sets has shown that it is important for
a user of BALFIT’s regression model optimization process to remember that different combinations
of the search strategy (forward selection -or- backward elimination) and of the identification metric
(minimum of the search metric -or- maximum of the F–Value of Regression) may have to be tested in or-
der to find a regression model that meets an analyst’s expectations. For the current study, however, it was
decided to always use backward elimination and the minimum of the search metric for the optimization of a
regression model as this combination lead to reasonable optimization results in all cases.
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V. Analysis in Direct–Read Format

During the first part of the study the calibration data of the MC60D balance was processed in direct–
read format. Therefore, the balance loads were used in the following format: NF, PM, SF, YM, RM, and
AF. The strain–gage outputs, on the other hand, remained unchanged. Input data files were prepared and
calibration data points were processed using the three chosen load calculation methods. BALFIT’s candidate
math model search algorithm was applied in each case in order to obtain an optimized regression model of the
data that met strict statistical quality requirements. Afterwards, load residuals and corresponding standard
deviations were computed at the data points (subset 1) and the confirmation points (subset 2).

Table 6.1 and 6.2 below show the standard deviation of the load residuals of the calibration data points
and the confirmation points for the three methods in both engineering units and percent of load capacity.

Table 6.1: Standard deviation of calibration data points (subset 1) in direct–read format.

METHOD NF , lbs PM , in–lbs SF , lbs Y M , in–lbs RM , in–lbs AF , lbs

Iterative 1 2.50 (0.050%) 9.61 (0.048%) 2.59 (0.104%) 11.56 (0.116%) 7.27 (0.146%) 0.43 (0.061%)

Iterative 2 diverg. diverg. diverg. diverg. diverg. diverg.

Non–Iterative 2.46 (0.049%) 9.62 (0.048%) 2.58 (0.103%) 11.87 (0.119%) 7.27 (0.145%) 0.43 (0.061%)

Table 6.2: Standard deviation of confirmation points (subset 2) in direct–read format.

METHOD NF , lbs PM , in–lbs SF , lbs Y M , in–lbs RM , in–lbs AF , lbs

Iterative 1 2.46 (0.049%) 9.92 (0.050%) 2.65 (0.106%) 12.14 (0.121%) 7.44 (0.149%) 0.45 (0.065%)

Iterative 2 diverg. diverg. diverg. diverg. diverg. diverg.

Non–Iterative 2.45 (0.049%) 9.91 (0.050%) 2.60 (0.104%) 12.55 (0.125%) 7.55 (0.151%) 0.45 (0.065%)

It is observed that the standard deviations of Iterative Method 1 and the Non–Iterative Method for the
points of subset 1 and subset 2 show very good agreement. We also see that Iterative Method 2 did not
converge. This behavior is directly linked to the existence of the primary gage sensitivities of the balance
calibration data. Table 6.3 below shows the primary gage sensitivities of the balance in direct–read format.

Table 6.3: Primary gage sensitivities of balance calibration data in direct–read format.

∂ NF

∂ R1

∂ PM

∂ R2

∂ SF

∂ R3

∂ Y M

∂ R4

∂ RM

∂ R5

∂ AF

∂ R6[
lbs

μV/V

] [
in − lbs

μV/V

] [
lbs

μV/V

] [
in− lbs

μV/V

] [
in − lbs

μV/V

] [
lbs

μV/V

]

SENSITIVITY not defined not defined not defined not defined 3.7689 0.8330

We see that the sensitivities of the first four load/gage output combinations are not defined. This
observation explains the divergence of the load iteration scheme as Iterative Method 2 implicitly assumes
that all primary gage sensitivities of the balance gages of the chosen load format exist (see Ref. [3] for a
detailed description of Iterative Method 2).

VI. Analysis in Force Balance Format

In the second part of the study the data of the MC60D was processed in force balance format as the
balance gages behave like gages of a force balance. Therefore, the loads were converted to the following
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format: N1, N2, S1, S2, RM , and AF . The transformation equations are defined as follows (from Ref. [6]):

N1 =
NF

2
+

PM

p
(3a)

N2 =
NF

2
− PM

p
(3b)

S1 =
SF

2
+

Y M

q
(3c)

S2 =
SF

2
− Y M

q
(3d)

where the distances p and q between the forward and aft gages of the normal and side force components are
given as

p = q = 6.0 [in] (4)

The transformed calibration loads and the original gage outputs were processed using the three load
calculation methods. Again, optimized regression models of the data were used for the analysis of the
calibration data. Table 7.1 and 7.2 below show the standard deviation of the load residuals of the calibration
data points (subset 1) and the confirmation points (subset 2) for the three methods in engineering units.

Table 7.1: Standard deviation of calibration data points (subset 1) in force balance format.

METHOD N1, lbs N2, lbs S1, lbs S2, lbs RM , in–lbs AF , lbs

Iterative 1 1.66 2.36 2.41 2.24 7.17 0.43

Iterative 2 1.66 2.36 2.41 2.24 7.17 0.43

Non–Iterative 1.71 2.31 2.43 2.28 7.27 0.43

Table 7.2: Standard deviation of confirmation points (subset 2) in force balance format.

METHOD N1, lbs N2, lbs S1, lbs S2, lbs RM , in–lbs AF , lbs

Iterative 1 1.66 2.41 2.52 2.33 7.33 0.45

Iterative 2 1.66 2.41 2.52 2.33 7.33 0.45

Non–Iterative 1.72 2.38 2.54 2.36 7.55 0.45

This time, the primary gage sensitivities of all balance gages are defined (see Table 7.3 below). Therefore,
Iterative Method 2 also converged and corresponding balance load residuals were computed.

Table 7.3: Primary gage sensitivities of balance calibration data in force balance format.

∂ N1

∂ R1

∂ N2

∂ R2

∂ S1

∂ R3

∂ S2

∂ R4

∂ RM

∂ R5

∂ AF

∂ R6[
lbs

μV/V

] [
lbs

μV/V

] [
lbs

μV/V

] [
lbs

μV/V

] [
in − lbs

μV/V

] [
lbs

μV/V

]

SENSITIVITY 2.6396 2.1571 2.1668 2.1341 3.7689 0.8330

Several observations can be made if results listed in Table 7.1 and 7.2 are compared: (1) all methods
appear to have a similar load prediction accuracy as the standard deviations of the load residuals of both
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subsets show very good agreement; (2) the standard deviations of both iterative methods are identical. The
second observation is expected as both iterative methods, by design, are developed from the same set of
regression coefficients that were used to fit the data.

VII. Comparison of Results

It would be interesting to directly compare results in force balance format (Table 7.1 and 7.2) with results
in direct–read format (Table 6.1 and 6.2). This comparison would allow us to see if the load format selection
influenced the load prediction accuracy. The comparison can be performed if the standard deviations reported
in Table 7.1 and 7.2 are converted from force balance to direct–read format. Afterwards it is possible to
express the converted values as a percentage of the balance load capacity which will simplify the comparison
of the converted values with those values that are given in Table 6.1 and 6.2.

The format conversion equations for the standard deviation can be understood by discussing a simple
example. Let us assume that variables α and β are a set of two independent variables that describe the
behavior of a dependent variable called γ. Then, we can write:

γ = γ(α, β) (5a)

We know from calculus that the individual standard deviations of the independent variables are related
to the standard deviation of the dependent variable using the following relationship:

σ(γ) ≈
√ [

∂ γ

∂ α
· σ(α)

]2

+
[

∂ γ

∂ β
· σ(β)

]2

(5b)

We also know, after applying the classical strain–gage balance load transformation given in Ref. [6] to
the balance loads, that the following relationship between the total normal force and its components is valid:

NF = γ(N1, N2) = N1 + N2 (6a)

For the total pitching moment at the balance moment center the following relationship applies:

PM = μ(N1, N2) = (N1 − N2) · p/2 (6b)

Now, after applying Eq. (5b) to Eq. (6a), we get for the standard deviation of the total normal force
the relationship:

σ(NF ) ≈
√

[σ(N1)]
2 + [σ(N2)]

2 (7)

Similarly, after applying Eq. (5b) to Eq. (6b), we get for the standard deviation of the total pitching
moment the relationship:

σ(PM) ≈ p

2
·
√

[σ(N1)]
2 + [σ(N2)]

2 (8)

Equivalent relationships can be derived for SF and Y M using the side force components S1 and S2 as
independent variables. Now, after converting the standard deviations given in Table 7.1 and 7.2 from force
balance to direct–read format, we get the following results in engineering units and in percent of the load
capacity:

Table 8.1: Converted standard deviation of calibration data points (subset 1).

METHOD NF , lbs PM , in–lbs SF , lbs Y M , in–lbs RM , in–lbs AF , lbs

Iterative 1 2.88 (0.058%) 8.65 (0.043%) 3.29 (0.131%) 9.87 (0.099%) 7.17 (0.143%) 0.43 (0.061%)

Iterative 2 2.88 (0.058%) 8.65 (0.043%) 3.29 (0.131%) 9.87 (0.099%) 7.17 (0.143%) 0.43 (0.061%)

Non–Iterative 2.87 (0.057%) 8.62 (0.043%) 3.33 (0.133%) 9.99 (0.100%) 7.27 (0.145%) 0.43 (0.061%)
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Table 8.2: Converted standard deviation of confirmation points (subset 2).

METHOD NF , lbs PM , in–lbs SF , lbs Y M , in–lbs RM , in–lbs AF , lbs

Iterative 1 2.93 (0.059%) 8.78 (0.044%) 3.43 (0.137%) 10.28 (0.103%) 7.33 (0.147%) 0.45 (0.064%)

Iterative 2 2.93 (0.059%) 8.78 (0.044%) 3.43 (0.137%) 10.28 (0.103%) 7.33 (0.147%) 0.45 (0.064%)

Non–Iterative 2.93 (0.059%) 8.80 (0.044%) 3.47 (0.139%) 10.40 (0.104%) 7.55 (0.151%) 0.45 (0.064%)

Finally, after comparing values reported in Table 6.1 and 6.2 with corresponding converted values given
in Table 8.1 and 8.2, we see that the standard deviations for the three tested methods show good agreement.
The predictive capability of all three methods appears to be compatible keeping at the same time in mind
that the regression models used by the tested load calculation methods were not identical.

VIII. Conclusions

Data from the machine calibration of a six–component force balance was used to investigate the accuracy
of iterative and non–iterative strain–gage balance load calculation methods. Two iterative and one non–
iterative method were used for the analysis of the calibration data. The balance loads were also processed in
both the direct–read and force balance format. In addition, the latest improvements of a regression model
optimization process were discussed in some detail as the optimization process was used to select regression
models for the analysis of the balance calibration data.

Standard deviations of the load residuals of calibration data points and regression model independent
confirmation points were compared after the completion of the regression analysis of the calibration data.
In addition, standard deviations obtained in force balance format were transformed to corresponding values
in direct–read format so that the influence of the load format on the load prediction accuracy could be
investigated.

Overall, all three load calculation methods appear to have compatible load prediction accuracies. In
addition, it was noticed that the second iterative method does only converge to a solution if the balance
data is processed in force balance format. This observation can be explained by the fact that the iteration
equation of the second iterative method implicitly assumes that the primary gage sensitivity of all gages
exists. This assumption is violated whenever a force (or moment) balance data set is processed in direct–
read format. The first iterative method, on the other hand, can process calibration data in both direct–read
and force balance format as the iteration equation of this method does not depend on the existence of the
primary gage sensitivities.
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Appendix: Identification of Recommended Math Model

A regression model optimization process is being used at the Balance Calibration Laboratory at NASA
Ames Research Center for the automated regression analysis of strain–gage balance calibration data and other
multivariate experimental data sets (see Ref. [2], [3], and [4] for a detailed description of the optimization
process that uses a candidate math model search algorithm). At the beginning of 2010 an important addition
to the regression model optimization process was made. Now, the maximum of the F–Value of Regression
of the candidate math models may be used as an alternate identification metric for the selection of the
recommended math model after the completion of the candidate math model search.

Key ideas of the candidate math model search algorithm need to be reviewed in order to better un-
derstand the advantage of using the maximum of the F–Value of Regression as an alternate identification
metric for the selection of the recommended math model. In principle, the candidate math model search
algorithm minimizes a search metric during the search. This search metric is the standard deviation of the
PRESS residuals of a regression model if no confirmation points are a part of the experimental data set (see
Ref. [5] for a discussion of different search metric options). By design, the search metric is a monotonically
decreasing function for most data sets if it is plotted versus the number of regression model terms. One of
the candidate math models needs to be chosen as the recommended math model after the completion of the
search.

Different techniques were implemented over the years in order to select the recommended math model
from the final set of candidate math models. Initially, the search algorithm applied a user selected “empirical”
threshold in order to identify the recommended math model. This threshold was compared with the difference
of the search metric value of two consecutive candidate math models. The recommended math model was
picked as soon as the difference was less than the specified threshold (see Ref. [3], p. 3, for a description of
this initial selection approach). This initial identification method is no longer used in the algorithm.

A major revision of the search algorithm was made in 2007. At that time more advanced statistical
metrics and several search constraints were introduced in the candidate math model search algorithm. This
improved version of the algorithm no longer required a user input for the selection of the recommended math
model. It was simply chosen to be the candidate math model that had the smallest search metric value
while satisfying all search constraints. This identification metric, i.e., the minimum of the search metric, is
still being used as the default choice in the current version of the algorithm. It is the primary identification
metric for the selction of the recommended math model.

Studies were performed at the beginning of 2010 that compared the F–Value of Regression of the
candidate math models with the corresponding plot of the search metric. During these studies an interesting
connection between the F–Value of Regression and the search metric was observed:

The F–Value of Regression has a maximum for the candidate math
model that gives the “best return on investment” assuming that the
number of regression model terms is considered to be the “investment”
and the magnitude of the search metric is considered to be the “return.”

It was also observed that the math model identified by the maximum of the F–Value of Regression has
fewer terms than the math model that would be chosen by using the primary identification metric discussed
in a previous paragraph. Therefore, it was decided to introduce the maximum of the F–Value of Regression
of the candidate math models as an alternate identification metric for the selection of the recommended
math model as this metric appears to pick a recommended math model that uses the smallest possible set
of significant regression model terms.

It still needs to be shown mathematically that the F–Value of Regression of the candidate math models
has a maximum if it is plotted versus the number of regression model terms of the candidate math models.
The proof starts with the definition of the F–Value of Regression of a regression model of some experimental
data. It is defined as follows (from Ref. [7], Eq. (2.21)):

F◦ =
SSR / k

SSE / (n − k − 1)
=

SSR

SSE
· n − k − 1

k
(9)

where SSR is the sum of squares due to regression, SSE is the sum of squares due to residual, n is the
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number of data points (observations), and k is the number of terms of the regression model (not counting
the intercept). We also know that the total sum of squares, i.e., Syy, is the sum of (i) the sum of squares due
to regression and (ii) the sum of squares due to residual (see Ref. [7], Eq. (2.20)). Therefore, we can write:

Syy = SSR + SSE (10a)

or, after solving Eq. (10a) for SSR, we get

SSR = Syy − SSE (10b)

Now, after using the right hand side of Eq. (10b) to replace SSR in Eq. (9), we get:

F◦ =
[

Syy − SSE

SSE

]
·
[

n − k − 1
k

]
(11)

We also know from the literature that the total sum of squares (Syy) is only a function of (i) the
dependent variables (responses) and (ii) the number of data points. It is defined as (see Ref. [7], p. 29):

Syy =
n∑

i=1

y2
i − 1

n
·
(

n∑
i=1

yi

)2

(12a)

where yi is a dependent variable value (response value) at data point i. Similarly, we know that the sum of
squares due to residual (SSE) is defined as (see Ref. [7], p. 26):

SSE =
n∑

i=1

( yi − ŷi)
2 (12b)

where ŷi is the fitted dependent variable value (response value) at data point i. We know from Eq. (11) that
the F–Value of Regression of the candidate math models is closely linked to the search metric value because
the search metric is the standard deviation of the PRESS residuals of the experimental data set, i.e., a value
that closely follows the behavior of the sum of squares due to residual of the fit. Therefore, it is sufficient
to look at the behavior of the sum of squares due to residual (SSE) of the candidate math models instead
of looking at the search metric itself.

The proof has to examine the different terms that are used in Eq. (11) to compute the F–Value of
Regression. First, the total sum of squares (Syy) is investigated. From Eq. (10a) we see that Syy is
independent of the regression model of the data. It is a constant for the experimental data set. This
conclusion can be summarized as follows:

Conclusion 1 : Syy =⇒ constant for experimental data set

The situation is different for the sum of squares due to residual. This value decreases initially and
approaches an asymptote as it closely follows the behavior of the search metric that is used during the
candidate math model search. Therefore, we can summarize this conclusion using the following statement:

Conclusion 2 : SSE =⇒ decreases and approaches an asymptote as k increases

Now, knowing that Syy is a constant (Conclusion 1) and that SSE decreases and approaches an asymp-
tote as the number of regression model terms increases (Conclusion 2), we can make the following statement
about the difference of the two values:

Conclusion 3 : Syy − SSE =⇒ increases and approaches an asymptote as k increases

Similarly, after computing the inverse of SSE and after considering Conclusion 2, we can say:

Conclusion 4 :
1

SSE
=⇒ increases and approaches an asymptote as k increases
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Now, after combining Conclusions 3 and 4, we can make the following statement about the first factor
on the right hand side of Eq. (11):

Conclusion 5 :
[

Syy − SSE

SSE

]
=⇒ increases and approaches an asymptote as k increases

Similarly, examining the second factor on the right hand side of Eq. (11), we can make the following
two statements:

Conclusion 6 : n − k − 1 =⇒ decreases as k increases

Conclusion 7 :
1
k

=⇒ decreases as k increases

Therefore, after combining Conclusions 6 and 7, we can make the following statement about the second
factor on the right hand side of Eq. (11):

Conclusion 8 :
[

n − k − 1
k

]
=⇒ decreases as k increases

We see, after applying Conclusion 5 and Conclusion 8 to the definition of the F–Value of Regression
given in Eq. (11), that the first factor (Syy − SSE)/SSE increases initially as k grows. At some point,
however, the first factor approaches an asymptote. The second factor (n − k − 1)/k, on the other hand,
decreases monotonically as k grows. Therefore, the F–Value of Regression must have a maximum if plotted
as a function of the number of terms of the candidate math models. This statement can be summarized as
follows:

Conclusion 9 : F◦ =⇒ must have a maximum if plotted versus number of terms

Finally, the above conclusions can be summarized as follows: (i) The regression model of the
maximum of the F–Value of Regression may be considered to be the regression model that gives the “best
return on investment” assuming that the number of regression coefficients k is considered to be the “in-
vestment” and the sum of squares of residual SSE is considered to be the “return.” (ii) Therefore, because
SSE closely follows the search metric value of the candidate math models, the candidate math model of the
maximum of the F–Value of Regression should be chosen as the recommended math model.

Calibration data of the MC60D balance may be used to illustrate the connection between the search
metric, the maximum of the F–Value of Regression of the candidate math models, and the recommended
math model. Therefore, it was decided to use the non–iterative method in order to obtain a regression
model of the axial force as a function of the six gage outputs of the MC60D balance. The optimization of
the regression model of the axial force was performed using backward elimination as the search strategy and
using the maximum of the F–Value of Regression to select the recommended math model.

Figure 4a shows the search metric of the 28 candidate math models that were identified during the
search for an optimized regression model of the axial force. A total number of 279 math models were tested
during the search in order to obtain the 28 candidate math models that are shown in Fig. 4a. Only 23 of the
28 candidate math models fulfilled search constraints 2 & 3 (these models are marked using enlarged and
boldface symbols in Fig. 4a). Figure 4b shows the F–Value of Regression of all candidate math models. It
can be seen that the F–Value of Regression reaches a maximum for the candidate math model that appears
to use a minimum number of significant terms (the blue symbol marks the maximum). This candidate math
model should be selected as the recommended math model.
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ITERATION EQUATION TYPE INITIAL GUESS FIRST SOLUTION

F
ξ

=
[
C

−1

1 ΔR
]
−
[
C

−1

1 C2

]
·H

ξ−1
H0 =

⎡
⎢⎢⎣

0 · · · 0
0 · · · 0
...
...
...

0 · · · 0

⎤
⎥⎥⎦ F1 = C

−1

1 ΔR

Iterative Method 1 (see Ref. [1], p. 19, Eq. (3.3.7))

F
ξ

=
[
B

−1

1 ΔR
]
−
[
B

−1

1 B2

]
·F

ξ−1
−
[
B

−1

1 C2

]
· H

ξ−1
F

0
=

⎡
⎢⎢⎣

0 · · · 0
0 · · · 0
...
...
...

0 · · · 0

⎤
⎥⎥⎦ F

1
= B

−1

1 ΔR

Iterative Method 2 (see Ref. [3], p. 11, Eq. (28)) H0 =

⎡
⎢⎢⎣

0 · · · 0
0 · · · 0
...
...
...

0 · · · 0

⎤
⎥⎥⎦

Fig. 1 Definition of iteration equations used by Iterative Method 1 and 2 (see also Ref. [3]).

Fig. 2 NASA’s MC60D strain–gage balance (photo courtesy of Triumph/Force Measurement Systems).
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Fig. 3 Candidate math model search algorithm of 2010.

15
American Institute of Aeronautics and Astronautics



Fig. 4a Search metric versus number of math model terms for candidate math models of axial force.
(enlarged symbols =⇒ search constraints 2 & 3 fulfilled; blue symbol =⇒ recommended math model)

Fig. 4b F–Value of Regression versus number of math model terms for candidate math models of axial force.
(enlarged symbols =⇒ search constraints 2 & 3 fulfilled; blue symbol =⇒ recommended math model)
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